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Coherent Noise for Non-Photorealistic Rendering

Michael Kass∗ Davide Pesare †

Pixar Animation Studios

Abstract

Awide variety of non-photorealistic rendering techniques make use
of random variation in the placement or appearance of primitives.
In order to avoid the “shower-door” effect, this random variation
should move with the objects in the scene. Here we present coher-
ent noise tailored to this purpose. We compute the coherent noise
with a specialized filter that uses the depth and velocity fields of a
source sequence. The computation is fast and suitable for interac-
tive applications like games.

CR Categories: I.3.3 [Computer Graphics]—Picture/Image Gen-
eration; I.4.3 [Image Processing and Computer Vision]—contrast
enhancement, filtering

Keywords: Non-photorealistic rendering, noise, painterly render-
ing

1 Introduction

In 1985, Peachey [1985] and Perlin [1985] simultaneously intro-
duced the idea of using procedural noise for solid texturing. Since
then, the method has been refined (e.g. [Cook and DeRose 2005;
Lagae et al. 2009]) to provide greater control over the spectral char-
acteristics of the noise and has become an essential tool in photo-
realistic rendering. The demands of non-photorealistic rendering,
however, are different enough that existing noise techniques fail to
address some important issues.

While non-photorealistic rendering is a wide and heterogeneous
field, many of the important applications for random variation
have common requirements. Styles derived from hand painting
and drawing tend to need relatively uniform 2D spectral proper-
ties in the image plane to achieve a unity of composition and style.
Nonetheless, the random variations must track the movement of ob-
jects to avoid the well-known shower door effect, the illusion that
the random variation exists on a piece of glass through which the
scene is being viewed. None of the traditional techniques for gen-
erating noise are well-suited to these requirements. Solid or surface
noise attached to objects in 3D will have non-uniform 2D spectra.
Noise generated in the image plane will generally not track the mo-
tion of the objects in the scene.

Here we introduce a new approach for computing random variation
with the needed characteristics. We begin with rendered depth and
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velocity fields. We then take a block of white noise as a function of
(x,y, t) and filter it, taking into account the depth and velocity fields
and their consequent occlusion relationships. The result is what we
call a coherent noise field. Each frame alone looks like independent
white noise, but the variation from frame to frame is consistent with
the movement in the scene. The resulting noise can be queried by
non-photorealistic rendering algorithms to create random variation
with uniform image-plane spatial properties that nonetheless appear
firmly attached to the 2d projections of the 3D objects.

2 Previous Work

Bousseau et al. [2007] developed a technique for watercolor styl-
ization that can be used for very similar purposes to the present
work. Their method is based on the idea of advecting texture co-
ordinates. To initialize it, texture coordinates are assigned to each
pixel on the first frame of a sequence using an undistorted rectilin-
ear map. From frame to frame, the texture coordinates are advected
based on the image-space velocity of each pixel. If these texture co-
ordinates are used to index into a noise texture, the noise will move
with the objects in the scene.

The difficulty with the prior work on advecting texture coordi-
nates [Max and Becker 1995; Neyret 2003] is that as a sequence
progresses, the mapping implied by the texture coordinates become
more and more distorted, and the fill-in at disoccluded regions be-
comes problematic. As a result, the texture-mapped noise starts to
acquire non-stationary spatial frequencies. Areas stretched out by
the mapping will become blurry, and compressed areas will display
higher spatial frequencies than in the original noise.

Bousseau et al. provide a solution to this problem, although it
comes with a key limitation. They divide each sequence into blocks
of frames. For each block, they compute two sets of advected tex-
ture coordinates. One set of coordinates is computed as before,
starting at the first frame in the block and advecting forward through
time. The other set of coordinates is initialized on the last frame in
the block, and advected backwards in time. Noise mapped through
the first set of coordinates gets more and more distorted as time
progresses. Noise mapped through the second set becomes less and
less distorted. With a suitable blend of the two mapped noise func-
tions, Bousseau et al. achieve noise that appears relatively station-
ary.

The key limitation of this approach is that it requires knowledge
about the future. For offline rendering of non-photorealistic anima-
tion, this is not a problem. Information about the future of each
frame can be made available at rendering time. For interactive or
real-time applications, however, this information is not available,
and the method cannot be used. For these types of applications, we
offer our coherent noise instead.

In concurrent work, Benard et al. [2010] propose a method based on
Gabor noise. They splat Gabor kernels around a set of seed points
on 3D models. Since their seed points are fixed to the 3D model, the
method can generate directional noise with a direction fixed to the
3D surface. Our image-space method lacks any fixed 3D reference,
so it does not have this capability.

The kernel splat used by Benard et al., however, does not respect
visibility. When a seed point is visible, the entire kernel is splatted.
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As a result, popping artifacts are possible as the visibility of seed
points changes. By contrast, our method makes use of explicit visi-
bility calculations for each component of the calculation and avoids
popping artifacts.

3 Filtered White Noise

In fully synthetic 3D computer graphics applications, we can gen-
erally expect to be able to extract additional information at each
pixel besides the rendered color vector. In particular, let us assume
that the depth zi(x,y) and the 3D velocity vector Vi(x,y) are avail-
able for each frame i, 1≤ i≤ n in a given shot. This information is
available from popular commercial renderers and is easy to generate
with OpenGL and other interactive rendering libraries. Our goal is
to use the information to create a coherent noise field ci(x,y) with
stationary statistics in each frame, but with correlations between
frames that match the motion of the scene.

We begin by creating a block of independent, identically distributed
white noise wi(x,y) for all 1≤ i≤ n. We then create the necessary
correlations by filtering the noise from frame to frame. In order to
do the low-pass filtering efficiently, we use a discrete time recursive
filter [Oppenheim and Schafer 1975].

The simplest recursive filter suffices for our purposes. If the input to
the filter is fi and the output of the filter is gi, a first-order recursive
filter can be written

gi = αgi−1+(1−α) fi. (1)

where α controls the exponential rate of decay of the filter’s im-
pulse response given by

hi =

{

(1−α)α i i≥ 0
0 otherwise

(2)

and depicted in Figure 1.

Figure 1: First-order recursive filter impulse response

3.1 Stationarity

In order to create coherent noise that is easy to use, we need to en-
sure that the the output of our filter is stationary – that its statistics
do not depend on the frame number i. We can do this by setting
appropriate conditions on g0, which is left unspecified by the recur-
sion in Equation 1.

In our case, the quantity corresponding to fi that we are filtering is
independent, identically distributed noise. Thus we can write the
variance of each side of Equation 1 as follows:

σ
2(gi) = α

2
σ
2(gi−1)+(1−α)2σ2( f ) (3)

The condition we would like is σ
2(gi) = σ

2(gi−1) which implies

σ
2(g) = α

2
σ
2(g)+(1−α)2σ2( f ) (4)

(a) Original frame of animation.

(b) Frame one of coherent noise.

(c) Frame two of coherent noise.

(d) The difference between (b) and (c).

Figure 2: Coherent noise.

Some simple algebra yields

σ
2(g) =

(

1−α

1+α

)

σ
2( f ) (5)

which gives us the necessary condition for stationarity

g0 =

√

1−α

1+α
f0 = k(α) f0. (6)

Substitution back in Equation 3 shows that the condition is also
sufficient.
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(a) Using dilate/erode/warp to stylize.

(b) Perturbing object-ID boundaries.

Figure 3: Applications of coherent noise.

3.2 Disocclusion

Having determined the condition for stationarity, we can return to
our goal of filtering white noise images wi(x,y) into coherent noise
ci(x,y). Initially, we set c0(x,y) = k(α)w0(x,y) for each pixel (x,y).
Then we compute ci(x,y) from ci−1(x,y) as follows.

We know that the front-most surface at pixel (x,y) had depth zi(x,y)
and velocity Vi(x,y) at frame i. Knowing the time interval ∆t be-
tween frames, we can estimate the 3D position of that surface point
at the previous frame: (x′,y′,z′) = (x,y,z)− ∆tVi(x,y). We then
look at the depth zi−1(x

′
,y′) and compare it to z′. If z′ is farther

away than zi−1(x
′
,y′) by at least some minimum amount ε , we can

conclude that the surface point was previously occluded by a closer
surface at frame i− 1. Otherwise, we conclude that the point was
previously visible. Note that since (x′,y′) are not necessarily inte-
ger, computing zi−1(x

′
,y′) will generally require interpolation. We

use bilinear interpolation for this purpose.

Having determined whether or not the surface point at (x,y) has just
become disoccluded, we compute ci(x,y) as follows:

ci(x,y) =

{

k(α)wi(x,y) disocclusion
αci−1(x

′
,y′)+(1−α)wi(x,y) otherwise

(7)

Here too, we compute ci−1(x
′
,y′) using bilinear interpolation.

3.3 Time-Symmetric Filtering

The filter described in section 3.2 is causal–the output at a given
frame depends only on information that precedes that frame. This
is a vital property for applications like games, where the future is
unknown. For offline rendering of animation, however, the future is
known, and a higher quality result can be created by using a sym-
metric filter which looks into the future as much as it looks into

the past. To achieve this, we can do the filtering both forward and
backwards in time.

In many cases, time-symmetric filtering can be achieved by cascad-
ing two identical recursive filters. The output of the forward filter
is fed to the input of the backwards filter. In this case, however, if
we took the output of the forward filtering and then filtered it back-
wards, the input would no longer be uncorrelated white nose, and
the previous conditions for stationarity would not hold. Instead, we
separately filter the same white noise forwards and backwards in
time and add the result.

There remains one subtle point. Let ci(x,y) be the result of filter-
ing wi(x,y) as described, and let ci(x,y) be the result of the same
process done with time reversed, starting at frame n and ending at
frame i. Then the sum double counts at the center of its impulse
response.

If we use the recursive filter of Equation 1 forward and backward
in time

g
i

= αgi−1+(1−α) fi
gi−1 = αg

i
+(1−α) fi−1

(8)

then the sum has impulse response

hi =

{

(1−α)α i i 6= 0
2(1−α) i= 0

(9)

because the impulse responses of the forward and backward filters
overlap at offset zero. The result is a poor low-pass filter. To fix
this, we can simply subtract (1−α) fi from the sum producing a
filter with impulse response

hi = (1−α)α |i| (10)

shown in Figure 4.

Figure 4: Symmetric first-order recursive filter impulse response

The full algorithm is to use the computation forward in time to com-
pute ci(x,y) and then repeat the computation backwards in time to
compute ci(x,y). Finally, the result is given by

Ci(x,y) = ci(x,y)+ ci(x,y)− (1−α)wi(x,y). (11)

3.4 Spatial Spectrum

Some control over the spectrum of C can be achieved through fil-
tering. Instead of white noise wi(x,y), we can substitute noise with
a more appropriate spatial spectrum as the input to our recursive
filtering. As long as the individual frames of noise are independent
from each other, the same conditions for stationarity of the variance
will still hold. If we want some continuity across object boundaries,
we can also do a small amount of spatial smoothing of the coherent
noise, whether computed in a causal or time-symmetric manner.
Figure 5 shows the result of pre-filtering with a spatial band-pass
filter. Once again, each frame looks spatially uniform, while the
structure of the object motion is visible in the difference between
frames, here presented in absolute value.

Coherent Noise for Non-Photorealistic Rendering        •        30:3
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(a) Frame one of bandpass coherent noise.

(b) Frame two of bandpass coherent noise.

(c) The absolute value of the difference between (b) and (c).

Figure 5: Bandpass coherent noise.

3.5 Limitations

The parameter α controls the width of the impulse response and
hence the time period over which noise becomes fully refreshed.
For good results, there are limits to this time period. If the chosen
period is excessively long relative to the speed of the motion, ex-
treme deformations of the noise during the period can create non-
uniform spatial characteristics in the noise. Fast translations and
rotations in the image plane are not problematic, but motion that
causes extremely rapid changes in projected 2D area can degrade
the quality of the noise. For applications where this is a problem,
the technique of Neyret [2003] can be used to blend noise fields
calculated with different values of α .

Note that nothing in this method is particularly well-suited to highly
directional noise. Unlike the method of Benard et al. [2010], the
filtering proposed here does not keep track of the 3D information
necessary to orient directional noise consistently with respect to a
3D model.

4 Results

Figure 2 shows the results for a sequence from the Disney/Pixar an-
imated feature “Up”. We used a small amount of Gaussian smooth-
ing of the input noise and a small amount of Gaussian smoothing of
the result. We repeated the calculation independently for each color
channel and used α = .98.

A frame from the original animation is shown in Figure 2(a). The
images in Figure 2(b) and Figure 2(c) are two frames from the co-
herent noise computed for this shot. On casual inspection, they
appear to be unrelated noise. Subtracting them, however, yields the
image in Figure 2(c) which clearly shows the time-coherent struc-
ture and reveals the character dangling by a make-shift rope.

On way to visualize the operation of our filter is to look at what hap-
pens to a single scan line over time. In figure 6(a), we have selected
a scan line from the input image. In figure 6(b), we show that same
scan line over time, where time is represented on the vertical axis.
The bottom row of pixels of figure 6(b) correspond to the frame
shown in figure 6(a). Each row of pixels above it shows that same
scan line at a later time. In figure 6(c), we have created the same dis-
play of our causal coherent noise through time. Note that figure 6(c)
resembles a line-integral convolution [Cabral and Leedom 1993]
visualization of the velocity field. Low variation along the velocity
field in this picture is another way to express temporal coherence of
the noise field when tracking an individual object point.

The images in Figure 2 are stills from motion sequences on the
accompanying video. The coherent noise is shown first for the
“one pass” causal computation described in section 3.2 and then for
the time-symmetric “double-pass” computation described in sec-
tion 3.3. Note that the three-dimensional shapes in the original ex-
ample are clearly evident despite the fact that each frame by itself
lacks any 3D structure.

Figure 3(a) shows the first example of the use of coherent noise for
a non-photorealistic rendering effect. We have taken the original
geometry of the scene shown in Figure 2(a) and re-rendered it with
a single distant light source, without shadows and with quantized
shading. Then we added spatially smoothed coherent noise and
performed a dilation and an erosion step [Haralick et al. 1987] to
create the texture. Finally, we used two channels of coherent noise
to displace the image with a local image-plane warp. All the 2D
operations were performed in Apple’s Shake compositing software.
The “ColorSplat” example in the accompanying video shows the
result in motion. First, the video shows the result with white noise.
Each sample of the noise is generated as an independent random
variable. The result is chaotic and difficult to watch. Next, the video
shows the result of using what we call constant noise. This is noise
that is a function of image spce, but which does not change with
time. With constant noise, the shower-door effect is very evident
– it looks as if the texture exists on a piece of glass through which
the scene is being viewed. Finally, the video shows the use of our
causal (one pass) NPR noise. In this case, the random variations
due to the noise accurately track the motion of the object.

Our second example “edge detect” is based on modifying a set of
edges. Here we have rendered object ID’s at each pixel and detected
the boundaries where the object ID’s change. We then chained the
boundaries together into curves. The first video segment shows the
curves unmodified by noise. Unfortunately there is some aliasing
due to the extreme geometric complexity of the scene. For each
point on each curve, we compute a 2D displacement from two chan-
nels of noise. We evaluate the noise at a point slightly displaced
toward the side of the curve which is closest to the observer, so
the noise will be associated with the front-most object. Finally, we
low-pass filter the noise along the length of the curve, and use it as
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(a) Selected line of original

(b) Selected line through time.

(c) Same line of noise through time.

Figure 6: Relationship of NPR noise to line-integral convolution.

a screen-space displacement for each vertex. One again, the white
noise flashes and the constant noise produces a strong shower-door
effect. With our NPR noise, the wiggles on the curves move nicely
and coherently with the motion of the objects in the scene. If full
temporal consistency is not desired, for example to simulate some
of the effect of hand-drawn animation, a lower value for α can be
chosen. In the limit as α goes to zero, the coherent noise will turn
into independent noise. Note that the wiggles in our line rendering
have uniform 2D size and are independent of distance, object or
parameterization.

The use of coherent noise with uniform 2D spatial properties does
not prevent varying the spatial properties based on artistic intent.
As with Perlin noise, our coherent noise can be calculated at dif-
ferent spatial scales and combined together procedurally to achieve
desired artistic goals.

5 Conclusion

Perlin noise and its refinements have shown the clear value of noise
as a simple primitive building block on which to build a variety of
interesting effects. We offer our coherent noise in the same spirit.
Like Perlin noise, it is easy to implement, and inexpensive to com-

pute. Unlike Perlin noise, it tracks two-dimensional motion while
maintaining stationary spatial properties in screen space. Also, un-
like the approach of Bousseau et al., it works well in contexts like
games and other interactive applications where the future is un-
known. We hope that the effectiveness, ease of implementation and
wide applicability of this coherent noise technique will make it an
attractive choice for future work in non-photorealistic rendering.

While we have presented results for our filter operating on inco-
herent white or band-pass noise, the technique is potentially more
widely applicable to situations where one wants improve the tem-
poral coherence of an image sequence which is nearly temporally
coherent, but not quite coherent enough. Any of a variety of NPR
techniques which occasionally pop or suffer from other tempo-
ral artifacts could gain improved quality from our velocity- and
occlusion-aware filtering. For example, where directional noise
with the highest quality is desired, the noise of Benard et al. could
be further processed with our filtering method to improve its tem-
poral coherence.
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