
Geometry into Shading

Christophe Hery∗ Michael Kass† Junyi Ling‡

Technical Memo 14-04
Pixar Animation Studios

Figure 1: the left-most lizard is rendered with a shading rate of 0.01, or 100 samples in a single pixel, to simulate

the overall effect of displacement to illumination. This simulates the ground truth. The middle lizard is rendered

with the shading rate of 1, this is a more “normal” render for production, but note all the fine details provided by

displacement is lost. The right-most lizard is also rendered with the shading rate of 1, with our “bump roughness”

method, which renders quickly. Yet it also preserves the visual interest of the ground truth render.

Abstract

Sometimes, when 3D CG objects are viewed from a distance, a great deal of geometry can end up inside a
single pixel. When this happens, full-sized facets, or pixels in a displacement map should play the role of traditional
micro-facets. Here we describe how to alter traditional shading calculations to take this into account.

1 Introduction

Microfacet shading models have been widely used in computer graphics ever since Cook and Torrance [1982] intro-
duced the approach. The idea of the microfacet approach is to characterize the portion of a surface visible at a sample
by a distribution of surface orientations, and use the distribution to calculate an appropriate specular reflectance.

When objects with highly detailed shading are viewed from a distance, considerable portions of a displacement
map may project to a single pixel. When this happens, common practice is simply to shade using a smoothed
displacement map. Unfortunately, this practice yields surfaces which are too smooth, and which therefore tend to
look like plastic.

The problem with the traditional practice is that it ignores the degree of bump-map variation within a pixel.
In effect, when bump map samples become much smaller than pixels, they become micro-facets themselves, and
should contribute to surface roughness. Here we develop some techniques for efficiently calculating the effect of
bump-maps on surface roughness. Previous work in this area [Han et al. 2007] has used spherical harmonics and
spherical expectation maximization to get at this issue using far more computation storage expense and complexity
than the approach we present here.

Similar to [Dupuy et al. 2013] and [Olano and Baker 2010], we also use two mipmapped textures to approximate
microfracet-based BRDFs. This report presents work that was independently derived from the basic definition of a

∗e-mail:chery@pixar.com
†e-mail:kass@pixar.com
‡e-mail:jling@pixar.com

microfacet-based specular BRDF. It is also different and more modular for our pipeline. We hope that this report
would prove useful in a shading and rendering environment similar to ours.

2 Displacement Maps
One popular and physically-based microfacet approach is the Beckman distribution [Beckmann and Spizzichino
1968]. In this model, the specular reflectance is given by

Kspec =
exp(− tan2(α)/m2)

πm2 cos4(α)
(1)

where α = arccos(N · H) and H is the half-angle direction midway between the light vector L and the viewpoint
vector V . Here, m is

√
2 times the root-mean square of the microfacet slopes, or equivalently, the standard deviation

of the slope samples.
Now, we consider a displacement-mapped parametric surface, where the displacements are all in the normal

direction. Then a point on the surface is given by

P (u, v) = R(u, v) +
N(u, v)

|N(u, v)|
∗ w(u, v) (2)

where R is the undisplaced surface, N is the normal, and w is a scalar displacement field.
Often, displacement maps are used to provide high spatial frequency details to much smoother geometry. In this

case, we can consider the undisplaced surface normal N to be slowly varying compared to the displacement.
In that case, the effective slope of a displaced microfacet is the sum of its micro-slope and the slope

(∂w/∂u, ∂w/∂v) of the displacement map. If the microfacet distribution and the displacement map are statisti-
cally independent, then their energies will add. So if morig is the roughness term of the microfacet distribution and
mdisp is

√
2 times the RMS slope of displacement then meff , the effective value of m is given by

meff =
√

(m2
orig + 2 ∗ σ2) =

√

(m2
orig + m2

disp) (3)

With traditional shading, we already know morig . It remains to calculate the additional contribution to the
roughness due to the displacement map. To do that, we need the standard deviation of the displacement map slope
relative to the normal plane evaluated in the area A corresponding to the sample. In the u direction, the effective
displacement map slope is given by

su =
∂w

∂u

(

∂R

∂u

)1/2

(4)

Similarly, in the v direction, the effective displacement map slope is

sv =
∂w

∂v

(

∂R

∂v

)1/2

(5)

And we seek standard deviation mdisp of
√

(s2
u + s2

v) over the area A.
Once again, we make use of the fact that, in general, the undisplaced geometry R(u, v) is slowly varying relative

to the displacement. When that holds, we can ignore changes in arc-length scaling over the area A, and the slope
standard deviation can be written:

mdisp ≈
[

(∂R/∂u)−2σ(∂w/∂u)2 + (∂R/∂v)−2σ(∂w/∂v)2
]1/2

(6)

If the displacement w(u, v) is a simple texture, we can evaluate the necessary standard deviations by using the
machinery of ordinary texture filtering. Let fA(x) denote a standard texture filter corresponding to the area A. Then,
if we want to evaluate the standard deviation of some quantity x over that area, it is given by

σ(x) =
√

fA(x2) − fA(x)2 (7)

In our case, we have two standard deviations to compute: ∂w/∂u and ∂w/∂v. To do this efficiently at render
time, we pre-compute images for the u derivative wu(u, v) and the v derivative wv(u, v) by simple finite differences.

This can be done easily, for example, in Nuke, see figure 2. (note that one must take care to make sure that no
gamma correction or other tone mapping occurs when saving these out as textures). We also pre-compute images for
w2

u(u, v) and w2
v(u, v). These are simply pixel by pixel squares of the other two pre-computed images. Then using

texture map filtering, we can get a good estimate of mdisp as follows

mdisp ≈
(

[f(w2

u) − f(wu)2](∂R/∂u)−2 + [f(w2

v) − f(wv)2](∂R/∂v)−2
)1/2

(8)

2.1 Anisotropy

More generally, this analysis can be extended to the Beckmann Anisotropic BRDF. In this section, we convert the
previous derivation to cover two seperate specular roughness values in two different directions. We note that a
microfacet distribution along u,v tangent space can be expressed as a covariance matrix AX,Y in 2-d

AX,Y =

[

AXX AXY

AYX AYY

]

(9)

where AXX = var(X), AYY = var(Y), and AXY = cov(X,Y). By definition, a covariance matrix is positive
definite and symmetric, such that all its eigenvalues are positive and that AXY=AYX. Microfacet variance in the u,
v directions can be defined in a similar way to the isotropic case. Also recall that m =

√
2σ and var() = σ2. Hense

var() = 1/2m2, and we apply scalar of 1/2 to all variance terms. We can now define the terms of the covariance
matrix of the microfacet distribution explicitly.

AXX =
1

2
[f(w2

u) − f(wu)2](∂R/∂u)−2

AYY =
1

2
[f(w2

v) − f(wv)2](∂R/∂v)−2

AXY =
1

2

[f(wu.wv) − f(wu)f(wv)]

(∂R/∂u)(∂R/∂v)
(10)

This is a valid statistical representation of the microfacet slope variance in 2-d. For ease of use, we need to
convert this representation into a format our Beckmann Anisotropic Specular BRDF consumes [Hery and Villemin
2013]. For that, we compute the two eigenvalues and their associated eigenvectors from the covariance matrixAX,Y,
such that

AX,Y.V1 = l1.V1

AX,Y.V2 = l2.V2 (11)

This is a standard eigen-decomposition. We provide example renderman shading code in the following sections
for reference. And finally, the anisotropic effective roughness in each direction can be expressed as

meff1 =
√

m2
orig1

+ l1

meff2 =
√

m2
orig2

+ l2 (12)

For each of the principle directions, V1 andV2 respectively. We note that the covariance matrix can be extended
into 3-d as well, with a final projection step that projects the 3-d anisotropic microfacet variance onto a projected
tangent space. This would allow surface parameterization-independent roughness calculations.

2.2 Illumination

Our final implementation note is that from this point, the parameters meff1, meff2 andV1, V2 are plugged directly
into Beckmann Anisotropic BRDFs. Pixar’s physically-based GI rendering system will adjust lighting and BRDF
samples accordingly. Dome, Point, Area, Image-based lights, as well direct and indirect reflections behave correctly
without additional overhead.

3 Results
The verification of our process is conducted with a control group, which is shaded with traditional displacement at
a shading rate of 0.01. This simulates the ground truth by rendering images resolved with brute force pixel samples.
We then compare traditional displacement shaded geometry vs. bump roughness renders. Both of these test scenarios
are rendered with the standard shading rate of 1. To see visual comparison, see Figures Table 1.

Three-sets for tests are run under different lighting environments. The first row of tests are lit with a point light
source to show that bump roughness preserving anisotric nature of the concentric grooves. The additional images
are rendered with Grace Cathedral IBL. Note that even though the bump roughness renders are slightly different
from the ground truth control renders, the nature of the displaced surfaces are fully preserved with bump roughness
and the look is vastly superior to simple displacement renders. We also provide videos for additional examples
accompanying this report to illustrate these findings.

4 Conclusion
In this report, we have presented a simple and versatile method to preserve geometric details, that have been filtered
away in rendering, by statistically converting them to roughness of a Beckmann BRDF. We have shown that it
preserves important visual details that are lost with traditional bump and displacement methods. It is cheap to
evaluate in modern rendering systems. It plugs directly into a BRDF, such that no modification is needed past the
material-level description and has no effect on how the BRDF is sampled or light transport is integrated.

References
BECKMANN, P., AND SPIZZICHINO, A. 1968. The Scattering of Electromagnetic Waves from Rough Surfaces.
COOK, R. L., AND TORRANCE, K. E. 1982. A reflectance model for computer graphics. ACM Trans. Graph. 1, 1

(Jan.), 7–24.
DUPUY, J., HEITZ, E., AND OSTROMOUKHOV, V. 2013. To appear in acm tog 32(6). linear efficient antialiased

displacement and reflectance mapping.
HAN, C., SUN, B., RAMAMOORTHI, R., AND GRINSPUN, E. 2007. Frequency domain normal map filtering. ACM

Transactions on Graphics (Proceedings of SIGGRAPH 2007) 26, 3, 28:1–28:12.
HERY, C., AND VILLEMIN, R. 2013. Siggraph 2013. physically based lighting at pixar, physically based shading

course.
OLANO, M., AND BAKER, D. 2010. Lean mapping. In Proc. Symp. on Interactive 3D Graphics and Games, ACM,

181–199.

Control Traditional Bump Roughness

Table 1: Left column renders are with low shading rates, Mid column renders are normal shading rate

renders without bump roughness converted, the right column has bump maps converted to roughness. Note

how our method recovers visual details lost in normal bump mapping

Figure 2: nuke filter node

5 Sample Renderman Code

void P a r t i a l D e r i v (v a r y i n g p o i n t Q;
v a r y i n g f l o a t a ;
v a r y i n g f l o a t b ;
o u t p u t v e c t o r dQda ;
o u t p u t v e c t o r dQdb ;) {

v a r y i n g v e c t o r dQdu = Du(Q) ;
v a r y i n g v e c t o r dQdv = Dv(Q) ;

v a r y i n g f l o a t A = Du(a) ;
v a r y i n g f l o a t B = Du(b) ;
v a r y i n g f l o a t C = Dv(a) ;
v a r y i n g f l o a t D = Dv(b) ;

v a r y i n g f l o a t d e t = (A∗D − B∗C) ;

dQda = (dQdu∗D − dQdv∗B) / d e t ;
dQdb = (dQdv∗A − dQdu∗C) / d e t ;

}

Above sample RSL calculates partial derivative of point Q with respect to a surface parameterization a and b; Note that Q can also be a float-type
variable, this would make dQda and dQdb output float type variables as well.

void Symetr icEigenVecVal2D
(
v a r y i n g f l o a t a ;
v a r y i n g f l o a t b ;
v a r y i n g f l o a t c ;
o u t p u t v a r y i n g f l o a t l 1 ;
o u t p u t v a r y i n g f l o a t l 2 ;
o u t p u t v a r y i n g v e c t o r v1 ;
o u t p u t v a r y i n g v e c t o r v2 ;
){

/ / d e l i s t h e d i s c r i m i n a t e
f l o a t d e l = s q r t (a∗a+4∗b∗b−2∗a∗c+c∗c) ;

/ / s o l v e f o r e i g e n v a l u e s
l 1 = . 5∗ (a+c+ d e l) ;
l 2 = . 5∗ (a+c−d e l) ;

/ / two e i g e n v e c t o r s v1 , v2
v1= v e c t o r (0) ;
v1 [0] = 1 ;
v1 [1] = (l1−a) / b ;
v1 = no rma l i z e (v1) ;

v2= v e c t o r (0) ;
v2 [0] = 1 ;
v2 [1] = (l2−a) / b ;
v2 = no rma l i z e (v2) ;

}

Above sample RSL converts a 2-d covariance matrix to two sets of eigenvalues and eigenvectors.

void calcBumpRoughness (
/ / s u r f a c e p a r am e t e r i z a t i o n
v a r y i n g f l o a t u ;
v a r y i n g f l o a t v ;

/ / i n p u t d e r i v maps p r e c a l u c a t e d
/ / from d i s p l a c emen t .
/ / n o t e t h i s i s read i n as t e x t u r e s
/ / so t h e i n p u t s are f i l t e r e d f (x)

v a r y i n g c o l o r d1 ;
v a r y i n g c o l o r d2 ;
o u t p u t v a r y i n g f l o a t l1 , l 2 ;

ou t p u t v a r y i n g v e c t o r v1 , v2 ;
)

{
f l o a t axx = . 5∗ (d2 [0]−d1 [0]∗ d1 [0]) ;
f l o a t axy = . 5∗ (d2 [2]−d1 [0]∗ d1 [1]) ;
f l o a t ayy = . 5∗ (d2 [1]−d1 [1]∗ d1 [1]) ;

v e c t o r pRpu , pRpv ;
P a r t i a l D e r i v (P , u , v , pRpu , pRpv) ;

Symetr icEigenVecVal2D (
axx , axy , ayy , l1 , l2 , v1 , v2) ;

f l o a t d= l e n g t h (pRpv)∗ l e n g t h (pRpu) ;

l 1 = l 1 / d ;
l 2 = l 2 / d ;
v1=pRpv∗v1 [0]+ pRpu∗v1 [1] ;
v2=pRpv∗v2 [0]+ pRpu∗v2 [1] ;

}

Above sample RSL calculates variances l1,l2 and principle directions v1 and v2 from the deriv maps d1, d2, which were read from offline textures.
Note that the eigenvectors are projected back to ”current” space with the partial derivatives of P with respect to the surface parameterization of u
and v.

