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(a) 16 spp, RMS error 0.063, 13.8s (b) 16 spp, RMS error 0.018, 15.4s

Figure 1. Noise bank rendered with and without our distance normalization and probability
biasing methods. Inset shows magnified view.

Abstract

In recent years, path tracing has become the dominant image synthesis technique for produc-
tion rendering. Unbiased methods for volume integration followed, and techniques such as
delta tracking, ratio tracking, and spectral decomposition tracking are all in active use; this
paper is focused on optimizing the underlying mechanics of these techniques. We present
a method for reducing the number of calls to the random number generator and show how
modifications to the distance sampling strategy and interaction probabilities can help reduce
variance when rendering thin homogeneous and heterogeneous volumes. Our methods are
implemented in version 21.7 of Pixar’s RenderMan software.

1. Introduction

Along with the film industry’s embrace of path tracing as its primary image synthesis
method, volume rendering has gone from using ad-hoc lighting models and integra-
tion by quadrature (ray marching [Perlin and Hoffert 1989]) to using physically-based
light transport models and unbiased integration techniques.
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The move to unbiased volume integrators has been beneficial in many ways.
These fit well within the path tracing framework and can efficiently evaluate even
high-order multiple scattering events. Whereas ray marching depends on a (often
user-specified) step length that causes bias, tracking integrators rely on control signals
within the volume to guide their sampling and are able to do so in an unbiased man-
ner. Furthermore, the control signals that drive tracking integrators can be computed
automatically by either the 3D authoring application or the renderer, and they are less
susceptible to user error. However, tracking integrators have certain drawbacks. They
generally distribute samples according to transmittance, which is proportional, but not
always directly related, to the radiant flux in the volume. For example, atmospheric
haze due to water droplets generally has a very minor influence on transmittance, but
when looking in the direction of the sun, the Mie scattering profile renders the haze
orders of magnitude brighter than in other directions, even though the accumulated
extinction at a given distance is identical in each case.

In this paper we describe a set of techniques that help make tracking integration
more efficient in a production rendering context, with applications particularly around
rendering of thin volumes and volumes with holdout objects that restrict the integra-
tion domain. We first describe a method for re-normalizing distance sampling in ho-
mogeneous volumes, providing control over the probability that a given sample will
stop within a volume that is decoupled from its actual optical thickness. We then ex-
tend this notion to piecewise constant volumes by performing tracking in unit-density
optical depth space, which enables a straightforward optimization of random num-
ber consumption. Finally, we introduce a probability biasing method that provides
sampling control in heterogeneous volumes.

1.1. Previous Work

In production volume rendering, the transition from ray marching to physically-based
path tracing has been gradual. Practitioners had long been aware of the bias inherent
in quadrature-based techniques, but it was often assumed that unbiased integration
methods [Woodcock et al. 1965; Skullerud 1968] that require a conservative bound µ̂
on extinction would be impractical in production scenes with widely varying, high-
frequency extinction functions. As recently as 2011, the state-of-the-art systems, de-
scribed in both SIGGRAPH courses [Wrenninge et al. 2011; Wrenninge and Bin Za-
far 2011] and later in book form [Wrenninge 2012], still relied on ray marching as
well as pre-computation of lighting effects using deep shadow maps [Lokovic and
Veach 2000].

As an introduction to the current state of the art of volumetric light transport,
we refer to the STAR report by Novák et al. [Novák et al. 2018], which provides a
thorough description of the background necessary for our work, and we attempt to
follow its terminology throughout.
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In addition to the tracking methods themselves, work has also been done on spa-
tial acceleration structures that provide fast lookups of extinction bounds. Yue et al.
[Yue et al. 2010; Yue et al. 2011] as well as Laszlo et al. [Szirmay-Kalos et al. 2011]
showed that delta tracking could be implemented as a piecewise integration of inter-
vals, each with a locally conservative µ̂. Although the methods lacked treatment of
features such as ray footprints and motion blur that are needed for production ren-
dering, they highlighted the importance of designing acceleration data structures that
provide well-suited intervals to a tracking-based integrator. In a SIGGRAPH course,
Wrenninge [Fong et al. 2017] subsequently presented a generalized approach called
volume aggregates, which allow for handling of ray differentials, and motion blur,
as well as a large numbers of individual, overlapping volumes. We utilize the vol-
ume aggregate structure in this work in order to provide the piecewise integration
intervals along with estimates of the majorant µ̂ and the minorant µ̌, but other sim-
ilar techniques and data structures could also be used [Szirmay-Kalos et al. 2017].
In the same course, Fong showed that sampling of homogeneous volumes could be
optimized by re-normalizing the distance range (Eq. 28, p. 35.).

2. Homogeneous Volumes

When using distance sampling to find scattering locations in a volume, we are de-
termining not only where each sample might interact, but also whether it does so at
all. If we let Tv represent the transmittance through a volume v, and consider a thin
volume where Tv = 0.9, only 10% of all samples will stop in the volume and thus
be used to sample lighting. As volumes tend to converge more slowly than surfaces
given identical lighting conditions, this natural distribution of samples may not be
suitably relative to the variance in each of the two cases, and surfaces wind up being
oversampled long before volumes converge. This is particularly sub-optimal in the
common production use case of rendering elements in separate layers with geometry
as black holdouts (also known as matte objects); here, we will traverse the volume N
times but only computeN · (1−Tv) light samples, effectively wastingN ·Tv samples
that do not contribute to the image. The cost of traversal involves not only access to
the acceleration structure, but also a potentially large number of evaluations of the
underlying density function.

Given a finite volume that extends a distance tv with µt = µ̂, we can address this
imbalance by changing the classical distance sampling method log(1−ξ)/µ̂ to restrict
the range of distances such that all samples drawn fall within the known extents of
the volume. In the case of a homogeneous volume with known extents, this has the
trivial closed-form solution Tv = exp(−tvµt). We call the distance tn that defines
this range the normalization distance, and we show that it can be chosen arbitrarily for
tn ∈ (tv,∞) without biasing the estimate. In the case where volumes are rendered
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as a separate element, it is optimal to set tn = tv, but when volumes and surfaces
are mixed, tn must be chosen to lie beyond tv, such that some samples may escape
the volume and reach the surfaces. Once tn < ∞, the probability density function
(PDF) no longer cancels out, as it does in the delta tracking case, and we derive a new
normalization factor below.

In order to derive our sampling method, we begin with the radiative transfer equa-
tion [Kajiya and Von Herzen 1984]

L(x, ω) =

∫ ∞
0

exp

(
−
∫ s

0
µt(xs′)ds

′
)
µs(xs)Ls(xs, ω)ds,

which simplifies in the homogeneous case to

L(x, ω) =

∫ ∞
0

exp(−µts)µs(xs)Ls(xs, ω)ds.

Knowing that µs(xs) is null outside the volume (tn > tv), we have

∀tn ≥ tv, L(x, ω) =

∫ tn

0
exp(−µts)µs(xs)Ls(xs, ω)ds.

The corresponding probability density function (see Figure 2(a)) proportional to den-
sity is

p(s) = µt exp(−µts),

which, when defined in the reduced interval [0, tn), becomes (see Figure 2(b))

p(s) =
µt

1− exp(−µttn)
exp(−µts).

As we can see, the only change is the new normalization factor 1 − exp(−µttn)

needed to account for the fact that we are integrating a sub-segment of the ray (Algo-
rithm 1).
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Figure 2. (a) The probability density function p(s) normalized between 0 and ∞ with a
volume present between 0 and 2; (b) p(s) normalized between 0 and 3 with a volume present
between 0 and 2. Note that the curve has been re-normalized to integrate to 1 between its
bounds.

53

http://jcgt.org


Journal of Computer Graphics Techniques
Efficient Unbiased Rendering of Thin Participating Media

Vol. 7, No. 3, 2018
http://jcgt.org

Algorithm 1 Pseudocode for normalized distance sampling in a homogeneous
medium. Here, ξ is a uniform random number and fp is the medium’s phase function.

function NORMALIZEDDISTANCESAMPLING(x, ω)
s← ln(1−ξ·(1−exp(−µttn)))

µt

w ← (1− exp(−µttn))

x← x+ s · ω
if s ≥ tv then

w ← w · exp(−µttv)
exp(−µttv)−exp(−µttn)

else
w ← w · µsµt
ω ← sample ∝ fp(ω)

For samples ending outside of the volume, since we don’t cover the full distance
[tv,∞) anymore but only [tv, tn), we need to re-normalize their contribution by the
ratio of the cumulative density function (CDF)

c(tv) =

∫ ∞
tv

µt exp(−µts)ds,

c(tv) = exp(−µttv).

Finally, the CDF for the reduced integral bounds is

c(tv, tn) =

∫ tn

tv

µt exp(−µts)ds,

c(tv, tn) = exp(−µttv)− exp(−µttn).

3. Piecewise Homogeneous Volumes

Before approaching the more general heterogeneous case, we adapt the previous al-
gorithm to piecewise homogeneous volumes. As most production scenes involve
varying-density media, we first show that the distance normalization method can be
applied in the piecewise homogeneous case, which is how volumes are integrated in
the case of using volume aggregates to provide ray segments. We also show how a
change of variables allows us to reinterpret the integration entirely in optical depth
space,1 enabling further optimizations.

We first imagine a piecewise constant volume which is exactly aligned with our
volume-aggregate acceleration structure. Each leaf node has a different µ̂, but the

1Optical depth is the product τ = µs, which is the inner term of Beer’s law. For random (uncor-
related, exponential) media, traveling a distance s = 2 in a medium of density µ = 1 is equivalent to
traveling a distance s = 1 in a medium of density µ = 2.
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extinction is constant throughout each cell, i.e., µt = µ̂. Using the linear relationship
that exists between distance s and extinction µt in Beer’s Law, T = exp(−sµt),
we can perform a variable change to completely remove the dependence on µt, thus
operating in units of optical depth.

The transmittance T at distance t for a ray going through the scene is defined as

T (t) = exp

(
−
∫ t

0
µt(xs)ds

)
.

Assuming that we are going through N nodes, each with a different µt and the
ray/node intersection length ti, such that

T (t) = exp

(
−

N∑
i=1

µt(xi)ti

)
,

we can normalize each cell with respect to a unit µ′t = 1 without changing the result-
ing transmittance by scaling its length ti by µt:

T (t) = exp

(
−

N∑
i=1

t′i

)
with t′i = µt(xi)ti.

Then, we have

T (t) = exp(−t′(t)) with t′(t) =
N∑
i=1

t′i,

and we can adapt the normalized distance-sampling algorithm from the previous sec-
tion again as we have successfully converted our multi-segment traversal into a virtual
single-cell traversal with an equivalent transmittance (Algorithm 2), as illustrated in

Algorithm 2 Pseudocode for normalized distance sampling in optical depth space.
Prime variables are in optical depth space.

function NORMALIZEDOPTICALDEPTHSAMPLING(x, ω)
s′ ← ln(1− ξ · (1− exp(−t′n)))

w ← (1− exp(−t′n))

s← convertToRealDistance(s′)

x← x+ s · ω
if s′ ≥ t′v then

w ← w · exp(−t′v)
exp(−t′v)−exp(−t′n)

else
w ← w · µsµt
ω ← sample ∝ fp(ω)
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Figure 3. Space stretching: each cell is normalized to unit extinction with cell size scaled
accordingly to maintain unchanged transmittance.

Figure 3. The only additional step is to un-stretch the normalized distance back to the
original when computing the actual scattering point x.

The transformation from t′ to t, i.e., from optical depth space to physical distance
is straightforward; we accumulate the equivalent physical distance s = s′µ̂ each time
we step forward a distance s′ in optical depth space, which keeps the two variables in
sync.

3.1. Optimizing Random Number Generation

An important side effect of this shift is that we can avoid re-drawing random num-
bers each time we cross a segment boundary. This is similar to Szirmay-Kalos et al.
[Szirmay-Kalos et al. 2011] where they perform sampling in optical depth in their
3D-DDA traversal. Yue et al.’s method [Yue et al. 2010; Yue et al. 2011] proves that
delta tracking can be implemented in a piecewise fashion, but depends on a new ran-
dom number being sampled for each interval. In our case, this is no longer necessary,
and we can utilize the residual step length even as segment boundaries are crossed.
As the results section shows, this can reduce the number of random number calls by
more than 50%.

3.2. Heterogeneous Volumes

Because our normalized distance sampling scheme only alters the way step lengths
and sample weights are chosen, we can trivially extend it to handle heterogeneous
volumes by incorporating the same null collision choice as used in delta tracking
(Algorithm 3).
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Algorithm 3 Pseudocode for normalized distance delta tracking where ζ and ξ are
uniform random numbers and primed variables are in optical depth space. The value
µn = µ̂− µt is the null collision coefficient.

function NORMALIZEDOPTICALDEPTHTRACKING(x, ω)
w ← 1

while true do
s′ ← ln(1− ξ · (1− exp(−t′n)))

w ← w · (1− exp(−t′n))

s← convertToRealDistance(s′)

x← x+ s · ω
if s′ ≥ t′v then

w ← w · exp(−t′v)
exp(−t′v)−exp(−t′n) return

else
Ps ← µt

µ̄

if ζ < Ps then
w ← w · µs

µ̄·Ps

ω ← sample ∝ fp(ω) return
else

w ← w · µn
µ̄·(1−Ps)

t′n ← t′n − s′

t′v ← t′v − s′

3.3. Null-collision Probability Bias

While the previous algorithm places the expected number of samples within a homo-
geneous volume, null-collisions reduce this number by µn/µ̂ = 1−µt/µ̂, a ratio that
depends on how heterogeneous the actual volume is. In order to further control the
balance between samples that terminate in the volume against those that pass through,
we introduce a bias on the null-collision probability (Algorithm 4). The goal is to find
an increased probability p′ of samples stopping in thin heterogeneous areas of the
volume.

Through experimentation we found that a gamma function

p′ = p1/γ

works well, but that an estimate T̃ of each ray’s transmittance is required in order to
isolate the effect to thin areas. There are several ways to compute T̃ : if the spatial ac-
celeration structure itself is fine-grained enough, the integral of µ̂ can be used. In the
case of volume aggregates, the split threshold generally produces a subdivision that
is too coarse to provide an accurate T̃ , in which case we use ratio tracking to com-
pute the estimate. While this requires two traversals of each camera ray (we only bias
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Algorithm 4 Pseudocode for biased and normalized distance delta tracking where ζ
and ξ are uniform random numbers and primed variables are in optical depth space.
The value µn = µ̂− µt is the null collision coefficient.

function BIASEDNORMALIZEDOPTICALDEPTHTRACKING(x, ω)
w ← 1

while true do
s′ ← ln(1− ξ · (1− exp(−t′n)))

w ← w · (1− exp(−t′n))

x← x+ convertToRealDistance(s′) · ω
if s′ ≥ t′v then

w ← w · exp(−t′v)
exp(−t′v)−exp(−t′n) return

else
Ps ← (µtµ̄ )1/γ′

if ζ < Ps then
w ← w · µs

µ̄·Ps

ω ← sample ∝ fp(ω) return
else

w ← w · µn
µ̄·(1−Ps)

t′n ← t′n − s′

t′v ← t′v − s′

probabilities for the first bounce of light), this is not a hindrance as a separate com-
putation of transmittance is already performed for the purpose of producing an alpha
channel. In order to keep the performance under control while still staying unbiased,
our implementation automatically switches from ratio tracking to delta tracking when
the estimate gets under a certain threshold. We use this T̃ to find our final biased
probability as

p′ = p1/(γ′) with γ′ = 1 + (1− T̃ ) · (γ − 1).

Section 4 shows our experimental results, and also provides an example of the impor-
tance of isolating the biased probability to thin parts of the volume. A value of γ = 2

was found to work well in all of our tests.

4. Results

The presented methods address two orthogonal problems in tracking-based integra-
tors: improving sampling of thin homogeneous volumes, as well as thin heteroge-
neous volumes, while incorporating the reduction of random number calls. In order
to illustrate the behavior of each of our optimizations, we evaluate them in three dif-
ferent heterogeneous scenarios. In each case, we compare renders using 16 samples
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(a) Heterogeneous fog.

(b) Thin clouds. (c) Thick clouds with atmosphere.

Figure 4. Evaluation examples – ground truth. 16 bounces, 4096 samples per pixel).

per pixel (spp) to a ground-truth image using 4096 spp, in order to show both how
render times are affected by the algorithmic changes, and also how variance improves
at equal sample count.

In the first example (Figure 4(a)), the average accumulated extinction is very low
(T ≈ 0.005), and the volume aggregate does not subdivide past the root node, effec-
tively letting the integrator perform tracking of the whole scene in a single segment.
This example highlights the behavior of both the normalization and the gamma func-
tion independently of the spatial-acceleration structure, but it does not exercise the
random number generator optimization. We find that changing γ from 1 to 2 brings
the root mean square (RMS) error down by 19%, equivalent to 24 spp. Enabling only
distance normalization (with tn = tv) reduces RMS error by 63%, with equivalent
variance at 128 spp. Finally, with γ = 2 combined with normalization reduces RMS
error by 71%, with equivalent variance at 192 spp, for a total sample efficiency gain
of 12x. As expected, the distance normalization provides the greatest gain due to the
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Experiment γ Normalization RMS error Render time

Heterogeneous fog

1 Off 0.063 13.8s
2 Off 0.051 13.0s
1 On 0.023 17.0s
2 On 0.018 15.4s

Thin clouds

1 Off 0.020 75.3s
2 Off 0.017 73.6s
1 On 0.019 82.9s
2 On 0.016 83.0s

Thick clouds

1 Off 0.141 239.8s
2 Off 0.141 233.3s
1 On 0.132 279.7s
2 On 0.132 244.4s

Table 1. RMS error and render times for various combinations of γ and distance normaliza-
tion. In all three cases, the most efficient combination is γ = 2 and normalization enabled.

very low overall extinction. Without it, most samples simply step through the entire
volume and provide no opportunity for the probability bias to take effect. Figure 5
shows the visual result of the four combinations.

The thin clouds in Figure 4(b) provide an example where the average integral of
µ̂ is high, suggesting T̃ = 0, but due to both large- and small-scale heterogeneity, the

(a) γ = 1, normalization off. (b) γ = 2, normalization off.

(c) γ = 1, normalization on. (d) γ = 2, normalization on.

Figure 5. Heterogeneous fog example (16 samples per pixel).
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(a) γ = 1, normalization off. (b) γ = 2, normalization off.

(c) γ = 1, normalization on. (d) γ = 2, normalization on.

Figure 6. Thin cloud example. 16 samples per pixel.

actual T is closer to 1. In this case, the distance normalization method alone is unable
to place more samples within the volume, and we primarily rely on the probability bias
for variance reduction. As shown in Table 1, we get an improvement in RMS error
of only 1.6% when enabling distance normalization, 17.7% with γ = 2, and 19.2%
combined, with an equal variance at 24 spp. Figure 6 shows the visual differences.

We note that the probability-biasing method is able to reduce variance in the im-
ages without increasing render time, even though a much larger number of light sam-
ples and shadowing calculations are performed. This can be understood intuitively as
being a simple redirection of the ray. The cost of traversing a ray towards the light
source is comparable in magnitude to the cost we would have incurred by continuing
our traversal, as would happen if no interaction point was found.

In the case of the thick clouds in Figure 4(c), the normalization method is able
to reduce the variance in pixels with thin atmosphere. Neither the probability bias
nor the distance normalization is able to improve the sampling of the thick clouds,
however, since in areas where T ≈ 0 each sample is already more or less guaranteed
to scatter rather than pass through. In this case, the distance normalization automati-
cally reduces its effect without performance penalty. As discussed previously, we also
reduce the value of γ progressively as T approaches zero. Figure 7 shows that our
method handles this situation gracefully, without degrading variance in dense areas.
Without this rolloff, dense areas would be sampled prematurely, causing the types of
firefly samples seen in Figure 8.
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(a) γ = 1, normalization off. (b) γ = 2, normalization off.

(c) γ = 1, normalization on. (d) γ = 2, normalization on.

Figure 7. Thick cloud example (16 samples per pixel).

We note that Figure 7 shows a subtle halo around the dense cloud. This is due to
the granularity of the volume aggregate. In nodes that fall along the edge of the cloud,
µ̂ is high and µ̌ is nearly zero. In this case, the distance normalization must take the
conservative value into account when normalizing the potential longest distance to
sample in optical space, and we see a smaller improvement in variance than nearby
areas with only thin media. Although this is visible at low sample counts, we note that
the sampling is no worse than in the control case, and that adaptive sampling easily
resolves the difference automatically.

(a) γ = 2, applied using T̃ . (b) γ = 2, applied uniformly.

Figure 8. The effect of the gamma function with and without an estimated transmittance. The
exposure has been adjusted by −5 f-stops to better show the fireflies in (b).
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Finally, we track the number of calls made to the random number generator in
each of the three examples. As the noise bank is thin and the integrator receives
only a single integration interval, there are no continuations to leverage, and the num-
ber of calls stays the same. A single-sample render of the second example yields
16,784,300 calls to the generator in the control case, and only 6,075,793 when re-
using the residual of ξ, a reduction of 63.8%. In the case of the thick cloud with
surrounding atmosphere, the number of calls drops from 21,024,652 to 9,700,829, or
53.9%. We highlight that this reduction in calls is directly related to the efficiency
of the acceleration structure used to provide ray segments to the integrator: if long,
poorly bounded segments are given, there is little benefit as many steps are required
per segment, while overly short segments that are likely to be immediately stepped-
through show greater benefits than the examples above. The benefit is also relative
to the cost of the generator itself; depending on the implementation a typical volume
renderer may spend between 1% and 10% in random number generation.

5. Conclusion And Future Work

We presented two methods for providing user control over sampling of thin volumes
when using tracking-based integrators. The distance normalization allows for com-
plete control over the ratio of samples taken in the volume versus taken on surfaces,
and the additional probability bias provides further control for heterogeneous vol-
umes. We highlight the fact that the methods for the homogeneous and heteroge-
neous cases are independent and handled simultaneously, and that as µ̌ approaches µ̂,
the method naturally converges to the homogeneous case.

We also showed how performing integration in a normalized optical depth space
can help reduce the number of calls to the random number generator by allowing
re-use of residual step lengths when crossing integration interval bounds.

In the future, we would like to investigate adaptive methods for automatically
choosing the tn variable in order to optimally allocate a sample budget between sur-
faces and volumes.
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