Better Collisions and Faster Cloth for Pixar's Coco

David Eberle

Pixar Animation Studios

ABSTRACT

Among the many technical challenges of Pixar's Coco was the need
to handle cloth simulation for a densely populated city of skele-
ton characters. Skeletons posed new challenges to the collision
algorithms of our in-house cloth system, Fizt. Continuous collision
detection and response is an obvious solution to handling fast mo-
tion of thin geometry, but it presents us with a serious problem. In
our production pipeline, geometry often starts in intersection. Ani-
mation also frequently causes kinematic surfaces to pinch the cloth
between them and drive the cloth through itself. We present a solu-
tion for robustly allowing intersection recovery while employing
standard continuous detection techniques.

Coco also demanded more cloth than any previous Pixar film. To
keep up with demand, Fizt needed to run much faster. We share
our techniques for gaining performance in linear system assembly
and solution, which should be applicable to most implicit solvers.

CCS CONCEPTS

« Computing methodologies — Physical simulation;

KEYWORDS

Cloth simulation, continuous collision, sparse-matrix assembly

ACM Reference format:

David Eberle. 2018. Better Collisions and Faster Cloth for Pixar's Coco. In
Proceedings of SIGGRAPH 18 Talks, Vancouver, BC, Canada, August 12-16,
2018, 2 pages.

https://doi.org/lo.l 145/3214745.3214801

1 HISTORICAL APPROACHES

Before Coco, the Fizt simulator (based on Baraff and Witkin [1998])
had been used for over fifteen films at Pixar. Collision detection
was discrete, and one of the most important features of Fizt was its
ability to gracefully recover from common unwanted intersections.
Typical human limbs are much thicker than the skeleton geometry
on Coco. Previously, if penetrations occurred, they were usually not
very deep relative to the limb thickness and recovery was often
possible by the end of a frame. Residual visual artifacts were handled
by manual post-sim fixes or by making the character geometry
invisible beneath slightly penetrating cloth regions. In rare cases of
extremely fast motion, the number of simulation time steps could
be increased to resolve the issue.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGGRAPH 18 Talks, August 12-16, 2018, Vancouver, BC, Canada

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5820-0/18/08.

https://doi.org/10.1145/3214745.3214801

These prior techniques would not scale for Coco. Besides the
amount of simulation that would probably require fixes, fast mo-
tion was very common. This, combined with the fact that skeleton
geometry was so thin, made it possible for cloth to pass entirely
through a limb in one time step and then never recover. Art direc-
tion required that the audience “feel” the bones through the cloth,
so using large collision offsets was not an option.

Continuous collision detection (CCD) [Bridson et al. 2002; Provot
1995] was added to Fizt at the end of each time step to handle the
thin, fast-moving geometry of Coco's skeletons. To our knowledge,
all CCD approaches assume that geometry starts in an intersection-
free state and then strives to maintain it. Substantial work [Brochu
et al. 2012; Tang et al. 2014; Wang 2014] has been devoted to pro-
viding numerically robust solutions to this task. Our artists were
accustomed to starting with intersections and having them recover.
Requiring a clean state or repairing body intersections over the
shots would have been a costly disruption to their workflows.

2 OUR COLLISION SOLUTION

We needed a way to robustly allow CCD to prevent intersections
while not interfering with recovery. For cloth/kinematic collisions,
we tried a variety of reasonable heuristic techniques, but numerical
issues would sometimes lead to discarding valid collisions.

The Global Intersection Analysis (GIA) algorithm presented in
Baraff and Witkin [2003] provided us with a superior solution. The
coloring from the flood fill of the GIA algorithm labels the inter-
secting mesh features. When CCD is performed between two mesh
features, we can ignore ones already in intersection. This gives us
the desired “one way membrane” behavior. When no intersection
exists, CCD is performed and conversely is disabled between re-
gions of intersection to allow recovery. We perform GIA between
the positional states of all kinematic mesh pairs at the end of a time
step. This information is stored for the next step to provide GIA
information at the current position state. This way we know how
the intersection status between kinematic geometry changes over
the step. We disable CCD between cloth that collides with kine-
matic geometry that is pinched, becoming pinched or becoming
unpinched. We also compute and utilize GIA information between
all cloth/cloth and cloth/kinematic pairs at the current position
state.

We also use GIA to better inform cloth/body collision constraint
response from proximity queries. Particles too deep inside body ge-
ometry can be ejected out the wrong side by response. We examine
the GIA coloring data of an inside particle and that of the face it
would exit through. If both are not part of a dynamic/kinematic col-
oring, we omit the response. Particles closer to the actual contour
of intersection will get response and, over time, the cloth will exit
from the correct side. This was useful to correctly handle initially
penetrating configurations on thin skeleton limbs. We've concluded
that enabling communication among Intersection/GIA, Proximity
Query, and CCD algorithms can enable better response decisions.

https://doi.org/10.1145/3214745.3214801
https://doi.org/10.1145/3214745.3214801

SIGGRAPH 18 Talks, August 12-16, 2018, Vancouver, BC, Canada

Figure 1: (a) Fixed sparsity pattern (FGSM), (b) Red entries
of a transient contact between vertex 0 and face(13,14,15), (c)
Red entries remaining in TGSM after merging with FGSM.

3 SOLVER PERFORMANCE

To improve linear system assembly performance, we attempted to
reduce data traffic and make our parallel algorithm lock-free. We
exploit the fact that our cloth meshes do not change connectivity
during simulation and have a fixed sparsity pattern. Forces with
Jacobians that persist over the simulation are called FixedForceEle-
ments (FFE). FFEs have their own local storage for the forces and
Jacobians. This allows them to be computed in parallel without any
locks. The accumulation of the local Jacobians to a fixed pattern
global sparse matrix (FGSM) happens in another lock-free parallel
pass over the global blocks. This is a fairly standard procedure in
parallel finite element codes. To reduce the number of elements
that need to be traversed during these different phases we found
inspiration in Curtis et al. [2008]. In our system, an FFE can index
up to four particles and can therefore aggregate many different
forces, such as stretch and shear. Some FFEs may cover two trian-
gles and can also support a dihedral bending force. Our per-particle
forces are also uniquely assigned to the FFEs. Our assignment pro-
cedure is simple and reduces the total number of elements needed
by approximately one third, thereby reducing the memory band-
width demands of both passes. Transient forces between particles
with Jacobians, like contact penalty forces or toggled user springs,
are called TransientForceElements (TFE). The force gradients from
TFEs are accumulated into a transient global sparse matrix (TGSM).
Each TGSM row has a per-thread structure for accumulating the
transient entries in lock-free fashion. A serial reduction pass is
performed on each TGSM row in parallel over all the rows. As the
number of threads increases, this reduction has the potential to
create a new bottleneck, but when running with 4-8 threads, we
didn’t observe adverse effects.

We perform another parallel pass over the rows of our TGSM to
transfer any overlapping entries from it to the block entries of the
FGSM (Figure 1). The FGSM and TGSM structures are converted to
the standard block compressed row storage (BCRS) format. We cast
the values to single precision in the BCRS structures to reduce the
memory bandwidth during the solver’s sparse matrix-vector multi-
ply. Instead of the traditional linear system in Baraff and Witkin
[1998], we use the pre-filtered form in Tamstorf et al. [2015].

We explored a variety of techniques to gain solver performance.
Our global particle indices are reindexed once by a Reverse Cuthill-
McKee ordering at the start of our simulation, using the fixed con-
nectivity. This improves memory access for the solver by reducing
the matrix bandwidth of the FGSM. This ordering also allows the
column indices in the BCRS of the FGSM to be stored as short

Eberle

Table 1: Average performance of Fizt’s system assembly and
solver before and after our work. Times are in seconds and
all examples were run with 6 threads at 10 steps per frame.

l Example l Build l Solve l Sim Per Frame ‘
Miguel 2.07 vs. 0.60 | 3.57 vs. 0.65 8.50 vs. 3.26
Nana Coco 2.45vs. 0.88 | 1.77 vs. 0.46 9.47 vs. 4.97
Skeleton In Dress | 4.84 vs. 1.74 | 6.86 vs. 1.51 15.9 vs. 6.76
Miguel’s Mother | 2.98 vs. 1.10 | 4.90 vs. 1.23 | 12.0 vs. 5.32

offsets from the diagonal. The column indices of the BCRS of the
TGSM are unsigned int to accommodate transient interaction
between any particles. Our iterative solver traverses the rows of
our system in parallel many times. Only some rows have contri-
butions from the TGSM. At each time step, we establish an array
of appropriate function pointers to traverse the entries for each
row. We also employ loop unrolling to process four blocks at a time
when traversing each row. The indices for the end and remainder
portions of these unrolled traversals are computed and stored once
for the FGSM BCRS and at each time step for the TGSM BCRS.

4 RESULTS

We achieved a ~3X improvement on linear system assembly and
a ~4x increase in the solver performance (Table 1). The original
system assembly traversed elements individually and employed
locks when building the global matrix. The addition of continu-
ous collisions and more GIA computation took back some of these
gains, leaving us with a ~2X gain to the average time per-frame.
The combined robustness and speed improvements made the com-
plexity and volume of cloth simulation more manageable for Coco.
These enhancements also made it tractable for our animators to run
simulations where a character's performance dictated expressive
interaction with their garments.

ACKNOWLEDGMENTS

Thanks to Theodore Kim and Andrew Butts for their valuable feed-
back on this abstract, Hayley Iben for her support in this endeavor,
and the Coco Sim/Tailoring team for their outstanding work.

REFERENCES

D. Baraff and A. Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings of the 25th
Annual Conference on Computer Graphics and Interactive Techniques (SSGGRAPH
*98). ACM, 12.

D. Baraff and A. Witkin. 2003. Untangling Cloth. In ACM SIGGRAPH 2003 Papers
(SIGGRAPH °03). ACM, 9.

R. Bridson, R. Fedkiw, and J. Anderson. 2002. Robust Treatment of Collisions, Contact
and Friction for Cloth Animation. In Proceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques (SSGGRAPH *02). ACM, 594-603.

T. Brochu, E. Edwards, and R. Bridson. 2012. Efficient Geometrically Exact Continuous
Collision Detection. ACM Trans. Graph. 31, 4, Article 96 (2012), 7 pages.

S. Curtis, R. Tamstorf, and D. Manocha. 2008. Fast Collision Detection for Deformable
Models Using Representative-triangles. In Proceedings of the 2008 Symposium on
Interactive 3D Graphics and Games (I3D "08). ACM, 9.

X. Provot. 1995. Collision and self-collision handling in cloth model dedicated to design
garment. Graphics Interface (1995), 12.

R. Tamstorf, T. Jones, and S. McCormick. 2015. Smoothed Aggregation Multigrid for
Cloth Simulation. ACM Trans. Graph. 34, 6, Article 245 (2015), 13 pages.

M. Tang, R. Tong, Z. Wang, and D. Manocha. 2014. Fast and Exact Continuous Collision
Detection with Bernstein Sign Classification. ACM Trans. Graph. 33, 6, Article 186
(2014), 8 pages.

H. Wang. 2014. Defending Continuous Collision Detection Against Errors. ACM Trans.
Graph. 33, 4, Article 122 (2014), 10 pages.

	Abstract
	1 Historical Approaches
	2 Our Collision Solution
	3 Solver Performance
	4 Results
	Acknowledgments
	References

