Approximate Reflectance Profiles for Efficient Subsurface Scattering

Per Christensen Pixar Animation Studios

SIGGRAPH 2015, Los Angeles

Goal: subsurface scattering, fast+simple

Overview

- Simple subsurface scattering model
- New parameterization allows comparison with physically-based models
- Matches Monte Carlo references very well -better than physically-based models
- Useful for ray-traced (and point-based) subsurface scattering

Advantages

- Faster evaluation, simpler code
- Built-in single-scattering term
- No need for numerical inversion of userfriendly parameters (surface albedo and scattering length) to physical parameters (volume scattering and absorption coeffs)
- Bonus: simple cdf for importance sampling

Inspiration: Schlick's Fresnel approx.

 Physics: Fresnel reflection formula -- reflection is average of parallel and perpendicular polarized: R(theta) = (R_p+ R_s) / 2

$$R_{\rm p} = \left| \frac{n_1 \cos \theta_{\rm t} - n_2 \cos \theta_{\rm i}}{n_1 \cos \theta_{\rm t} + n_2 \cos \theta_{\rm i}} \right|^2 = \left| \frac{n_1 \sqrt{1 - \left(\frac{n_1}{n_2} \sin \theta_{\rm i}\right)^2} - n_2 \cos \theta_{\rm i}}{n_1 \sqrt{1 - \left(\frac{n_1}{n_2} \sin \theta_{\rm i}\right)^2} + n_2 \cos \theta_{\rm i}} \right|^2.$$
$$R_{\rm s} = \left| \frac{n_1 \cos \theta_{\rm i} - n_2 \cos \theta_{\rm t}}{n_1 \cos \theta_{\rm i} + n_2 \cos \theta_{\rm t}} \right|^2 = \left| \frac{n_1 \cos \theta_{\rm i} - n_2 \sqrt{1 - \left(\frac{n_1}{n_2} \sin \theta_{\rm i}\right)^2}}{n_1 \cos \theta_{\rm i} + n_2 \sqrt{1 - \left(\frac{n_1}{n_2} \sin \theta_{\rm i}\right)^2}} \right|^2,$$

Inspiration: Schlick's Fresnel approx.

• Physics: Fresnel reflection formula

Inspiration: Schlick's Fresnel approx.

 [Schlick94]: Simple approximation as polynomial

$$R(\theta) = R_0 + (1 - R_0)(1 - \cos\theta)^5$$

No visual difference

 We want similar simple approximation for subsurface scattering!

Outline of talk

Subsurface scattering

Physically-based subsurface scattering models

Burley's approximate model

My reparameterization

• Results

Monte Carlo simulation

Most general method: brute-force Monte Carlo

• But: very slow!

BSSRDF

 Function that describes how light enters an object, bounces around, then leaves: BSSRDF (bidirectional surface scattering reflectance distribution function) S

• Often simplified as:

$$S(x_i, w_i; x_o, w_o) = C F_t(x_i, w_i) R(|x_o - x_i|) F_t(x_o, w_o)$$

reflectance profile

Reflectance profiles: reference Brute-force Monte Carlo simulation Reflectance profile R(r); A = surface albedo

Physically-based reflectance profiles • Dipole diffusion [Jensen01,02] -simple, fast, widely used; but: blurry "waxy" look Better dipole diffusion [d'Eon12] Directional dipole diffusion [Frisvad14] -can handle oblique incident angles

$$\begin{split} R_d(r) &= -D \frac{(\vec{n} \cdot \vec{\nabla} \phi(x_s))}{d\Phi_i} \\ &= \frac{\alpha'}{4\pi} \left[(\sigma_{tr} d_r + 1) \, \frac{e^{-\sigma_{tr} d_r}}{\sigma'_t d_r^3} + z_v \left(\sigma_{tr} d_v + 1 \right) \frac{e^{-\sigma_{tr} d_v}}{\sigma'_t d_v^3} \right]. \end{split}$$

$$\begin{split} R_d(r) &= -D \frac{(\vec{n} \cdot \vec{\nabla} \phi(x_s))}{d\Phi_i} \\ &= \frac{\alpha'}{4\pi} \left[(\sigma_{tr} d_r + 1) \frac{e^{-\sigma_{tr} d_r}}{2} + z_{\cdots} (\sigma_{t\omega} d_{\omega} + 1) \frac{e^{-\sigma_{tr} d_v}}{2} \right] . \\ R_d &= 2\pi \int_0^\infty R_d(r) \, r \, dr = \frac{\alpha'}{2} \left(1 + e^{-\frac{4}{3}A\sqrt{3(1-\alpha')}} \right) e^{-\sqrt{3(1-\alpha')}} . \end{split}$$

$$\begin{split} R_{d}(r) &= -D \frac{(\vec{n} \cdot \vec{\nabla} \phi(x_{s}))}{d\Phi_{i}} \\ &= \frac{\alpha'}{4\pi} \left[(\sigma_{tr} d_{r} + 1) \frac{e^{-\sigma_{tr} d_{r}}}{2\pi} + z_{\cdot} (\sigma_{t\cdot \cdot} d_{\cdot \cdot} + 1) \frac{e^{-\sigma_{tr} d_{v}}}{2\pi} \right] . \\ R_{d} &= 2\pi \int_{-\infty}^{\infty} R_{d}(r) r \, dr = \frac{\alpha'}{2} \left(1 + e^{-\frac{4}{3}A\sqrt{3(1-\alpha')}} \right) e^{-\sqrt{3(1-\alpha')}} . \\ L_{o}^{(1)}(x_{o}, \vec{\omega}_{o}) &= \sigma_{s}(x_{o}) \int_{2\pi} F p(\vec{\omega}_{i}' \cdot \vec{\omega}_{o}') \int_{0}^{\infty} e^{-\sigma_{tc}s} L_{i}(x_{i}, \vec{\omega}_{i}) \, ds \, d\vec{\omega}_{i} \quad (6) \\ &= \int_{A} \int_{2\pi} S^{(1)}(x_{i}, \vec{\omega}_{i}; x_{o}, \vec{\omega}_{o}) L_{i}(x_{i}, \vec{\omega}_{i}) \, d\omega_{i} dA(x_{i}). \end{split}$$

$$\begin{split} R_{d}(r) &= -D \frac{(\vec{n} \cdot \vec{\nabla} \phi(x_{s}))}{d\Phi_{i}} \\ &= \frac{\alpha'}{4\pi} \left[(\sigma_{tr} d_{r} + 1) \frac{e^{-\sigma_{tr} d_{r}}}{2} + z_{\cdots} (\sigma_{t-d} d_{-} + 1) \frac{e^{-\sigma_{tr} d_{v}}}{2} \right] . \\ R_{d} &= 2\pi \int_{-\infty}^{\infty} R_{d}(r) r \, dr = \frac{\alpha'}{2} \left(1 + e^{-\frac{4}{3}A\sqrt{3(1-\alpha')}} \right) e^{-\sqrt{3(1-\alpha')}} . \\ L_{o}^{(1)}(x_{o}, \vec{\omega}_{o}) &= \sigma_{s}(x_{o}) \int_{2\pi}^{r} p(\vec{\omega}_{i}' \cdot \vec{\omega}_{o}') \int_{0}^{\infty} e^{-\sigma_{tc}s} L_{i}(x_{i}, \vec{\omega}_{i}) \, ds \, d\vec{\omega}_{i} \quad (6) \\ &= \int_{A} \int_{2\pi}^{S^{(1)}}(x_{i}, \vec{\omega}_{i}; x_{o}, \vec{\omega}_{o}) L_{i}(x_{i}, \vec{\omega}_{i}) \, d\omega_{i} dA(x_{i}) . \end{split}$$

$$R_{d}(r) = -D \frac{(\vec{n} \cdot \vec{\nabla} \phi(x_{s}))}{d\Phi_{i}}$$

$$= \frac{\alpha'}{4\pi} \left[(\sigma_{tr}d_{r} + 1) \frac{e^{-\sigma_{tr}d_{r}}}{r} + z_{\cdots}(\sigma_{tn}d_{\cdots} + 1) \frac{e^{-\sigma_{tr}d_{v}}}{r} \right].$$

$$R_{d} = 2\pi \int_{\infty}^{\infty} R_{d}(r) r \, dr = \frac{\alpha'}{2} \left(1 + e^{-\frac{4}{3}A\sqrt{3(1-\alpha')}} \right) e^{-\sqrt{3(1-\alpha')}}.$$

$$L_{o}^{(1)}(x_{o}, \vec{\omega}_{o}) = \sigma_{s}(x_{o}) \int_{2\pi}^{r} F(\vec{\omega}_{i}' \cdot \vec{\omega}_{o}') \int_{0}^{\infty} e^{-\sigma_{tc}s} L_{i}(x_{i}, \vec{\omega}_{i}) \, ds \, d\vec{\omega}_{i} \quad (6)$$

$$= \int_{A} \int_{2\pi}^{S^{(1)}} (x_{i}, \vec{\omega}_{i}; x_{o}, \vec{\omega}_{o}) L_{i}(x_{i}, \vec{\omega}_{i}) \, d\omega_{i} dA(x_{i}).$$

$$\nabla \phi_{d}' = \frac{\Phi}{4\pi D} \frac{e^{-\sigma_{tr}r}}{r^{3}} \left(\vec{\omega}_{12} \, 3D(1 + \sigma_{tr}r) - \boldsymbol{x} \, (1 + \sigma_{tr}r) - \frac{d_{v}^{2}}{r} \cos \theta \right). (19)$$
PIXA

Physically-based reflectance profiles Quantized diffusion [d'Eon11] Improved diffusion theory Extended source term (instead of just two points) Sharper edges -- not "waxy" looking

$$\phi(r) = \frac{\mathrm{e}^{-\mu_t r}}{4\pi r^2} + \frac{\mu_s}{2\pi^2 r} \int_0^\infty \frac{\arctan^2 u}{u - \alpha \arctan u} \, \sin(r \, \mu_t \, u) \, du.$$

$$\phi(r) = \frac{e^{-\mu_t r}}{4\pi r^2} + \frac{\mu_s}{2\pi^2 r} \int_0^\infty \frac{\arctan^2 u}{u - \alpha \arctan^2 u} \sin(r \,\mu_t \,u) \,du.$$

$$\phi(r) = \frac{e^{-\mu_t' r}}{4\pi r^2} + \frac{1}{4\pi} \frac{3\mu_s' \mu_t'}{2\mu_a + \mu_s'} \frac{e^{-\sqrt{\frac{\mu_a}{D}}r}}{r}$$

$$\phi(r) = \frac{e^{-\mu_t r}}{4\pi r^2} + \frac{\mu_s}{2\pi^2 r} \int_0^\infty \frac{\arctan^2 u}{u - \alpha \arctan^2 u} \sin(r \,\mu_t \,u) \,du.$$

$$\phi(r) = \frac{e^{-\mu'_t r}}{1 - \alpha} + \frac{1}{1 - \alpha} \frac{3\mu'_s \mu'_t}{2\mu_a + \mu'_s} \frac{e^{-\sqrt{\frac{\mu_a}{D}}r}}{r}$$

$$\int_0^\infty G_{3D}(v, \sqrt{r^2 + z^2}) Q(z) dz = \frac{1}{2} \,\mu'_s \,f(\mu'_t v/2) \,G_{2D}(v, r),$$

$$\phi(r) = \frac{e^{-\mu_t r}}{4\pi r^2} + \frac{\mu_s}{2\pi^2 r} \int_0^\infty \frac{\arctan^2 u}{u - \alpha \arctan^2 u} \sin(r \,\mu_t \,u) \,du.$$

$$\phi(r) = \frac{e^{-\mu_t' r}}{1 - \alpha} + \frac{1}{1 - \alpha} \frac{3\mu_s' \mu_t'}{2\mu_a + \mu_s'} \frac{e^{-\sqrt{\frac{\mu_a}{D}}r}}{r}$$

$$\int_0^\infty G_{3D}(v, \sqrt{r^2 + z^2}) Q(z) dz = \frac{1}{2} \mu_s' f(\mu_t'^2 v/2) G_{2D}(v, r),$$

$$\frac{1}{4\pi D} \frac{e^{-r\sqrt{\frac{\mu_a}{D}}}}{r} = \int_0^\infty \frac{c}{(4\pi Dct)^{3/2}} e^{-\mu_a ct} e^{-r^2/(4Dct)} dt$$

$$\begin{split} \phi(r) &= \frac{e^{-\mu_{t}r}}{4\pi r^{2}} + \frac{\mu_{s}}{2\pi^{2}r} \int_{0}^{\infty} \frac{\arctan^{2}u}{u - \alpha \arctan^{2}u} \sin(r\,\mu_{t}\,u)\,du. \\ \phi(r) &= \frac{e^{-\mu_{t}'r}}{1 + \frac{1}{2}} + \frac{3\mu_{s}'\mu_{t}'}{2\mu_{a} + \mu_{s}'} \frac{e^{-\sqrt{\frac{\mu_{a}}{D}}r}}{r} \\ \int_{0}^{\infty} G_{3D}(v,\sqrt{r^{2} + z^{2}})Q(z)dz &= \frac{1}{2}\mu_{s}'f(\mu_{t}'^{2}v/2)\,G_{2D}(v,r), \end{split}$$

Photon beam diffusion [Habel13] As accurate as quantized diffusion, but faster Accurate single-scattering model Can handle oblique incident angles

$$\begin{split} R_d &\approx \frac{1}{N} \sum_{i=1}^N \frac{f(\vec{x}, \vec{\omega}, t_i) w_{\exp}(t_i, x)}{w_{\exp}(t_i, x) \operatorname{pdf}_{\exp}(t_i) + w_{\exp}(t_i, x) \operatorname{pdf}_{eq}(t_i | \vec{x}, \vec{\omega})} \\ &+ \frac{1}{N} \sum_{j=1}^N \frac{f(\vec{x}, \vec{\omega}, t_j) w_{\exp}(t_j, x)}{w_{\exp}(t_j, x) \operatorname{pdf}_{exp}(t_j) + w_{\exp}(t_j, x) \operatorname{pdf}_{eq}(t_j | \vec{x}, \vec{\omega})}, \end{split}$$

$$\begin{split} R_{d} &\approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(\vec{x}, \vec{\omega}, t_{i}) w_{\exp}(t_{i}, x)}{w_{\exp}(t_{i}, x) \operatorname{pdf}_{\exp}(t_{i}) + w_{\exp}(t_{i}, x) \operatorname{pdf}_{\exp}(t_{i}|\vec{x}, \vec{\omega})} \\ &+ \frac{1}{N} \sum_{j=1}^{N} \frac{f(\vec{x}, \vec{\omega}, t_{j}) w_{\exp}(t_{j}, x)}{w_{\exp}(t_{j}, x) \operatorname{pdf}_{i}} R_{\vec{E}}^{d}(\vec{x}, t) = C_{\vec{E}} \frac{\alpha'}{4\pi} \left[\frac{z_{r}(t) \left(1 + \sigma_{tr} d_{r}(t)\right) e^{-\sigma_{tr} d_{r}(t)}}{d_{r}^{3}(t)} + \frac{\left(z_{r}(t) + 2z_{b}\right) \left(1 + \sigma_{tr} d_{v}(t)\right) e^{-\sigma_{tr} d_{v}(t)}}{d_{v}^{3}(t)} \right], \end{split}$$

$$\begin{split} R_{d} &\approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(\vec{x}, \vec{\omega}, t_{i}) w_{\exp}(t_{i}, x)}{w_{\exp}(t_{i}, x) \operatorname{pdf}_{\exp}(t_{i}) + w_{\exp}(t_{i}, x) \operatorname{pdf}_{eq}(t_{i} | \vec{x}, \vec{\omega})} \\ &+ \frac{1}{N} \sum_{j=1}^{N} \frac{f(\vec{x}, \vec{\omega}, t_{j}) w_{\exp}(t_{j}, x)}{w_{\exp}(t_{j}, x) \operatorname{pdf}_{t}} R_{\vec{E}}^{d}(\vec{x}, t) = C_{\vec{E}} \frac{\alpha'}{4\pi} \left[\frac{z_{r}(t) \left(1 + \sigma_{tr} d_{r}(t)\right) e^{-\sigma_{tr} d_{r}(t)}}{d_{r}^{3}(t)} + \frac{(z_{r}(t) + 2z_{b}) \left(1 + \sigma_{tr} d_{v}(t)\right) e^{-\sigma_{tr} d_{v}(t)}}{d_{r}^{3}(t)} \right], \\ r^{(1)}(\vec{x}, \vec{x}_{r}(t)) = \frac{f_{s}(\vec{\omega} \cdot \vec{\omega}_{\vec{x}_{r}\vec{x}}) e^{-\sigma_{t}(d_{r}(t))} F_{t}(\theta_{o}, \eta) F_{t}(\theta_{i}, 1/\eta) \cos \theta_{o}}}{d_{r}^{2}(t)} \end{split}$$

Approximate reflectance profiles Forget physics ... just approximate curves! Standard approach: sum of Gaussians

Approximate reflectance profiles

- Burley: curves look more like exponentials
- Sum of two exponentials (divided by distance r) is remarkably good approximation

Approximate reflectance profiles

Normalized diffusion model [Burley]:

$$R(r) = \frac{e^{-r/d} + e^{-r/(3d)}}{8 \pi d r}$$

• Multiply by A = surface albedo

 d controls width and height of curve ... but what is d ??

-artistic control of subsurface "softness"

-what is connection between d and physical params?

Translation from physical param to d

- Our usual way of expressing scattering distance is mfp or dmfp:
 - -mean free path in volume
 - -diffuse mean free path on surface
- Let's find a "translation" s between mfp and d:
 -d = mfp / s (s depends on A)
- With a translation we can compare normalized diffusion with physically-based diffusion models

Translation from physical param to d

 To determine s it is sufficient to consider only curves for mfp=1 since the <u>shape</u> of reflectance profile curve for given A is independent of mfp

• For mfp=1 :

$$R_{\ell=1}(r) = A s \, \frac{e^{-sr} + e^{-sr/3}}{8 \, \pi \, r}$$

 Find s that minimizes difference between R(r) and Monte Carlo reference for same A

For example: with optimal s for A = 0.2, 0.5, 0.8 ... :

Comparisons: surface albedo 0.2

Comparisons: surface albedo 0.5

Comparisons: surface albedo 0.8

Comparisons: summary

 Normalized diffusion is closer to the MC reference points than dipole, better dipole, beam diffusion (w/ single scattering)

 Normalized diffusion (two exponentials) is a better approximation than two Gaussians

 Find s that minimizes difference between R(r) and Monte Carlo reference for all A in 0.01, 0.02, ..., 0.99

Gives data points; fit simple polynomial

• Data points and fitted curve:

$$s = 1.85 - A + 7 |A - 0.8|^3$$

- Error wrt. MC references is ~5.5%
- Small error compared to appoximations and assumptions built into MC references: semiinfinite homogeneous volume, flat surface, ...

Diffuse surface transmission

VS.

searchlight configuration milk, juice, oily skin, ...

diffuse transmission dry skin, make-up, ...

Diffuse surface transmission

Translation from mfp to d (diffuse)

• Data points and fitted curve:

$$s = 1.9 - A + 3.5 (A - 0.8)^2$$

Translation from mfp to d (diffuse)

- Error wrt. MC references is only ~3.9%
- In practical use: not much visual difference between searchlight approx and diffusetransmission approx -- even though built on very different assumptions

- Back to searchlight configuration
- Change parameterization of scattering distance: diffuse mean free path on surface (instead of mean free path in volume)

• Data points and fitted curve:

 $s = 3.5 + 100 (A - 0.33)^4$

- Error wrt. MC references is ~7.7%
- In practical use: dmfp might be more intuitive than mfp; hence standard parameter of our previous scattering models

Translation summary

- 3 ways to determine d in Burley's normalized diffusion formula:
 mfp to d for searchlight configuration
 mfp to d for diffuse transmission
 dmfp to d for searchlight configuration
- 3 simple polynomials for s = s(A)
 Pick the one you like!

Practical detail: importance sampling

- Importance sampling of distance r between light entry and exit points: need cdf(r)
- For physically-based BSSRDFs the cdf has to be computed with numerical integration: slow

Burley's normalized diffusion has simple cdf:

$$\operatorname{cdf}(r) = 1 - \frac{1}{4}e^{-sr/\ell} - \frac{3}{4}e^{-sr/(3\ell)}$$

Discussion

 Much simpler than physically-based diffusion (e.g. quantized diffusion or beam diffusion)

Many times faster*

 *footnote: only a bit faster if careful tablebased optimizations of physically-based

Result: comparison w/ beam diffusion

beam diffusion + 1scatter

our approx

Result: comparison w/ beam diffusion

beam diffusion + 1scatter

our approx

(Head data: Infinite Realities)

Results

marble

fruits

plastic

Result: still life

image credit: Dylan Sisson

Conclusion

- Reparameterization of Burley's normalized diffusion approximation gives plug-in replacement of physically-based diffusion formulas -- same parameters
- Simpler, faster
- Error wrt. MC references is only a few percent
- More accurate than physically-based models
- One of the sss models built into RenderMan

Future work

Oblique angles of incidence; non-symmetric scattering

–maybe just s that depends on polar and relative azimuthal angle of incident illumination?

Anisotropic scattering?

More information

 Burley, "Extending Disney's physically based BRDF with integrated subsurface scattering", Physically Based Shading Course

 Technical report: Christensen & Burley, graphics.pixar.com/library/ApproxBSSRDF

Acknowledgments • HUGE thanks: Brent Burley Colleagues in RenderMan team Christophe Hery and Ryusuke Villemin (Pixar) Wojciech Jarosz and Ralf Habel (Disney) • Images: Dylan Sisson, ...

Thank you!

