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A Derivatives of 3D Regularized Kelvinlets

We �rst provide the expressions for the derivatives of regularized
Kelvinlets and locally a�ne regularized Kelvinlets in 3D.

Grab brush: By direct di�erentiation of Eq. (6) in the main text, we
obtain the gradient of the 3D displacement �eld uε (r ):
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Observe that, at x0, we have ∇uε (0) = 0, thus indicating that the
brush center moves rigidily.

Locally A�ine brush: By di�erentiating Eq. (12) of the main text,
we now obtain the gradient of the 3D displacement �eld ũε (r ):
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At the brush center x0, this expression simpli�es to:

∇ũε (0) =
1
ε3
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F t + F + tr(F )I

)
−
5
2a F

]
. (3)
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Twist brush: In this case, we have a skew-symmetric force matrix
F , which implies F +F t = 0 and tr(F )= 0. This matrix can then be
written as a cross product matrix [q]× of a vectorq, and the gradient
at x0 simpli�es to

∇tε (0) = −
5
2
a

ε3
[q]× . (4)

Note that this gradient matrix is skew-symmetric, thus indicating
that the deformation at the brush center is a (in�nitesimal) rotation
and can be controlled by the three DoFs provided by the vector q.

Scale brush: This case has a force matrix F = sI and then

∇sε (0) = s (2b − a)
5
2
1
ε3
I . (5)

Therefore, the brush center x0 is locally deformed by a uniform
scaling, with a single DoF.

Pinch brush: The case of a pinch brush has a symmetric and trace-
less force matrix, i.e., F + F t = 0 and tr(F ) = 0. This implies that
the gradient x0 is of the form

∇pε (0) =
1
2ε3
(4b − 5a ) F . (6)

As a consequence, the deformation at x0 is also symmetric with zero
trace, in a total of �ve DoFs.

B Derivatives of 2D Regularized Kelvinlets

We can also compute the derivatives for regularized Kelvinlets and
locally a�ne regularized Kelvinlets in 2D, following the di�erentia-
tion of Eqs. (23) and (24) in the main text. The resulting expressions
and their properties are very similar to the 3D case.

Grab brush:
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At x0, we have uε (0) = 0, thus indicating that the brush center is
locally under a rigid deformation.
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Locally A�ine brush:
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At a brush center x0, this expression simpli�es to:
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Twist brush: A 2D twist brush is described by a skew-symmetric
force matrix F = t J , where t indicates a scalar and

J =

[
0 −1
1 0

]
.

By replacing this matrix to Eq. (26) in the main text, we obtain

tε (r) = −2a t
(
1
r2ε
+
ε2

r4ε

)
J , (10)

and its gradient at x0 is of the form

∇tε (0) = −t
4a
ε2

J . (11)

This indicates that the deformation at the brush center is a rotation
and is parameterized by a single DoF, representing the vorticity at
x0. Note that the vorticity is a scalar in 2D, but a vector in 3D.

Scale brush: Similar to the 3D case, the scale brush has a force
matrix F = s I and is written as

s(r) = 2(b − a)
(
1
r2ε
+
ε2

r4ε

)
(s r) . (12)

Its gradient at x0 is

∇sε (0) = 4 s (2b − a) 1
ε2
I . (13)

Therefore, the brush center x0 is locally deformed by a uniform
scaling, with a single DoF.

Pinch brush: The case of a pinch brush has a symmetric and trace-
less force matrix F , and its displacement �eld is given by
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The gradient of a pinch brush at x0 is expressed by

∇pε (0) =
4
ε2
(b − a ) F . (15)

Due to the properties of F , it is easy to check that the deformation
at x0 is symmetric with zero trace, in a total of two DoFs.

C Symmetrized brushes

Without loss of generality, consider a plane centered at the origin
and with normal vector n. This plane de�nes a re�ection matrix of
the form M =I−2nnt . Then the image of a point x is given by Mx .
A symmetrized displacement �eld with force vector f and brush
center x0 is de�ned by

u(x) = [Kε (x − x0) +Kε (x −Mx0)M ] f . (16)

Proposition: Any symmetrized deformation generated by (16) satis-
�es the identity

u(Mx) = Mu(x), ∀x . (17)

Proof:

First, we introduce some additional notation to make our derivation
more concise. We denote д =x−x0 and h =x−Mx0, and indicate
their norms by д and h, respectively. Also, we rewrite the Green’s
function Kε in Eq. (6) of the main text as

Kε (r ) = αr I + βrrr
t , (18)

where αr and βr are functions of the distance r and include the
brush parameters (ε, µ,ν ). Since MM =I , we have ‖Mx ‖ = ‖x ‖ for
any x . Moreover we can show that:

Mx − x0 = M (x −Mx0) = Mh,

Mx −Mx0 = M (x − x0) = Mд.
(19)

Now replacing (16), (18), and (19) to (17), we obtain:

u(Mx) = [Kε (Mh) +Kε (Mд)M] f

=
[
αhI + βhMhhtM + αдM + βдMддtMM

]
f

=
[
αhMM + βhMhhtM + αдM + βдMддt

]
f

=
[
M

(
αhI + βhhh

t ) M +M (
αдI + βдддt

) ]
f

= M [Kε (h)M +Kε (д)] f

= Mu(x),

thus verifying the proposition. �

A similar result is also valid for the symmetrized version of locally
a�ne regularized Kelvinlets and for their counterparts in 2D.

D Strain-Stress Formulation

In Section 3 of the main text, we recapped the formulation of the
potential energy for linear elastostatics using displacement �elds
u. Next we review an alternative yet equivalent formulation of the
elastic potential energy in terms of strain and stress tensors. Both
expressions are known results in the theory of linear elasticity, see,
e.g., [Slaughter 2002].

ACM Transactions on Graphics, Vol. 36, No. 4, Article 1. Publication date: July 2017.



Regularized Kelvinlets • 1:3

In linear elasticity, the strain tensor ϵ and the stress tensor σ are
de�ned in terms of the displacement �eld u by:

ϵ = 1
2
(
∇u + (∇u)t

)
,

σ = µ
(
∇u + (∇u)t

)
+

2µν
(1 − 2ν ) (∇ · u) I ,

(20)

where µ and ν are the elastic shear modulus and the Poisson ra-
tio, respectively. Note that both tensors are symmetric. The elastic
potential energy (Eq. (1) of the main text) is then expressed by:

E(u) = 1
2 〈ϵ,σ 〉F − 〈b,u〉, (21)

where 〈·, ·〉F indicates the Frobenius inner product for 2-tensor
�elds integrated over the in�nite volume, and b indicates the exter-
nal body forces. Using the divergence theorem, one can show that
the integrated Frobenius inner product can be converted into an
integrated inner product of vector �elds, i.e.:

〈ϵ,σ 〉F = − 〈u,∇ · σ 〉. (22)
Further expanding the divergence of σ yields to:

∇ · σ = µ∆u +
µ

(1 − 2ν )∇(∇ · u). (23)

Finally, by substituting (22) and (23) into (21) and using divergence
theorem once more, we reproduce Eq. (1) of the main text.
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