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Figure 1: Top: Pinhole camera image from an upcoming feature film. Bottom: Sample results of our depth-of-field algorithm based on
simulated diffusion. We generate these results from a single color and depth value per pixel, and the above images render at 23–25 frames
per second. The method is designed to produce film-preview quality at interactive rates on a GPU. Fast preview should allow greater artistic
control of depth-of-field effects.

Abstract

Accurate computation of depth-of-field effects in computer graph-
ics rendering is generally very time consuming, creating a problem-
atic workflow for film authoring. The computation is particularly
challenging because it depends on large-scale spatially-varying fil-
tering that must accurately respect complex boundaries. A variety
of real-time algorithms have been proposed for games, but the com-
promises required to achieve the necessary frame rates have made
them them unsuitable for film. Here we introduce an approximate
depth-of-field computation that is good enough for film preview,
yet can be computed interactively on a GPU. The computation cre-
ates depth-of-field blurs by simulating the heat equation for a non-
uniform medium. Our alternating direction implicit solution gives
rise to separable spatially varying recursive filters that can com-
pute large-kernel convolutions in constant time per pixel while re-
specting the boundaries between in-focus and out-of-focus objects.
Recursive filters have traditionally been viewed as problematic for
GPUs, but using the well-established method of cyclic reduction of
tridiagonal systems, we are able to vectorize the computation and
achieve interactive frame rates.
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1 Introduction

Depth-of-field (DOF) effects are essential in producing computer
graphics imagery that achieves the look and feel of film. Unfor-
tunately, the computations needed to compute these effects have
traditionally been very slow and unwieldy. As a consequence, the
effects are both costly to create and difficult to direct. Here, we
attempt to improve the process of creating DOF effects by intro-
ducing a high-quality preview that can be computed at interactive
rates with a GPU. The image quality should be sufficient to allow
a director of photography to specify, edit, and approve aperture set-
tings and focus pulls interactively, offering a far greater level of
artistic control than has previously been available. In time, as GPU
speeds increase, the method may also become of interest to game
developers desiring a good-quality interactive result.



Most high-end film renderers use the method of distributed ray trac-
ing [Cook et al. 1984] to get accurate DOF results that take into
account the varied paths of light through different parts of a lens.
While the method certainly produces high-quality results, it is slow,
and if the focal plane or aperture are changed, all the ray paths are
altered, and the rendering process must be restarted from the begin-
ning. Our goal is to use a much simpler computation to get a good-
quality interactive preview that can be used to adjust and animate
the relevant parameters. Once the parameters have been chosen,
distributed ray tracing can be used to compute the final result.

Potmesil and Chakravarty [1981] introduced the idea that approx-
imate DOF effects can be computed by post-processing an image
rendered from a pinhole camera. Since the image from a pinhole
camera only contains information about rays that pass through a
single point, no amount of post-processing can make up for the lack
of information about other rays and create a DOF computation good
enough for high-end film rendering. Nonetheless, in most cases, the
pinhole image does contain enough information to produce a result
acceptable for film preview or game purposes. Following Potmesil
and Chakravarty, we take the pinhole camera image with depth as
our starting point.

Photographers have long known that a small spot at a given depth
will be blurred out in a camera to a size known as the “circle of
confusion.” Moreover, for ordinary lenses, the circle of confusion
depends in a simple way on the aperture and the focal plane. Not-
ing this, Potmesil and Chakravarty proposed blurring each pixel by
its circle of confusion to simulate DOF effects. While the basic ap-
proach is sound, the blurring must be done in a more careful way
than presented in their original paper in order to avoid objectionable
artifacts. In particular, care must be taken to keep sharp, in-focus
objects and blurry backgrounds from bleeding into each other.

From a computational standpoint, one of the chief challenges of
rapid DOF computation is that out-of-focus regions can require
large kernel convolutions to blur appropriately. While there are ef-
ficient ways of computing large kernel convolutions that are well
established in graphics [Burt and Adelson 1983; Williams 1983],
they cannot easily be made to respect complex boundaries between
in-focus and out-of-focus objects.

Our approach is to achieve the necessary blurring by simulating
heat diffusion in a non-uniform medium. The basic idea is to con-
vert the circles of confusion into varying heat conductivity and al-
low the pixel values in an image to diffuse as if they were a series of
temperature samples. A key feature of this formulation is that when
the heat conductivity drops to zero, the blurring will stop dead in its
tracks, precisely respecting boundaries between sharp in-focus ob-
jects and neighboring objects that are very blurred. By casting the
DOF problem in terms of a differential equation, it becomes much
easier to deal with the spatially varying circles of confusion that
cause so many problems with traditional signal-processing and fil-
tering approaches. Our solution method is an alternating direction
implicit method that leads to a series of tridiagonal linear systems.
These linear systems effectively implement separable recursive fil-
ters, and can be computed in constant time per pixel, independent
of the size of the circles of confusion.

The rest of the paper is as follows. In Section 2, we discuss relevant
prior work. In Section 3 we introduce the heat equation and show
that solving it with an alternating direction implicit method leads
to a series of tridiagonal systems. In Section 4, we describe how
to implement this computation efficiently on GPU hardware. Then
in Section 5, we provide the results of running the algorithm on a
variety of scenes.

2 Prior work

Approaches to computing DOF vary in the detail with which they
model the lens and light transport, their performance-quality trade-
offs, and in their suitability to implementation on graphics hard-
ware. Demers provides a recent survey of approaches to the DOF
problem [2004].

In order to generate a high-accuracy result, a DOF computation
must combine information about rays that pass through different
parts of a lens. The accumulation buffer [Haeberli and Akeley
1990] takes this approach, simulating DOF effects by blending to-
gether the results of multiple renderings, each taken from slightly
different viewpoints. Unfortunately, the method requires a large
collection of renderings to achieve a pleasing result (Haeberli and
Akeley use 23 to 66), and the enormous geometric complexity of
film-quality scenes makes this prohibitive. It is not unusual for the
geometry of film-quality scenes to exceed any available RAM, so
doing multiple passes through the original geometry is out of the
question for interactive film preview.

In order to achieve interactive performance, there is little choice
other than to rely largely on the post-processing approach of
Potmesil and Chakravarty [1981]. Their work has inspired a va-
riety of algorithms which can be divided into two major categories:

Scatter techniques (also known as forward-mapping techniques) it-
erate through the source color image, computing the circle of con-
fusion for each source pixel and splatting its contributions to each
destination pixel. Proper compositing requires a sort from back to
front, and the blending must be done with high-precision to avoid
artifacts. Distributing energy properly in the face of occlusions is
also a difficult task. Though scatter techniques are commonly used
in non-real-time post-processing packages [Demers 2004], they are
not the techniques of choice for today’s real-time applications pri-
marily because of the cost of the sort, the lack of high-precision
blending on graphics hardware, and the difficulty of conserving to-
tal image energy.

Gather techniques (also known as reverse-mapping techniques) do
the opposite: they iterate through the destination image, computing
the circle of confusion for each destination pixel and with it, gather-
ing information from each source pixel to form the final image. The
gather operation is better suited for graphics hardware than scat-
ter. Indeed, the most popular real-time DOF implementations to-
day all use this technique [?; Riguer et al. 2003; Scheuermann and
Tatarchuk 2004; Yu 2004]. Nonetheless, the gather operation is still
not very well matched to today’s SIMD graphics hardware because
of the nonuniformity of the sizes of the circles of confusion. The
method also has difficulty with edge discontinuities and edge bleed,
neither of which is eliminated in any published algorithm.

Even if efficiently implemented on the target hardware, standard
gather and scatter techniques have poor asymptotic complexity be-
cause the amount of work they do is the product of the number of
pixels in the image and the average area of the circle of confusion.
For an n× n image, these algorithms are O(n4) which is clearly
problematic for high-resolution film-quality images.

In order to bring the computational cost down to a level that permits
real-time performance, some implementations, such as Scheuer-
mann and Tatarchuk [2004], compute large blur kernels by down-
sampling. While this is a perfectly sensible compromise to achieve
adequate performance for games on current hardware, it comes at
the expense of artifacts that are unacceptable for film preview. The
problem is that existing techniques do not allow large-scale blurs to
be computed efficiently in ways that respect the critical boundaries
between in-focus objects and those that are out-of-focus. As a re-



sult, the acceleration methods will cause unacceptable color bleed-
ing.

3 Heat Diffusion

The main requirement in DOF computation with a post-processing
method is to blur the image with a spatially varying filter width
given by the circle of confusion. This poses two key challenges.
First, while blurring, we must maintain accurate and sharp bound-
aries between areas of the image that are in focus and those that
are out of focus. Second, in order to achieve interactive speed, we
must be able to compute large blurs efficiently. No existing method
meets both of these challenges at once.

Our approach to these challenges is to compute the blurring by sim-
ulating the heat diffusion equation. The image intensities from a
pinhole camera view in our method provides a heat distribution
that diffuses outward to produce the DOF image. Where the cir-
cles of confusion are large, we model the thermal conductivity of
the medium as high, so the diffusion will extend outward to an ap-
propriate radius. Where the circle of confusion reaches zero, the
thermal conductivity will correspondingly be zero, creating a per-
fect insulator that completely decouples the color of a sharp object
from the color of an adjacent blurry object.

Consider an input image x(u,v) which we want to diffuse into an
output image y(u,v). The basic heat equation can be written

γ(u,v)
∂y
∂ t

= ∇ · (β (u,v)∇y) (1)

where β (u,v) is the heat conductivity of the medium, γ(u,v) is the
specific heat of the medium and ∇ represents the del operator in
terms of the spatial coordinates u and v. We will use the input
image to provide the initial heat distribution for the diffusion, and
then integrate the heat equation through time to get a blurred result.

There are a variety of numerical methods that can be employed to
solve the heat equation, but only a well-suited method will pro-
vide adequate performance. The simplest of all methods is to begin
with y(0) = x, evaluate the derivative ∂y/∂ t at time zero, and then
take a step where y(∆t) = y(0) + ∆t(∂y/∂ t). Unfortunately, this
method, known as forward Euler’s method, is unacceptably slow.
The method yields a step given by a small Fixed Impulse Response
(FIR) filter, and with repeated applications, it takes O(n2) FIR con-
volutions to produce a filter with width proportional to n. In order to
achieve better performance, we choose an alternating direction im-
plicit (ADI) solution method [Press et al. 1992], which instead gives
rise to very efficient separable Infinite Impulse Response (IIR) or
recursive filters. ADI methods have been used previously in graph-
ics to simulate shallow water [Kass and Miller 1990] and in that
context achieve constant time per surface sample, independent of
wave speed.

The basic idea of the ADI solution of the heat equation is to split
the solution into two substeps. In the first substep, heat will dif-
fuse along the u axis. During the second substep, the heat distri-
bution will further diffuse along the v axis. While ADI is a well-
established technique for solving differential equations, it always
carries a risk that the existence of preferred directions in the solu-
tion, u and v, may produce objectionable anisotropies in the result.
With the diffusion equation, however, these anisotropies turn out to
be particularly small. The exact solution of the diffusion equation
in a uniform medium after a fixed time is given by the convolution
of the initial conditions with a 2D Gaussian. Since a 2D Gaussian
convolution can be computed exactly by a horizontal 1D Gaussian

convolution followed by a vertical 1D Gaussian convolution, the
ADI approach is particularly well-justified in this case.

In each substep the ADI method must solve a 1D diffusion equation
given by

γ
∂y
∂ t

=
∂

∂u
β (u)

∂y
∂u

. (2)

In an ADI approach, each of these substeps is computed with an
implicit method. There is a vast literature in the numerical analysis
community on implicit methods; Baraff et al. [2003] provide a tuto-
rial as they relate to problems in CG. For our purposes, the simplest
implicit scheme, known as backwards Euler, will suffice.

y(t +∆t)− y(t)
∆t

=
∂y
∂ t

∣

∣

∣

∣

t+∆t
(3)

In contrast to the forward or explicit Euler method mentioned ear-
lier, here the time derivative ∂y/∂ t is evaluated at the end of the
step, rather than the beginning. The result is a set of simultane-
ous linear equations for the solution which allows the diffusion to
propagate arbitrarily far in a single step.

We are free to choose any units for time and space, so for simplicity,
we will choose units in which ∆t = 1 and the separation between
pixels is unit distance. With these units, discretizing over space
with finite differences yields

γi
∂y
∂ t
≈ βi(yi+1− yi)−βi−1(yi− yi−1). (4)

If we begin with the initial conditions yi = xi, and then take a single
time step using the implicit Euler method of Equation 3, we get

γi(yi− xi) = βi(yi+1− yi)−βi−1(yi− yi−1) (5)

where β0 = βn = 0, so that the boundary of the image is surrounded
by insulators.

In order to set up Equation 5 from a DOF problem, we need to know
the relationship between β and the size of a circle of confusion. To
do this, consider the situation where γ is unit and β is uniform.
Then, Equation 5 can be written:

yi− xi = β (yi+1−2yi + yi−1) (6)

The right-hand-side of Equation 6 is the product of β and a finite
difference approximation to the second derivative of y. Taking a
Fourier transform of both sides and noting that taking n derivatives
in space is the same as multiplying by (iω)n in frequency, we obtain

ỹ− x̃ = β (iω)2ỹ (7)

which yields the frequency response

ỹ =
1

1+βω2 x̃. (8)

of a Butterworth low-pass filter. Traditionally, Butterworth filters
are described in terms of a cutoff frequency ωc

ỹ =
1

1+(ω/ωc)2 x̃. (9)

and in these terms, β = 1/ω2
c . The spatial width corresponding to

the diameter of the filter is just 1/ωc, so we have β = d2 where d
is the diameter of the circle of confusion.



Figure 2: Top: original pinhole image. Bottom: image with simple
DOF.

Potmesil and Chakravarty [1981] describe how to compute the cir-
cle of confusion for each pixel from its depth and a full set of cam-
era parameters. From this circle, we can now compute β , and com-
plete Equation 5.

Equation 5 describes a symmetric tridiagonal linear system of the
form:
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(10)

where ci = ai+1. The tridiagonal structure of the equations result
from the fact that each sample in the 1D heat equation is coupled
only to the next and previous sample.

Unlike general linear systems, tridiagonal linear systems can be
solved very efficiently in constant time per sample [Press et al.
1992]. The traditional method for doing this is to factor the matrix
into the product of a lower-diagonal matrix and an upper-diagonal
matrix in a process known as LU decomposition. Having computed
the factors L and U , we are left with the linear system LUy = x.
Next, we compute z = Uy from L and x by a process known to ap-
plied mathematicians as “forward substitution” and known to peo-
ple in the signal processing world as the application of a recursive
filter. Then, knowing z, we compute y from the equation Lz = x
by a process known to applied mathematicians as “back substitu-
tion,” and to people in the signal processing world as the applica-
tion of a backwards recursive filter. From a signal-processing point
of view, the unusual thing about the filters being run forward and
backwards to solve the linear system is that their coefficients change
over space, properly taking into account the boundary conditions.
Because they are IIR filters, the amount of work they do is inde-
pendent of the size of the filter kernel. While LU decomposition is
a perfectly reasonable way to solve tridiagonal systems on a CPU,
it is poorly suited to a GPU, so our actual implementation uses an
equivalent but different method called “cyclic reduction,” described
in Section 4.

The basic algorithm for heat diffusion can now be described very
simply. We begin with an RGBZ image and calculate circles of con-
fusion for each pixel from the camera parameters. Then we com-
pute the horizontal diffusion by forming and solving the tridiagonal
system of Equation 5, assuming that the specific heat γ is uniformly
equal to one. Note that the value of βi in this equation corresponds
to the link between pixels i and i + 1. In order to guarantee that
pixels with zero circle of confusion will not diffuse at all, we use
the minimum circle of confusion at the two pixels to generate βi.
Once the horizontal diffusion is complete, we use the result as the
starting point for the vertical diffusion. Figure 2 shows the results
after both diffusion steps.

3.1 Blurring Underneath

While the simple algorithm just described works reasonably well
for a range of scenes, it became evident after some testing that it
only solves part of the DOF problem. To describe both the prob-
lem and the solution, it is valuable to distinguish three ranges of
depth. The furthest depth range, which we will refer to as back-
ground, consists of portions of the image that lie far enough behind
the plane of focus to have large circles of confusion. The next closer
depth range, which we will refer to as midground, consists of por-
tions of the image with depths near enough to the plane of focus on
either side to have relatively small circles of confusion. Finally, the
closest depth range, which we will refer to as foreground, consists
of portions of the image enough closer than the focal plane to have
large circles of confusion.

In general, the heat diffusion algorithm as just described works rea-
sonably well for objects in the midground. It successfully main-
tains the sharpness of in-focus objects and prevents color bleeding
from taking place between in-focus objects and neighboring out-of-
focus objects. Unfortunately, good performance in the midground
is not sufficient for our purposes. In real optical situations it is not
uncommon for background objects to have circles of confusion so
large that they blur behind sharp foreground objects. Since in-focus
objects in our diffusion approach act as heat insulators, all blurring
due to the heat equation is blocked by in-focus midground objects,
and severe artifacts can result. Figure 3 shows an example. In the
upper right image, thin leaves of a tree block the blurring of the yel-
lowish background plane in such a way that the originally straight
outline of the plane becomes unacceptably distorted.

In order to address the problem of blurring underneath in-focus ob-
jects, we introduce a separate layer to process background portions
of the image with large circles of confusion. The idea is essentially
to matte out the in-focus midground objects, blur the background
objects across the removed regions, and then blend between the
original (midground) layer and the new background layer based on
the matte.

Thus far, we have not used the specific heat γ , but for computing
the background layer, it will become critically important. In effect
γ acts as a coupling coefficient between the initial conditions and
the diffusion. Where γ is large, the initial conditions will greatly
influence the final result. Where γ is zero, the initial conditions
become entirely irrelevant.

Let α(u,v) be a matte that separates background regions from
midground regions. α will be zero for pixels with small circles
of confusion and ramp up smoothly to one for pixels with circles
of confusion equal to or greater than a level that identifies them
as background pixels. By setting γ = α , we will be able to make
our diffusion take into account the matte and interpolate the proper
information in the gaps.



Figure 3: Our original image is at upper left. Single-layer diffusion
(upper right) results in artifacts at the horizon adjacent to the leaves.
We thus compute a separate background layer (lower left) and blend
it with our single-layer diffusion for the final result (lower right).

Note that there are two kinds of information missing in the gaps
where α is small. Clearly we are missing background colors, but
equally importantly, we are also missing the corresponding circles
of confusion. Before we can interpolate the colors appropriately,
we need to estimate those circles.

To interpolate the circles of confusion, we have only to use our
original circles of confusion instead of colors as the input to the
diffusion computation. Setting γ = α ensures that circles of con-
fusion from fully in-focus midground regions will be completely
ignored. For this diffusion, it suffices to set β to be a constant such
that the filter size is comparable to the blur-size threshold between
midground and background. Figure 4 shows the original circles
of confusion before matting and then the results after matting and
smoothing.

Once we have interpolated the circles of confusion, we can run our
original diffusion computation on the color information with γ = α ,
and the colors will fill in the gaps. The lower left of figure 3 shows
the result. The closest of the leaves have been removed by the α
channel, and diffusion has filled in the background with a smooth
interpolation. Matting our original midground computation over
this background layer yields the result in the lower right of figure
3. The objectionable artifacts of the midground computation are all
but gone, as the background layer provides blurring behind the long
thin in-focus midground leaves.

There is one seemingly arbitrary choice in the algorithm: the thresh-
old blur size that separates the midground from the background. For
the highest possible quality, one can perform this background com-
putation at a number of different thresholds chosen on a log scale,
and then matte among all the different layers based on the circle of
confusion of each pixel. While this approach does provide a slight
improvement, the result with a single background layer works well
enough in our experience that we consider extra background layers
to be generally unnecessary.

Figure 4: These pictures show the sizes of the circles of confu-
sion at each pixel, with dark regions corresponding to small circles
(more in focus) and light regions corresponding to larger circles
(less in focus). The left image here corresponds to Figure 3’s top
right image, and the right image corresponds to Figure 3’s bottom
left image.

3.2 Blurring On Top

There is a little-discussed, yet fundamental limitation of the post-
processing method that arises with very blurry foreground objects.
When a foreground object gets very blurry, it begins to become
transparent because a wide enough aperture allows a camera to col-
lect rays that go fully around the object. If the aperture is suffi-
ciently wide, the transparency can be almost complete. The lower
right image in figure 6 shows an example of this phenomenon. Even
though we are looking through a fence, the camera aperture is wide
enough that the foreground fence has become almost completely
invisible.

The problem when a foreground object becomes transparent is
what to show behind it. A postprocessing method as described
by Potmesil and Chakravarty [1981] has no information about the
scene behind the very blurry foreground object and cannot produce
a high-quality result. In particular, if the blurry foreground object
obscures a sharp midground object, there is no way for such an al-
gorithm to create the high-frequency detail on the obscured object.
A case in point is the American flag in figure 6. No postprocessing
algorithm can be expected to invent the additional stripes in the flag
that are obscured in the pinhole camera view in the upper left, yet
are needed to produce a proper image in the lower right.

Only by supplementing the input to a postprocessing algorithm can
we hope to achieve a high-quality result. Here we consider what
can be done if the input can be separated into different layers. To
produce the images in figure 6, we have taken as input, not only an
RGBZ image as before, but also a separate RGBZα layer for the
fence alone.

The extension of our algorithm to foreground objects in separate el-
ements is relatively straightforward. As with our computation of the
background layer, we begin by diffusing the circles of confusion. In
this case, the weights γ are given by the α channel of the foreground
input. Having calculated these new circles of confusion we diffuse
not only the input colors, but also the input α , with γ again given by
the foreground α channel. Finally, we take the diffused colors and
alpha channel for the foreground layer and composite them over the
previously described midground/background blend. Figure 6 shows
the results.



4 Implementation

The key to a fast implementation of our DOF computation is the
efficient solution of the tridiagonal system in equation 10. While
previous authors have successfully developed solvers for a variety
of linear systems on graphics hardware, none of the published algo-
rithms are appropriate for this particular case. The general linear al-
gebra framework of Krüger and Westermann [2003] supports mem-
ory layouts for both dense and sparse matrices, including banded
matrices, but does not provide solvers specific to banded or tridi-
agonal matrices. Galoppo et al. support both Gauss-Jordan elimi-
nation and LU decomposition on the GPU, but only for dense ma-
trices [2005]. GPU-based conjugate gradient solvers [Bolz et al.
2003; Goodnight et al. 2003; Hillesland et al. 2003] are iterative and
do not take advantage of the special properties of banded or tridiag-
onal matrices. Moreover, for banded or tridiagonal systems, direct
methods are generally much faster and better conditioned than iter-
ative techniques.

We begin by describing the data structures necessary for our im-
plementation, then describe our implementation of our solution to
the heat diffusion equation, including our solver for tridiagonal sys-
tems, on the GPU.

4.1 Data Layout

In our implementation we must represent 2D arrays of input and
output values (such as colors or depths, one per screen pixel) and
a tridiagonal matrix. Representing a 2D array is straightforward:
2D arrays are stored as 2D textures, with individual entries (colors
or depths) stored as texels (RGB for colors, floating-point scalars
for depths). The structure of the tridiagonal matrix lends itself to
storage as a 1D array. Each row of a tridiagonal matrix contains 3
elements (an, bn, and cn); those elements are stored in a single texel
as R, G, and B. We can thus represent a 1D array of tridiagonal
matrices in a single 2D texture, with entries in the tridiagonal matrix
in the same texel positions as their corresponding entries in the 2D
arrays of inputs or outputs.

We note that a tridiagonal system is a particular type of a re-
currence equation and as such, can be efficiently solved in par-
allel using the scan primitive [Blelloch 1990]. In graphics,
Horn recently used scan to implement an O(n logn) stream com-
paction primitive [2005]. The logarithmic forward-propagation-
back-propagation structure of our cyclic reduction is also a type
of scan; our implementation runs in O(n) time.

4.2 Algorithm Implementation

Since we are using an alternating direction solver, our implementa-
tion will first solve for all rows and then use the results to solve all
columns in parallel. Our algorithm requires four steps, all of which
exploit the parallelism of the GPU: construct tridiagonal matrices
for each row in parallel, solve the systems of matrices on each row
in parallel, then repeat those two steps on the columns. In the dis-
cussion below, we use row terminology, but other than a necessary
transpose, the procedure is the same for columns.

We begin by computing the tridiagonal matrix on the GPU. We
can do so with a single GPU pass, computing all matrix rows in
parallel; each row only needs the thermal conductivity and input
coupling coefficient from itself and its immediate neighbors. At
the end, for an m×n image, we have n m×m tridiagonal matrices,
each corresponding to a row of the input image, stored as rows in a

1: for L = 1 . . . log2(N +1)−1 do
2: for j = 0 . . .2− j(N +1)−2 do
3: α ← aL−1

2 j+1/bL−1
2 j

4: γ ← cL−1
2 j+1 / bL−1

2 j+2

5: aL
j ←−(αaL−1

2 j )

6: bL
j ← bL−1

2 j+1− (αcL−1
2 j + γaL−1

2 j+2)

7: cL
j ←−(γcL−1

2 j+2)

8: yL
j ← yL−1

2 j+1− (αyL−1
2 j + γyL−1

2 j+2)

9: yM−1
0 ← yM−1

0 /bM−1
0

10: for L = log2(N +1)−2 . . .0 do
11: for j = 0 . . .2− j(N +1)−2 do
12: jp← j/2
13: if j is odd then
14: yL

j ← yL+1
jp

15: else
16: yL

j ← (yL
j − cL

j yL+1
jP
−aL

j yL+1
jP−1)/bL

j

Figure 5: Pseudocode for our GPU-compatible cyclic reduction
tridiagonal solver. aL

j , bL
j , and cL

j refer to the matrix entries for

row j in level L of the hierarchy of solutions, and yL
j is an element

of the solution vector. Note that the above forward and backward
substitution computations are both parallelizable and rely only on
gather memory accesses.

single m×n texture. We solve each of these n systems in parallel to
produce n solutions to the 1D heat diffusion equation, each solution
corresponding to a row of the input. For clarity below, we describe
only the solution of a single row.

As we noted in Section 3, LU decomposition is the traditional
method for solving a tridiagonal system. Unfortunately, each step
in the forward and back substitutions of a LU decomposition re-
lies on the previous step and hence cannot be parallelized. Instead,
we use the method of cyclic reduction [Hockney 1965; Karniadakis
and Kirby II 2003], a parallel-friendly algorithm often used on vec-
tor computers for solving tridiagonal systems, as a basis for our
implementation.

Cyclic reduction works by recursively using Gaussian elimination
on all the odd-numbered unknowns in parallel. Figure 5 contains
pseudocode for the cyclic reduction algorithm. During elimination,
each of the odd-numbered unknowns is expressed in terms of its
neighboring even-numbered unknowns, resulting in a partial solu-
tion and a new system, each with half the number of equations (Fig-
ure 5, lines 1–8). The process is repeated for logm steps until only
one equation remains (Figure 5, line 9) along with a hierarchy of
partial solutions to the system. Next, the solution to this equation
is fed back into the partial solutions, and after logm steps to prop-
agate the known results into the partial solutions (Figure 5, lines
10–16), the system is solved. While cyclic reduction requires more
arithmetic than an LU solver, it still takes only a constant time per
unknown and is amenable to an efficient GPU implementation.

In our implementation, in each row, each pixel is associated with
one input element as well as to one row of the tridiagonal matrix. In
the forward propagation step, a pass that begins with m unknowns
will produce a new system with m/2 unknowns; because each new
system produces two output matrices of half the size, we allocate a
pyramid of textures at the outset of our computation, requiring an
aggregate additional amount of storage equal to twice the size of the
original tridiagonal matrix texture. We also refactor the traditional
description of cyclic reduction so that the computation of an output



element k requires data from input elements 2k−1, 2k, and 2k +1.
Expressing our computation in this way enables the GPU to run the
same program on every pixel, enabling high performance. Just as
important is that it also allows the GPU to leverage its ability to
read random memory locations (gather) without requiring writes to
random memory locations (scatter).

5 Results

Figures 1 and 2 show several images generated with our DOF al-
gorithm; the inputs to our algorithm were input images with color
and depth information at every pixel. Figure 6 shows a series of
images generated with the 3-layer variant of our algorithm, where
we composite the near-field fence atop the mid- and far-range flags
and mountains. These images are also part of the accompanying
video.

5.1 Runtime and Analysis

We implemented our DOF system on a 2.4 GHz Athlon 64 FX-53
system running Windows XP with an NVIDIA GeForce 7800 GPU.
Our implementation has image-space complexity so its runtime is
strictly a function of the image size. Using just the background
and midground layers, on a 256× 256 image, we sustain 80–90
frames per second; on 512× 512 image, we sustain 21–23 frames
per second; and on a 1024×1024 image, we sustain 6–7 frames per
second. At 1k by 768 resolution, with the separate foreground layer
added for the flag images in the accompanying video, the frame
rate drops to 3–4 frames per second. Note that the flag sequence in
the video was computed and recorded at 1k by 768 resolution, and
later downsampled to keep the video size reasonable. In all cases
the performance scales approximately linearly with the number of
pixels.

The performance of our algorithm is suitable for use in high-quality
film preview applications such as those we target with our work, and
we expect that further improvements in next-generation GPUs will
soon allow this technique to be used in real-time entertainment ap-
plications such as games. The running time of our algorithm is lim-
ited by the performance of the fragment program that implements
the tridiagonal solver. In general, increases in either the speed or the
number of fragment units on graphics hardware will directly scale
the performance of our system.

5.2 Limitations

As we discussed in Section 3, our ADI solution of the heat equation
yields solutions that approximate a Gaussian point-spread function
across the circle of confusion. The technical term for the point-
spread function in this context is “bokeh”; choosing other distri-
butions corresponds to different lens effects. Because the Green’s
function of the diffusion equation is a Gaussian, generating other
distributions would be problematic for our technique. Fortunately,
the Gaussian distribution is a physically meaningful and interest-
ing one; Buhler and Wexler indicate that such a distribution of
light produces a “smooth” or “creamy” effect “similar to a Leica
lens” [2002].

Our ADI solution breaks up the computation into separate horizon-
tal and vertical passes that could potentially produce anisotropies.
Any issues with anisotropies could be mitigated by taking multiple
diffusion steps; we have not seen any severe anisotropic effects in
practice.

6 Conclusion

In this work, we have introduced a new depth-of-field post-process
algorithm that uses a heat diffusion formulation to calculate accu-
rate DOF effects at real-time rates. Unlike previous methods, our
algorithm achieves high quality and interactive speed at the same
time. It properly handles boundaries between in-focus and out-of-
focus regions, while attaining interactive frame rates and constant
computation time per pixel. Our implementation of the algorithm
also introduces the use of cyclic reduction to the GPU world using
GPU-friendly gather memory patterns. The real-time performance
of our system makes it suitable today for interactive film preview,
and continued advances in the performance of graphics hardware
will likely also make it attractive soon for games and other real-
time applications.
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