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Abstract

The Spacetime Constraints formulation attempts to marry the re-
alism of physical simulation with the controllability of keyframe
animation, but the resulting nonlinear optimization problems are
generally extremely complicated and slow to solve. Here we ex-
plore the range of Spacetime Constraints problems that give rise
to quadratic optimization functions solvable with linear systems of
equations. We find that they generalize traditional splines to en-
compass oscillatory solutions. These problems can be solved at
full frame rates, giving animators a keyframe animation tool with
built in knowledge of a physical model. In addition to the splines
themselves, we also introduce a new analysis method to extract os-
cillatory behavior from physical simulations in a way that can be
connected naturally to the splines. It turns out that in order to have
sufficient control of the frequency response of splines, we solve the
Spacetime Constraints problems over the domain of complex num-
bers. As a consequence, our solutions have an imaginary part in
addition to the real part. The imaginary part defines a phase angle
that we show is very useful for controlling and generalizing oscil-
latory behavior whether extracted from simulation data or authored
by hand.
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1 Introduction

In traditional computer graphics animation, the motion of an object
or character in a scene is specified by a set of splines which describe
the way its parameters change over time. This technique provides
excellent control of the motion since the splines simply approxi-
mate or interpolate a series of key values or knots carefully crafted
by an animator. Unfortunately, the traditional technique provides
little help to an animator in producing physically realistic motion.
Any physical realism in the motion comes not from the mathemat-
ics of the splines themselves, but from the talent, skill, insight and
sweat of the animator [Lasseter 1987].

When greater physical realism is desired, or when the required an-
imator time would be too expensive, direct physical simulation of
the underlying physics is sometimes used to create computer graph-
ics motion. While physical simulation can create compelling re-
alism of motion, it is often very difficult to control, and simula-
tions can produce surprising or unintended results. Determining the

proper applied forces and physical parameters necessary to achieve
a particular desired effect is generally a formidable challenge.

The central problem in ordinary simulation is that simulation equa-
tions march forward in time from initial conditions to a final result.
Forces lead to accelerations which are integrated to get velocities
and positions over time. If the result at some point in time is not
what is desired, it is usually very difficult to determine how the
forces and parameters before hand have to be changed to bring the
motion closer to the goal.

In 1988, Witkin and Kass [Witkin 1988] developed a technique
called Spacetime Constraints to try to marry the physical realism of
simulation with the controllability and predictability of traditional
splines. Their idea was to have animators continue to specify key
values of parameters over time, but interpolate the motion in the
most physically realistic way possible subject to these constraints.
Instead of demanding that Newton’s second law, f = ma be satis-
fied all the time as in traditional simulation, Spacetime Constraints
minimizes the deviation from the second law while guaranteeing
the interpolation constraints set by the animators are met.

Although the approach of Spacetime Constraints has the potential
to provide the elusive combination of realism, predictability and
control sought after in computer graphics production, it has thus far
remained the realm of academic research for at least two reasons.
Foremost among the difficulties in using Spacetime Constraints is
the complexity involved. The full equations of motion for even
the simple planar Luxo Lamp model used in the original Space-
time Constraints paper are tremendously complicated and required
an elaborate symbolic math-based compiler to evaluate. Even if the
equations of motion of interesting character models can be man-
aged, a second obstacle is the execution time of the required non-
linear optimization. Animators are loath to use any technique which
slows an animation system down from interactive speeds, and it
will be many years before full character-level Spacetime Constraint
problems can be solved fast enough with existing formulations.

A variety of researchers have applied the Spacetime Constraints ap-
proach to specific domains, used different optimization methods,
tried accelerate it, or addressed other weaknesses in the original
formulation (eg. [Cohen 1992], [Ngo 1993], [Liu 1994], [Witkin
1995], [Rose 1996], [Gleicher 1997], [Popović 1999], [Popović
2000], [Fang 2003], [Treuille 2003], [Safonova 2004]). Good sum-
maries of the specific contributions and evolution of the ideas can be
found in [Fang 2003] and [Safonova 2004]. Here we take a very dif-
ferent approach. Instead of looking for an optimization expression
which will capture the full physics of the underlying problem, we
choose to examine how far we can go using only optimizations that
can be computed rapidly enough to be used in place of traditional
splines. By contrast with the recent work of Fang and Pollard [Fang
2003], for example, who report clever optimizations to reduce run-
ning time down to a few minutes, we seek to simplify the problems
more radically to the point where we can achieve true interactive
update rates of 30 frames per second – thousands of times faster.

In particular, we limit ourselves only to formulations which give
rise to simultaneous linear equations. While this restriction, of
course, is severe, it still allows us to address a wide range of oscil-
latory phenomena while retaining the interactive performance and
predictability of traditional splines. Since they arise from linear
or linearized Spacetime Constraints problems, we refer to the solu-



tions as Linear Spacetime Constraint Splines (LSC splines), or even
“Wiggly Splines” because of their penchant for oscillation. These
splines have a collection of attractive features:

• They generalize traditional splines.

• They break the time symmetry of traditional splines, incorpo-
rating damping.

• They accurately characterize real physical systems near equi-
librium.

• They can be computed in constant time per frame with banded
linear systems.

• They can be chosen to have unconditional stability.

In addition, if the LSC splines are allowed to be complex valued,
then their solution yields not only the physically meaningful real
part, but also an imaginary part, and hence a phase angle. The exis-
tence of the phase angle allows a single animation curve to control
a collection of different animation parameters related by different
phase lags.

Traditional splines have become very powerful tools in the hands
of skilled animators, but their behavior is only very tenuously re-
lated to the underlying physics of motion. They exhibit perfect time
symmetry, for example, while real motion is decidedly asymetric in
time. LSC splines offer a generalization retaining all the power of
traditional splines, while adding an inherent ability to produce com-
mon animation phenomena like overshoot due to follow through,
passive damping, and motion which is fundamentally oscillatory.
A large part of achieving a high degree of realism in character ani-
mation is getting the secondary motion to look right, and oscillatory
phenomena such as these are the dominant form of secondary mo-
tion.

The rest of the paper is structured as follows. In section 2, we show
that traditional piecewise cubic splines fall out as a special case so-
lution of a Spacetime Constraints problem with no applied force. In
section 3, we point out that individual muscles, and general systems
near equilibrium give rise to systems like damped mass-spring os-
cillators with linear restoring forces. We show that the correspond-
ing Spacetime Constraints problem can be solved with a banded
linear system. In section 4, we provide the view from Digital Signal
Processing, which allows us to accurately characterize the stability
and resonances of the discrete system. In section 5, we show that
we can broaden the resonance of LSC splines by using a complex-
valued solution. This not only makes the physically-meaningful
real part of the curve easier to manipulate, but also provides addi-
tional opportunities to use the phase of the animation curve to con-
trol additional animation parameters. In section 6, we show how to
add in the effects of external forces, and then in section 7 we show
how the full technique can be applied both to procedural animation
models, and to models derived from simulation data.

2 Generalizing Traditional Splines

In the Spacetime Constraints formalism, we begin with a physical
system, add constraints provided by the animator, and then, sub-
ject to these constraints, minimize an objective function which pe-
nalizes non-physical and inefficient motion. Let us first consider
passive systems where efficiency is not an issue. In this case, the
objective function will simply be a measure of the departure of the
motion from passive physics.

A physically accurate simulation will follow Newton’s second law
of motion: f = ma. Consider the simple example of a point mass

moving in one dimension with position given by x(t). We expect
the acceleration a = ẍ to be equal to the known force f divided by
the mass m. If we observe the mass point accelerating in a way in-
consistent with the known forces, then we can explain the observed
motion by positing a mysterious “jet engine force” J(t) acting on
the mass. The most physically realistic motion will be one where
the jet engine forces are as small as possible.

f + J = ma = mẍ (1)

J = mẍ− f (2)

Without loss of generality, we can choose units so m = 1, and then
we have

J = ẍ− f (3)

In order to minimize the force of the jet engine, we need a norm to
rank different possible jet engine functions J(t), so we can choose
among different possible paths of motion x(t). There are a variety
of choices here including penalizing the average power output of
the jet engine or the amount of work it puts out, but in order to
keep the optimization problem linear, we follow [Witkin 1988] and
minimize the L2 norm of the force.

E =
∫

J2dt (4)

Clearly, if E = 0, then J must be uniformly zero, and the motion is
completely physical with no jet engine force at all.

In general, we will be concerned with situations where the known
applied force f is a linear combination of the motion x and its
derivatives, but for the moment, consider what happens when the
known applied force f is zero. Then the jet engine force in equa-
tion 3 becomes J = ẍ and the function to be minimized is:

E =
∫

ẍ2dt. (5)

Equation 5 is the minimum principle from which traditional cubic
interpolatory splines are derived [Bartels 1987]. It is well known
and easy to prove using calculus of variation that the minimization
of equation 5 gives rise to piecewise cubic polynomial solutions,
and these are widely used throughout computer graphics. General-
izing the continuous solution to situations where the applied force f
is a linear differential operator on x, however, would lead to piece-
wise exponentials.

Our motivation in computing the minimum is to construct anima-
tion curves. Typically, animation curves need only be evaluated
at discrete integer frame times and perhaps shutter-close times for
motion blur. The existence of a continuous differentiable function
is generally not required. As a result, we find it easier to express
the minimization problem in the discrete domain and solve it there,
although there may be applications for which the true piecewise
continuous exponential solution may be preferable.

Discretizing equation 5 with standard finite differences leads to the
following function to be minimized:

Es = (1/h)2
n

∑
i=1

(xi−1 −2xi + xi+1)
2 (6)

where h is the time separation between samples. The minimum will
occur when the gradient vanishes

∂Es

∂xi
= 0 (7)

For each i away from the boundaries, three terms of the sum in
equation 6 lead to non-zero derivatives, and they combine so that



equation 7 leads to a banded linear system with bandwidth 5. Equa-
tions of this form can be solved using standard techniques [Golub
1983] [Press 1986] in time proportional to n, the number of samples
of xi.

2.1 Constraints

In order to make the solution of equation 7 interesting, we need
to add some constraints. The primary constraint, of course, is the
ability to set a particular value at a particular time – an interpola-
tion constraint. Setting up interpolation constraints with the finite
difference formalism is not at all difficult. Suppose we want to es-
tablish the constraint that x j = v for some j. All we have to do is
drop x j from equation 6 and replace it with the constant value v.
The resulting linear system will have one fewer equation.

In addition to setting values, animators are used to establishing tan-
gent constraints. This is also easy to handle in the finite difference
formulation. Let g be the desired slope at sample i. Then we can
add a penalty term to the optimization function as follows:

E = Es +Et (8)

Et = ct((1/h)(xi+1 − xi)−g)2 (9)

where ct is a constant that sets the strength of the tangent penalty.

Note that with just interpolation constraints, the solution of the min-
imization problem in equation 6 produces a spline with global sup-
port. In fact, it converges to the same curve as an interpolating
C2 cubic, because it minimizes the same energy. If tangent con-
straints are introduced at the interpolation constraints, however, the
effective support of the spline becomes more and more local as the
penalty constant ct is increased. If ct is large enough, and if the
finite difference sampling is adequate, the global optimization will
produce a result indistinguishable from locally supported piecewise
cubics such as Bezier or Catmull-Rom splines (depending on the
computation used to set the tangent constraints).

Interestingly, when the optimization is done numerically with finite
differences, the constant ct allows us to choose on a knot by knot
basis whether we want to maximize smoothness by allowing global
support, strictly enforce local support, or do something in between.
It provides some additional freedom difficult to achieve with the
usual analytic spline formulations.

The chief advantage of the usual analytic splines over the method
described here is that strict local support allows values of the an-
alytic splines in an interval to be calculated from a fixed number
of neighboring knots. If one is willing to forego this property, the
finite difference splines described here still require only constant
time per sample to calculate, More importantly, by allowing the ap-
plied force to be non-zero, they allow a wide range of interesting
new behavior.

3 Mass-Spring Oscillator

3.1 Why the Damped Mass and Spring?

We choose to investigate Spacetime Constraint solutions of linear
differential equations for two main reason. First, they very com-
monly approximate physical situations of interest. Second, they are
very tractable, both from the point of view of computing the result,
and characterizing the expected behavior.

Figure 1: Top curve: Resonant frequency. The resonance begins at zero, and then
changes abruptly to a non-zero value. Bottom curve: Linear Spacetime Spline with
three interpolation and tangent constraints.

Linear differential equations arise commonly for physical systems
displaced only slightly from equilibrium. Consider any mechanical
system whose potential energy is given by a function V (q1, . . . ,qn)
of some generalized coordinates. Since the displacement is under-
stood to be small, we can expand the energy function around the
equilibrium using a Taylor series. Let us introduce new coordinates
ηi to denote the displacement of the system from its equilibrium
position (q01, . . . ,q0n).

qi = q0i +ηi (10)

Potential energy functions have an arbitrary zero, so without loss
of generality, we can shift the zero to coincide with the equilibrium
position Q0, making the first term of the Taylor series vanish. The
second term will also vanish because the gradient is zero at the equi-
librium. As a consequence, the first non-zero term of the expansion
will be due to the second derivatives of the energy.

V (q1, . . . ,qn) ≈
1
2 ∑

i, j

(

∂ 2V
∂qi∂q j

)

q0

ηiη j (11)

Quadratic energies such as these imply linear forces since f =
−∇E. The resulting systems will exhibit oscillatory solutions
[Goldstein 1980]. If we switch from using the η i to normal co-
ordinates (see [Goldstein 1980] for details – in simple cases the
normal coordinates are just the eigenvectors of ∂ 2V/∂qi∂q j), then
the resulting equations correspond to the motion of damped springs
in each of the normal coordinates.

The fact that any physical system, displaced slightly from equilib-
rium and viewed in the proper coordinate system, will exhibit the
passive physics of a damped spring suggests that this type of be-
havior is fundamental and universal and that we would benefit from
incorporating it into our animation interpolation schemes.

There is an additional reason for considering the damped spring
model to be fundamental in animation. While there are certainly
important nonlinearities in muscle behavior, the linear “Active State
Muscle Model” [McMahon 1984] has been a very effective refer-
ence for the mechanical properties of muscles. Essentially, it con-
sists of a set of linear elements which create a movable equilibrium
with an adjustable tension around that equilibrium. The passive
behavior of such a system is given by a damped spring oscillator
forced by a changing equilibrium.

3.2 Applying Spacetime Constraints

If we return to the Spacetime Constraints problem of equations 3
and 4, but introduce the physical model of a damped spring, then the



applied force, instead of dropping out, becomes key to the behavior
of the system. In a standard damped spring, the applied force is
given by:

f = −kx− γ ẋ (12)

Plugging this expression for the force into equation 4 yields the
optimization function

E =
∫

(ẍ+ γ ẋ+ kx)2dt. (13)

Proceeding as before by substituting finite differences for the
derivatives, we get

Es =
1
h2

n

∑
i=1

(

m(xi−1 −2xi + xi+1)+hγ(xi+1 − xi)+h2xi

)2
(14)

While this expression is a good deal more complicated than the
case of the ordinary spline, it is still a quadratic objective function.
As a result, equation 7 once again gives rise to a banded set of
simultaneous linear equations with a bandwidth of five.

We have embedded our solution to equation 14 into a traditional
spline editor, using the original interface for interpolation and tan-
gent constraints to modify the optimization problem as described in
section 2. In our implementation, we can achieve over 30fps up-
date rates, on a personal computer, and the LSC spline computation
takes less execution time than the time required to draw the result.
Figure 1 shows an example of an LSC spline being used. The up-
per curve is a traditional spline used to control the spring constant,
and the lower curve is a Linear Spacetime Spline. On the left side
of the figure, the spring constant and damping are zero, so the bot-
tom curve behaves like a familiar piecewise cubic spline. In the
middle, the upper curve, representing the spring constant, abruptly
increases and shifts the resonance. As a consequence, on the right
side, the curve oscillates between the second and third interpola-
tion constraints. Note that the curve has a series of inflection points
between the second and third constraints, and is clearly not repre-
sentable on that span as a single cubic.

4 Digital Signal Processing View

The continuous differential equation that results from equation 12
when J = 0 is stable for all positive values of k and γ . Unfortunately,
once finite differences are substituted for continuous derivatives,
stability is no longer guaranteed. In order to guarantee stability, we
recast the equations in terms of digital signal processing.

Going back to equation 12 and substituting finite differences for the
derivatives yields

fi = −kxi − γ(xi+1 − xi)/h. (15)

Combining this with equation 3 and using a finite difference for ẍ
gives us

xi+1 −axi −bxi−1 = Ji (16)

where a and b are functions of the spring constant k and the damp-
ing constant γ . In the language of Digital Signal Processing, equa-
tion 16 represents a second order recursive (IIR) filter where the
input of the filter is the jet engine force computed by the optimiza-
tion. We can now re-write the objective function in terms of a and
b, and then use IIR filter design techniques to set a and b to values
that guarantee stability. The re-written objective function is

Es =
n

∑
i=1

(xi+1 −axi −bxi−1)
2 . (17)

The response of the filter in equation 16 to the jet engine forcing
is fully characterized by the system function of the filter, which is
given by [Oppenheim 1975]

H(z) =
1

1−az−1 −bz−2 . (18)

where z is a complex parameter. When evaluated on the unit circle,
the system function gives the frequency response of the filter. If
we factor the system function, then we will find two roots of the
denominator polynomial

Figure 2: Left: pole locations. Right: frequency response. Top: Two pole real filter.
Middle: Four pole real filter. Bottom: Two pole complex filter

H(z) =
1

(1−λ0z−1)(1−λ1z−1)
(19)

These roots, λ0 and λ1 are known as the poles of the filter, and they
provide the information required to control the frequency response
and the stability of the filter. If both poles are inside the unit circle,
the filter will be stable.

In practice we will generally design our system by chosing the poles
to have the desired resonance and damping. Then we will compute
a and b from λ0 and λ1 using the expressions:

a = λ0 +λ1 (20)

b = −λ0λ1. (21)

In order for a and b to be real, the poles must either be real, resulting
in a purely damped solution with no oscillation, or must be complex
conjugates. This is an important restriction.



Figure 3: Complex-valued spline: The bottom curve shows the real part resulting
from three interpolation and tangent constraints. The top curve is the computed imag-
inary part.

5 Complex Valued Spline

In actual practice, although the Spacetime Constraint mass-spring
oscillator will dutifully interpolate positional and tangent con-
straints, it can be difficult to coax into a desired curve. The main
difficulty is that its resonance is very sharp. As a result, the spline
is over-eager to oscillate at precisely the resonant frequency. If
the constraints are moved in time so that all the time intervals are
increased in size by a small percentage, then instead of the solu-
tion stretching slightly, the frequency of oscillation will remain un-
changed, and the curve will manage to satisfy the constraints by
adding an additional low-frequency component.

In a general Spacetime Constraints setting, one could allow the res-
onant frequency to be a parameter of the optimization, so altering
the timing of the constraints would tend to change the frequency
of oscillation. Unfortunately, all the obvious ways of allowing the
resonant frequency to be computed by the optimization result in
strongly nonlinear Spacetime Constraints problems. Within the do-
main of linear Spacetime Constraints problems, the way to mitigate
this effect is to widen the resonance of the linear filter, turning it
into as close to an ideal bandpass filter as possible with the pass-
band centered around a frequency chosen by the animator.

The second order mass-spring system provides limited degrees of
freedom for shaping the frequency response because the two poles
are required to be complex conjugates in order to ensure that the
filter coefficients are real. The top of figure 2 shows a representative
sample pair of conjugate pole locations, and the corresponding of
the frequency response. Note that the resonance is very sharp. At
the same time, there is significant response at zero frequency where
the influence of the two conjugate poles interact.

The usual way to gain additional degrees of freedom to shape the
frequency response of a filter is to make it higher order, for exam-
ple, by adding poles. The middle row of figure 2 shows a represen-
tative example of what can be accomplished with this technique. It
shows a fourth-order filter with pairs of poles centered around the
previous poles and exhibits the resulting frequency response. The
resonance has been broadened, but the response at zero frequency
is still unacceptably high.

An alternative solution to the problem is to allow the filter coeffi-
cients to be complex. Then the poles need not be conjugate, and a
very different frequency response results. The bottom row of figure
2 shows a representative example of this technique. The pass band
has been widened while keeping the response at zero frequency
much lower.

In principle, it is possible to achieve the same result with a fourth-
order real filter as the second-order complex filter, if you can avoid
exciting the oscillatory modes represented by the conjugate poles.
In practice, this is very difficult, particularly in the optimization

Figure 4: The complex spline is able to adjust its frequency as the interpolation
constraints are moved.

setting, where constraints may be specified at arbitrary times. As
a consequence, the kind of behaviour we seek is much more easily
achieved with a complex-valued spline than with a real one.

The computation of the complex-valued spline begins just as be-
fore. The animator selects the resonant frequency and degree of
damping desired, which together determine a point on the complex
plane. The complex poles λ0 and λ1 are then generated by rotating
the point clockwise and counterclockwise by an amount that deter-
mines the bandwidth of the filter. From λ0 and λ1, we compute the
coefficients a and b of our recursive filter. This time, however, the
coefficients a and b and the resulting spline will all be complex.
The new objective function will be

Es =
n

∑
i=1

|xi+1 −axi −bxi−1|
2 . (22)

where the sum of squares in equation 17 has been replaced with
a sum of squared complex magnitudes. The number of degrees
of freedom in the optimization has been doubled, since each value
of x has both a real and an imaginary part. The condition for the
minimum is that the partial derivative of the objective function E
with respect to both the real part and the imaginary part of each xi
must vanish.

Figure 4 shows the real (below) and imaginary (above) parts of the
complex-valued LSC spline solution. All the interpolation con-
straints are applied to the real part, and for most purposes, this is
the only part of interest. The existence of the imaginary part, how-
ever, does open up some interesting possibilities as will be seen in
section 7.

Figure 4 shows that the widening of the resonance with the com-
plex LSC spline is effective. Moving the third interpolation con-
straint from its position in the bottom curve to its position in the
top curve causes the curve to stretch as expected, instead of finding
some other, less intuitive, way of meeting the constraints.

6 External Forcing

In section 3, we assumed that the only force on the mass-spring
system was due to the passive dynamics. In the case of charac-
ter animation, we are generally interested a combination of passive
dynamics along with active muscle action due to intent.

If the equilibrium position of the spring is movable and given by
the function y(t), then we have

a = ẍ+ ÿ (23)

j = ẍ+ ÿ− f (24)



Making this change to j results in the following refinement to equa-
tion 22.

Es =
n

∑
i=1

|xi+1 −axi −bxi−1 + ÿ|2 (25)

Figure 5 shows the use of the changing equilibrium position. The
bottom curve shows an animated curve for the function y(t) created
with traditional splines. The middle curve shows the LSC solu-
tion. No interpolation constraints were applied, so this represents
the pure forward dynamics that could be computed using an ordi-
nary differential equation (ODE). The top curve shows the funda-
mental difference between the LSC spline and an ODE solution. An
interpolation constraint has been added to the middle of the curve,
illustrating that unlike ODE solutions, the LSC spline is editable at
any point.

Figure 5: Bottom: Changing equilibrium value. Middle: LSC spline with no con-
straints, showing passive response. Top: LSC spline edited with an interpolation con-
straint.

7 Animating with LSC Splines

7.1 Controlling Procedural Models

While we introduced the imaginary part of our LSC spline x in or-
der to craft the desired frequency response, it has additional value
for controlling animation. If we represent x in polar imaginary co-
ordinates using the identity

x = reiθ (26)

then in addition to the real part of x which the animator manipulates
directly, we know theta which defines a phase angle at each point
along the curve. Very commonly, during oscillatory motions, there
are degrees of freedom that oscillate with different phase relation-
ships to the driving motion. Knowing θ with our complex-valued
spline, we can derive those very easily. Let φ be the desired phase
difference from our controlling oscillation x. We can derive a fam-
ily of phase-shifted curves xφ using the formula

xφ = ℜ(rei(φ+θ)) = ℜ(eiφ x) (27)

where ℜ denotes the real part of a complex number.

Figure 6 shows a procedural model of a tail being animated in this
way. The original LSC spline x is used to drive the first bend angle
at the base of the tail. Scaled and phase-shifted versions of the
spline are used to drive all the other bend angles. Even with just a

few animation knots, it is possible to get very interesting and lively
animation out of models like this. The accompanying mpeg movie
shows an example of an animation curve and the resulting the real-
time motion of the tail.

Figure 6: Animation of a procedural tail

7.2 Controlling Simulations

In section 3.1, we noted the universality of mass-spring systems for
describing the oscillations of general physical systems displaced
slightly from their equilibria. In the original given coordinates, the
motion of a system around its equilibrium may appear to be ex-
tremely complicated, but if the energy is approximately quadratic,
there exist a set of normal coordinates that allow for a much simpler
description. The normal coordinates, which are simply vectors of
weights for the parameters used to pose a model, provide a set of
preferred directions in the parameter space. When viewed in these
preferred directions, physically-accurate unforced motion reduces
to damped simple harmonic motion. LSC splines, of course, are
designed to handle just this type of situation. If we want to ap-
ply LSC splines to control and animate these oscillations, the chief
remaining obstacle is to compute the normal coordinates.

One way to compute the normal coordinates for a physical sys-
tem is to construct differential quadratic approximations for both
the potential and kinetic energy of a system and employ “simul-
taneous diagonalization of two quadratic forms” [Goldstein 1980].
The resulting eigenvectors provide the required coordinates. For
our purposes, however, the method has two limitations. First of
all, quadratic approximations based on energy derivatives are only
accurate for small displacements, while animators tend to make fre-
quent use of large displacements. Second of all, if we directly com-
pute the normal coordinates for a system with a large number of
degrees of freedom, we will get a correspondingly large number of
normal coordinates, and it is not clear how to pick the relevant ones,
present them to animators, or control their blending.

For animation purposes, we choose to start by trying to charac-
terize a small set of oscillations that are meaningful to animators.
For example, with the character in figure 7, we develop canonical
up-down and left-right oscillations. The idea is to create physical
conditions that excite the desired oscillations and then discover the
normal coordinates by analyzing the time series of simulation data.
Since we excite oscillations with large displacements, the analysis
will discover the best linear approximation to a large displacement,



rather than a small one. Having discovered the proper normal co-
ordinates with our analysis, we can then control their oscillations
with an LSC spline. In effect, the LSC spline makes it possible
to begin with a canonical oscillation discovered through simulation
and then generalize it, adjusting the frequency and damping as de-
sired for cinematic effect.

Figure 7: Deformable character with phase map for up-down oscillations. The phase
of the normal coordinate is encoded into the color of each point.

Let Si, j represent the full state of a physical simulation where the
first index ranges over the n time samples and the second index
ranges over the m different parameters that describes the instanta-
neous state of the model. We will refer to i as the temporal index
and j as the spatial index of our state. Our hypothesis is that the
motion can be represented reasonably well as the sum of a set of
uncoupled oscillations in the normal coordinates. Let Nk, j represent
the k normal coordinate vectors. If Rk,i represents the displacement
over time of the kth normal coordinate, then the hypothesis that the
data can be explained as the sum of independent oscillations in the
normal coordinates can be written

Si, j = ∑
k

Rk,iNk, j. (28)

There is a well-established method to compute the best least-
squares approximation to equation 28 from a time series, and it is
known as principal components analysis (PCA). The least-squares
best normal coordinates Nk, j are simply the eigenvectors of the co-
variance matrix SST while the least-squares best temporal displace-
ments of these coordinates Rk,i are just the eigenvectors of the ma-
trix ST S.

A weakness of the standard PCA is that it is not very good at dis-
covering propagating phenomena. The problem is that travelling
waves fundamentally involve 2-dimensional eigenspaces with a sin-
gle eigenvalue, and these are degenerate when working with real
values. If PCA can identify the travelling wave, it will show up as
a pair of sinusoidal eigenvectors 90 degrees out of phase with each
other, but the absolute phase of the eigenvectors is arbitrary and will
be determined primarily by noise.

Instead of looking through the eigenvectors and searching for real-
valued pairs that represent propagating waves, a much better ap-
proach is use a modified version of PCA that does all the arith-

metic over the complex domain and finds propagating phenomena
directly. Developed by climate researchers in the early 1980s [Ras-
musson 1981] [Anderson 1983], it has become known as Complex
Principal Components Analysis or CPCA. The basic idea is to take
the real data Si, j and extend it into a complex representation by us-
ing a Hilbert transform to add an imaginary part to each real-valued
time series. Then the same mathematical analysis as standard PCA
can be done over a complex data set and will reveal phase relation-
ships within the time series.

Hilbert transforms have not been widely used in Computer Graph-
ics, but their theory can be found in standard texts (e.g. [Oppenheim
1975]). Suppose we have a real-valued function of time f (t) which
is zero for all t < 0. Such functions are known as causal functions.
If we would like a complex-valued function of time whose real part
matches f (t) and is well-behaved enough that its Taylor series con-
verges everywhere, there is a single choice. The unique extension to
a complex-valued analytic function is f (t)+ i f (̂t) where f (̂t) is the
Hilbert transform of f (t). There are a variety of ways of comput-
ing Hilbert transforms. For a periodic signal, the Hilbert transform
can be obtained by simply shifting all the Fourier components by
90 degrees. Where boundaries are involved, however, more care is
required. Oppenheim [1975] goes into some depth about the issues
involved.

If we take the original real data Si, j and added in an imaginary part
given by its Hilbert transform, we get a complex time series S̃i, j .
The rest of the computation is the same as standard PCA except that
all the arithmetic is complex. In the end, we get complex normal
coordinates Ñk, j and displacements R̃k,i.

We have used this method to discover normal coordinates for the
character shown in figure 7. We began with a set of volumetric fi-
nite element simulations using the method of Irving et. al [2004],
and for each simulation, extracted the complex normal coordinate
with the largest eigenvalue. We designed each simulation to excite a
particular kind of oscillation meaningful to animators, so the defor-
mations controlled by the LSC splines would make sense to them.
In the accompanying video, we show the results from using the two
coordinates N1, j which corresponds to an up-down shake, and N2, j
which corresponds to a side-to-side oscillation.

It is possible to use only the real parts of Ñ1, j and Ñ2, j and drive
them directly with the real value of the LSC spline. As shown in the
video, however, this results in very stiff-looking motion typical of
low-end computer graphics because all the points move in perfect
synchrony. To break up the stiffness, we need to introduce what
animators refer to as overlap. Different parts of the character need
to begin their motions at different times. The phase components of
the normal coordinates provide just the right information to make
this happen. For a single coordinate, the proper deformation using
the phase information can be written as

D( j) = ℜ(xÑ1, j). (29)

The video shows the results of using this method for both normal
coordinates Ñ1, j and Ñ2, j . The resulting motion is much more or-
ganic, losing the former harsh CG stiffness. Figure 7 shows a false
color map of the phase for the vertical component of the up-down
motion. The phase varies smoothly over the character, with the mo-
tion of the arms and hands being delayed significantly compared to
the body. In effect, the amplitude of Ñk, j for each j lets us know
how much the jth point moves when the character oscillates in the
kth coordinate, and the phase of Ñk, j lets us know whether the jth
point moves before or after the main oscillation and by how much.

The final example in the video shows a combination of oscilla-
tions along the two coordinates. We could have used different LSC
splines for each coordinate, but that would risk creating oscillations



at nearby frequencies that would beat against each other in disturb-
ing ways. Instead, we chose to use amplitude and phase shifts of a
single LSC spline for the full deformation:

D( j) = ℜ(A1eiφ1 xÑ1, j +A2eiφ2 xÑ2, j) (30)

where A1 and A2 represent the relative amplitudes, and φ1 and φ2
the relative phases of the two oscillations. The example in the video
was constructed using just nine knots, yet it shows surprising sub-
tlety and complexity.

8 Discussion and Conclusions

Our purpose in limiting ourselves to Spacetime Constraints prob-
lems with linear solutions is not to suggest that they suffice for
achieving the goal of producing physically-realistic yet controllable
motion. On the contrary, nonlinear mechanisms will certainly play
an important role. Nonetheless, nonlinear optimizations are frought
with peril from the point of view of real-world use by animators.
For the most part, animators expect that continuous changes to their
inputs will produce similarly continuous changes in their results.
This is nearly impossible to ensure with nonlinear optimizations,
but almost guaranteed by linear systems. As a consequence, LSC
splines may face many fewer barriers to adoption than alternatives,
particularly given that they completely generalize familiar piece-
wise cubics.

We do not claim to have settled on the best way to control the LSC
splines, but we view their full interactive speed as key to their value.
Animators demand true real-time control, and only by putting a
technology like this in their hands can we get the feedback necesary
to refine the Spacetime Constraints solutions into a powerful and
effective tool.

The application of digital signal processing mathematics to this do-
main appears to be very powerful and enlightening. First of all, it
allows us to express stability criteria and describe the resonances of
linear Spacetime Constraints problems with ease. Second, the idea
of using complex-valued splines would not have occurred to us out-
side this context. Our experience using both hand-crafted procedu-
ral models and models derived from simulation data have convinced
us of the value of complex splines. Using the LSC splines and the
complex principal components analysis together, we are able to cre-
ate a method that distills simulation data into a simplified model and
then allows us to generalize it by controlling its frequency, damping
and phase relationships to other motions. This makes it possible to
“composite” pieces of simulations together in a way that has not
before been possible.
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