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Figure 1: Images rendered with the approximate subsurface scattering re�ectance pro�les presented in this report. c
 Disney/Pixar.
(Prometheus statue modeled by Scott Eaton; head data courtesy of In�nite Realities via Creative Commons; alien, fruits, and candle rendered
by Dylan Sisson; sheep modeled by Chris Scoville.)

Abstract

We present three useful parameterizations of a BSSRDF model
based on empirical re�ectance pro�les. The model is very simple,
but with the appropriate parameterization it matches brute-force
Monte Carlo references better than state-of-the-art physically-based
models (quantized diffusion and photon beam diffusion) for many
common materials. Each re�ectance pro�le is a sum of two ex-
ponentials where the height and width of the exponentials depend
on the surface albedo and mean free path length. Our parameter-
izations allow direct comparison with physically-based diffusion
models using the same parameters. The parameterizations are de-
termined for perpendicular illumination, for diffuse surface trans-
mission (where the illumination direction is irrelevant), and for an
alternative measure of scattering distance. Our approximations are
useful for rendering ray-traced and point-based subsurface scatter-
ing.
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ing, functional approximation, BSSRDF, re�ectance pro�le.

1 Introduction

Realistic modeling of subsurface scattering is important for render-
ing believable images of translucent materials such as skin, meat,

fruits, plants, wax, marble, jade, milk and juice. Computer graph-
ics researchers have developed increasingly sophisticated and accu-
rate physically-based subsurface scattering models from the simple
dipole diffusion model [Jensen et al. 2001] to the quantized diffu-
sion model [d'Eon and Irving 2011] and photon beam diffusion and
diffuse single-scattering model [Habel et al. 2013]. Here we intro-
duce three parameterizations of an empirical model that is as simple
as the dipole but matches brute-force Monte Carlo references better
than even photon beam diffusion.

The main reasons for replacing physically-based models with an
approximation are:

� No need for numerical inversion [Jensen and Buhler 2002;
Habel et al. 2013] of the user-friendly surface albedo and
mean free path length input parameters to less intuitive vol-
ume scattering and absorption coef�cients.

� Built-in single-scatter term.

� Faster evaluation, simpler code and no need for lookup-tables.

� No ad-hoc correction factor� (r ) to make the theory �t Monte
Carlo references [Donner and Jensen 2007; Habel et al. 2013].

� A simple cdf for importance sampling.



2 Background and related work

2.1 Monte Carlo simulation and BSSRDFs

The most general method to compute subsurface scattering is to
treat the object as a volume and run a brute-force Monte Carlo sim-
ulation [Kalos and Whitlock 1986; Wang et al. 1995]. However,
this can be extremely slow, particularly for complex scenes.

The function that describes how light enters an object, scatters
around inside it, and then leaves the object is the BSSRDF —
the bidirectional surface scattering re�ectance distribution function.
Donner et al. [2009] used Monte Carlo particle tracing to tabulate
an empirical BSSRDF model for a �at surface on a homogeneous
semi-in�nite volume. They represented the hemispherical distribu-
tion of light leaving the surface, depending on the angle of the inci-
dent light, the relative position of the exitant light, and the physical
parameters (volume albedo, mean free path length, phase function,
and index of refraction). Their tables took months to compute and
contain around 250MB of data.

2.2 Physically based re�ectance pro�les

The BSSRDFS is often simpli�ed as a product of a radially sym-
metric (1D) diffusere�ectance pro�le R, two directional Fresnel
transmission termsFt , and a constantC [Jensen et al. 2001; d'Eon
and Irving 2011; Jimenez et al. 2015]:

S(x i ; wi ; xo ; wo) = C F t (x i ; wi ) R(jxo � x i j) Ft (xo ; wo) (1)

Figure2 shows examples of re�ectance pro�les for various surface
albedos; these curves were computed with Monte Carlo simulation.
The vertical axis showsrR (r ) rather thanR(r ) sinceR(r ) is al-
ways integrated radially over the surface (and has a sharp peak close
to r = 0 ).
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Figure 2: Re�ectance pro�lesR(r ) for various surface albedos.

The dipole diffusion model [Jensen et al. 2001] is an approximation
of subsurface scattering that has been diffused after many scatter-
ing events. This model is simple, fast to evaluate and widely used;
however, it is also overly blurry and results in a waxy look. The
scattering was parameterized by the volume scattering and absorp-
tion coef�cients� s and� a (or, equivalently, the volume scattering
albedo� = � s=� t = � s=(� s + � a ) and volume mean free path
length` = 1 =� t = 1 =(� s + � a ).)

In follow-up work, Jensen and Buhler [2002] introduced a more
intuitive parameterization of subsurface scattering: surface albedo
(diffuse surface re�ectance)A =

R1
0 R(r ) 2�r dr and diffuse

mean free path length̀d on the surface. We use similar intuitive pa-
rameters in our approximations. (We use the symbolA for surface
albedo instead of the commonly usedRd sinceRd is also frequently
used for the diffusion (multi-scattering) part of the re�ectance pro-
�le.) d'Eon later presented a more physically accurate dipole diffu-
sion model simply called “a better dipole” [d'Eon 2012]. Recently
Frisvad et al. [2014] introduced a directional dipole model that lifts
the assumption of a radially symmetric diffusion pro�le; this im-
proves the accuracy for e.g. non-perpendicular (oblique) illumina-
tion of objects with smooth refractive surfaces (such as milk, fruit
juice, and other liquids with suspended particles).

d'Eon and Irving [2011] introduced quantized diffusion: improved
diffusion theory and an extended source term instead of just a
dipole. This results in a more realistic look with sharper features,
but is also much more complicated and time-consuming to calcu-
late. The resulting diffuse re�ectance pro�le was approximated as
a sum of Gaussians. Our approximations are more accurate and
vastly simpler to compute.

The photon beam diffusion paper by Habel et al. [2013] had three
main contributions: a photon beam diffusion model that is as accu-
rate as quantized diffusion but much faster to evaluate, an accurate
diffuse single-scattering model, and elegant handling of oblique re-
fraction into the material. Our approximations are faster and also
more accurate than photon beam diffusion for symmetric scattering
(either perpendicular illumination or ideal diffuse surface transmis-
sion). The photon beam model has an empirical term� (r ) to make
the theoretical results better match Monte Carlo references in the
mid-distance range; our model abandons theory entirely and con-
sists of purely empirical terms.

All the diffusion models above require separate handling of sin-
gle scattering, either by explicit ray tracing or separate integration.
Both methods are slow. Our model includes single scattering, so no
expensive separate calculation is needed.

2.3 Approximate re�ectance pro�les

Re�ectance pro�les like the ones in Figure2 can be represented
with tables. For example, we could store tables of the re-
�ectance pro�le as function of distancer for surface albedos
0; 0:01; 0:02; : : : 1, and then interpolate between them for a given
surface albedo and distance.

However, our inspiration comes from the frequently used technique
of approximating complex functions by simpler ones. A good ex-
ample is the Fresnel re�ection and refraction formulas. Fresnel re-
�ection and refraction can be modeled based on physics (Maxwell's
equations and energy constraints) as a sum of two terms, one for
perpendicular and one for parallel polarized light. But Schlick
[1994] made the observation that the resulting curve can be closely
approximated by a simple polynomial, and this approximation is
widely used in computer graphics since it is simpler, faster to eval-
uate, and gives no visible difference. We would like a similar ap-
proximation for subsurface scattering.

The re�ectance pro�le has been approximated reasonably well with
a sum of zero-mean Gaussians [d'Eon et al. 2007; Yan et al. 2012;
Jimenez et al. 2015], and approximated more crudely with a single
Gaussian or a cubic polynomial [King et al. 2013].

Burley [2013; 2015] noted that the shape of the diffuse re�ectance
pro�le can be approximated quite well with a curve in the shape of
a sum of two exponential functions divided by distancer :

R(r ) =
e� r=d + e� r= (3 d)

8 � d r
: (2)



Thed parameter shapes the height and width of the curve and can
be set based on artistic preference or determined based on physical
parameters. With this expression forR(r ), any positive value ofd
gives a surface albedo of 1, hence Burley named itnormalized dif-
fusion. By multiplying by surface albedoA and picking an appro-
priate value ford we can obtain a remarkably accurate �t for many
common materials. This model is implemented in Walt Disney An-
imation Studio's Hyperion renderer; Figure3 shows an example of
the use of this scattering model in the Disney movie “Big Hero 6”.

Figure 3: Image from “Big Hero 6” rendered with Hyperion.

In the following sections we present simple analyses of how to best
scale and stretch the normalized diffusion curve to match Monte
Carlo references over the full range of valid surface albedos. In
other words, we determine suitable “translations” from physical pa-
rameters tod. This enables use of the same physical parameter for
scattering distance as used by physically-based diffusion models,
and facilitates direct comparison with those models.

3 Searchlight con�guration

We �rst consider the so-called searchlight con�guration where a
focused beam of light is incident on a semi-in�nite homogeneous
medium under a �at surface — see Figure4. Photons are trans-
mitted through the surface, get scattered by the medium, and ulti-
mately get absorbed or escape the medium back at the surface. The
distribution of photons exiting the surface forms a re�ectance pro-
�le R(r ), which is radially symmetric for normally-incident light
or diffuse transmission.

Figure 4: Searchlight con�guration.

In this section we assume that the photons �rst travel straight down
perpendicular to the surface, a simplifying assumption also used in
e.g. the MCML simulation package [Wang et al. 1995] and else-
where. We also assume that the phase function is isotropic —
anisotropic phase functions are often dealt with using similarity of
moments by using a reduced scattering coef�cient� 0

s = (1 � g)� s ,
but more on this under future work in section8.

3.1 Monte Carlo references

Figure 5 shows re�ectance pro�lesR(r ) for surface albedos be-
tween 0.1 and 0.9 with mean free path` = 1 and anisotropyg = 0 .
(These are actually the same data as in Figure2 but now with a log
vertical axis.) These reference pro�les are computed with a brute-
force Monte Carlo simulation similar to MCML [Wang et al. 1995]
and are our target curves for approximation. The surface albedo
is computed without the Fresnel terms asA =

R1
0 R(r ) 2�r dr

with volume scattering and absorption coef�cients� s and� a cho-
sen such that the mean free path length` = 1 =(� s + � a ) is 1 (i.e.
� = � s , � a = 1 � � s = 1 � � ) and the desired surface albedoA
is reached when integratingR(r ).
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Figure 5: Re�ectance pro�lesR(r ) for the searchlight con�gura-
tion for surface albedosA between 0.1 and 0.9. (Log vertical axis,
` = 1 , g = 0 .)

3.2 Functional approximation

We wish to determine the appropriate value ofd corresponding to a
physically meaningful quantity, and have chosen volume mean free
path length̀ . If we express the relationship betweend and` with a
scaling factors we can setd = `=s in Equation2 and get:

R(r ) = A s
e� sr=` + e� sr= (3 ` )

8 � ` r
: (3)

Next we note that to determines by curve �tting it is suf�cient to
consider̀ = 1 since theshapeof the Monte Carlo reference curve
for a givenA is independent of̀: R(r; ` ) = R` =1 ( r

` ) = `2 . So for
curve �tting we only need to consider:

R` =1 (r ) = A s
e� sr + e� sr= 3

8 � r
: (4)

Now we need to determine goods values for the valid range ofA.
We use brute-force random sampling of thes parameter space to
minimize relative error overr i :

P
i

j R ( r i ) � R MC ( r i ) j
R MC ( r i ) to determine

the optimal values for any given value ofA.

Figure6 shows the �t of our re�ectance pro�le approximation com-
pared to Monte Carlo references, best �tting two Gaussians, photon
beam diffusion plus single scattering, dipole diffusion plus single
scattering, and better dipole diffusion plus single scattering for sur-
face albedos 0.2, 0.5, and 0.8. The �gures illustrate that two Gaus-
sians cannot match the reference curves as well as our parameteriza-
tion of normalized diffusion. It also shows that our approximation
is closer to the MC reference points than the dipole, better dipole,
and photon beam diffusion with single scattering.
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Figure 6: Fit of various re�ectance pro�le models for surface albedosA = 0 :2, 0:5, and0:8. (Corresponds to volume albedo� of 0.686,
0.938, and 0.9939 respectively, with` = 1 . Log vertical axes.)

We can simply generate a table ofs values for values ofA =
0:01; 0:02; : : : ; 0:99; some of these values are plotted as data points
in Figure7. If we use these values and interpolate for in-between
surface albedos, we get 4.9% average relative error with respect to
the Monte Carlo references. But here we present a simple function
that is even more compact and easy to evaluate.
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Figure 7: Data points and �tted curve fors.

With a bit of manual curve �tting we have found that the following
simple expression for the scaling factors gives a good �t to the
optimal values:

s = 1 :85 � A + 7 jA � 0:8j3 : (5)

This function is plotted as the curve in Figure7. The relative error
of the re�ectance pro�le with respect to the Monte Carlo references
is on average 5.5% over the full range of surface albedos with this
expression fors. Compared to all the approximations and assump-
tions implicitly built into the Monte Carlo references (semi-in�nite
homogeneous volume, �at surface, searchlight con�guration, etc.)
this is actually a rather small error.

4 Diffuse surface transmission

In the previous section we assumed that the light enters straight
into the volume in a direction perpendicular to the surface. In this
section we will model the subsurface scattering re�ectance pro�le
after ideal diffuse transmissionat the surface. This may be a more
appropriate model for rough surface materials such as dry (non-
sweaty) skin, make-up, most fruits, and rough (unpolished) marble,
and also for the situation where we ignore (or do not know) the
direction of the incoming light.

Figure8 shows re�ectance pro�lesR(r ) for subsurface scattering
after ideal diffuse surface transmission (cosine distribution), again
computed with Monte Carlo simulation. The general shape of the
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Figure 8: Re�ectance pro�lesR(r ) for diffuse transmission for
surface albedosA between 0.1 and 0.9. (Log vertical axis,` = 1 ,
g = 0 .)

re�ectance pro�les for this case is similar to the searchlight case,
so we use the same functional approximation, Equation3, but com-
pute news values. For optimals values we get only 2.6% average
relative error with respect to the Monte Carlo references.

Again using manual curve �tting we have found that this expression
for s gives a good �t to the optimal values:

s = 1 :9 � A + 3 :5 (A � 0:8)2 : (6)

Figure9 shows data points and the �tted curve fors. Using this
expression fors, the average relative error with respect to the Monte
Carlo references is only 3.9%.
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Figure 9: Data points and �tted curve fors.

In practical use, we have found that there is not much difference
between the look of the searchlight approximation and the diffuse-



transmission approximation. So even though these abstractions are
intended to represent two very different classes of surfaces, in prac-
tical VFX and CG animation work this distinction might not be
particularly important.

5 dmfp as parameter

We now return to the searchlight con�guration. It is possible to use
an alternative parameterization of the scattering distance: diffuse
mean free path (dmfp) on the surface,`d , instead of the mean free
path (mfp) in the volume,̀ . To calculate the diffuse mean free
path length corresponding to� s and� a we can �rst compute the
diffusion coef�cient

D = ( � t + � a )=(3� 2
t ) : (7)

GivenD we can then compute the effective transport extinction co-
ef�cient � tr =

p
� a =D and theǹ d = 1 =� tr . In order to compute

Monte Carlo reference curves we simply determine which pair of
� s and� a values give the desiredA value and also givèd = 1 :
choose the ratio of� s ; � a that givesA and then scale both� s and
� a together to get̀d = 1 . We have found that a good �t to these
curves can be obtained by replacing` with `d in Equation3 and
using this simple expression fors:

s = 3 :5 + 100 (A � 0:33)4 : (8)

Figure10 shows data points and the �tted curve fors. The average
error is 6.4% with optimals values and 7.7% using the expression
above.
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Figure 10: Data points and �tted curve fors.

6 Practical detail: importance sampling

For importance sampling proportional to the radial distance be-
tween entry point and exit point, we need the cdf (cumulative dis-
tribution function) corresponding to the product ofR(r ) and2�r .
For physically-based BSSRDFs this cdf has to be computed with
numerical integration, which is cumbersome and degrades perfor-
mance. But fortunately Burley's normalized diffusionR(r ) times
2�r is easily integrated, the cdf is:

cdf(r ) =

Rr
o R(t) 2�t dt

R1
0 R(t)2�t dt

(9)

=
A=4 (4 � e� r=d � 3e� r= (3 d) )

A
(10)

= 1 �
1
4

e� r=d �
3
4

e� r= (3 d) (11)

This simple cdf can be used with both our parameterizations:d =
`=s or d = `d=s.

Figure 11: (a) Skin-colored materials rendered with photon beam
diffusion and single-scattering. (b) Same materials rendered with
our approximate re�ectance pro�le.

The inverse cdf isr = cdf� 1(� ) where� is a random variable be-
tween 0 and 1. Unfortunately the cdf is not analytically invertible,
but we can handle this in (at least) three ways: 1) randomly pick one
of the two exponents, use its inverse as a cdf, and then weigh the
results using MIS (multiple importance sampling); 2) a few Newton
iterations; 3) scale a precomputed table of cdf� 1 for d = 1 by d.

7 Discussion and results

Using these simple formulas is many times faster than computing
quantized diffusion or photon beam diffusion with single-scattering
— all requiring numerical integration. In fact, our formulas are
even faster than the simple dipole diffusion model. Since the pa-
rameters are the same, switching from one of the physically-based
diffusion models to our approximate diffusion model is simple.

In practical use of the physically-based models, they can be tabu-
lated on-demand during rendering and the tables interpolated dur-
ing the following lookups, so in practice the run-time saving using
our approximation is actually rather small. Nonetheless, the code
simpli�cation is signi�cant from a rendering author point-of-view.
Particularly the code to numerically invert surface albedo and mean
free path length to volume scattering and absorption coef�cients
is not entirely trivial. Eliminating that code plus the optimization
code for table generation and lookups, and replacing it all with our
very simple formulas fors and normalized diffusionR(r ) is a use-
ful and practical simpli�cation. As a bonus, the cdf for importance
sampling is very simple.

Our approximate diffusion model is useful for ray-traced and point-
based subsurface scattering, and the searchlight mfp and dmfp pa-
rameterizations are implemented as two of the subsurface scattering
models in Pixar's RenderMan renderer.

Figure11 shows a surface illuminated by a spot light; the surface
consists of three strips with different skin-like surface albedos. Pho-
ton beam diffusion plus single-scattering on the left and a BSSRDF
using our approximate re�ectance pro�le (searchlight con�guration
from section3) with the same parameters on the right.

Figure12shows a close-up of a human head with photon beam dif-
fusion plus single-scattering (with scattering straight into the sur-
face) on the left and with a BSSRDF using our approximate re-
�ectance pro�le with the same parameters on the right. Notice
the characteristic reddish glow of subsurface scattering through the
back-lit earlobe in both images.

Figure1 shows other examples of subsurface scattering rendered
with our approximate re�ectance pro�les: marble, human skin,
plastic, fruits, candle wax, and animal skin.



Figure 12: Head close-up. (a) Rendered with photon beam diffusion and single-scattering. (b) Rendered with our approximate re�ectance
pro�le using the same scattering parameters — surface albedo texture andmean free path lengths. (Head data courtesy of In�nite Realities
via Creative Commons.)

8 Conclusion and future work

We have presented three parameterizations of an approximate re-
�ectance pro�le for simple and ef�cient rendering of subsurface
scattering. The relative error compared to Monte Carlo references
is on average 5.5%, 3.9%, and 7.7% respectively over the full range
of surface albedos. We �rmly believe that aiming for higher accu-
racy would be wasted while still retaining the much more serious
in�nite slab assumption (semi-in�nite homogeneous volume with
�at surface).

Future work includes looking at a less restrictive set of assump-
tions. For example, it would be very interesting to try to �t simple
approximations to the diffusion pro�les for oblique incident direc-
tions and non-radially-symmetric scattering [Donner et al. 2009;
Habel et al. 2013; Frisvad et al. 2014; d'Eon 2014]. It might
be as simple as having the scales depend on the polar and rela-
tive azimuthal angle of the incident illumination (as well as sur-
face albedo). Also, diffuse subsurface scattering materials with
anisotropic scattering (g 6= 0 ) are often approximated using sim-
ilarity of moments: � 0

s = (1 � g)� s . This may be a reasonable
assumption after many scattering events, but for single-scattering
and low-order scattering it is probably not. It would be interesting
to �t curves to Monte Carlo references computed with anisotropic
scattering.
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