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Figure 1: Geri.

Abstract

The creation of believable and endearing characters in computer
graphics presents a number of technical challenges, including the
modeling, animation and rendering of complex shapes such as
heads, hands, and clothing. Traditionally, these shapes have been
modeled with NURBS surfaces despite the severe topological re-
strictions that NURBS impose. In order to move beyond these re-
strictions, we have recently introduced subdivision surfaces into our
production environment. Subdivision surfaces are not new, but their
use in high-end CG production has been limited.

Here we describe a series of developments that were required
in order for subdivision surfaces to meet the demands of high-end
production. First, we devised a practical technique for construct-

ing provably smooth variable-radius fillets and blends. Second, we
developed methods for using subdivision surfaces in clothing sim-
ulation including a new algorithm for efficient collision detection.
Third, we developed a method for constructing smooth scalar fields
on subdivision surfaces, thereby enabling the use of a wider class
of programmable shaders. These developments, which were used
extensively in our recently completed short filmGeri’s game, have
become a highly valued feature of our production environment.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling; I.3.3 [Computer Graphics]: Pic-
ture/Image Generation.

1 Motivation

The most common way to model complex smooth surfaces such
as those encountered in human character animation is by using a
patchwork of trimmed NURBS. Trimmed NURBS are used pri-
marily because they are readily available in existing commercial
systems such as Alias-Wavefront and SoftImage. They do, how-
ever, suffer from at least two difficulties:

1. Trimming is expensive and prone to numerical error.

2. It is difficult to maintain smoothness, or even approximate
smoothness, at the seams of the patchwork as the model is



Figure 2: The control mesh for Geri’s head, created by digitizing a
full-scale model sculpted out of clay.

animated. As a case in point, considerable manual effort was
required to hide the seams in the face of Woody, a principal
character inToy Story.

Subdivision surfaces have the potential to overcome both of these
problems: they do not require trimming, and smoothness of the
model is automatically guaranteed, even as the model animates.

The use of subdivision in animation systems is not new, but for a
variety of reasons (several of which we address in this paper), their
use has not been widespread. In the mid 1980s for instance, Sym-
bolics was possibly the first to use subdivision in their animation
system as a means of creating detailed polyhedra. The LightWave
3D modeling and animation system from NewTek also uses subdi-
vision in a similar fashion.

This paper describes a number of issues that arose when we
added a variant of Catmull-Clark [2] subdivision surfaces to our
animation and rendering systems, Marionette and RenderMan [17],
respectively. The resulting extensions were used heavily in the cre-
ation of Geri (Figure 1), a human character in our recently com-
pleted short filmGeri’s game. Specifically, subdivision surfaces
were used to model the skin of Geri’s head (see Figure 2), his hands,
and his clothing, including his jacket, pants, shirt, tie, and shoes.

In contrast to previous systems such as those mentioned above,
that use subdivision as a means to embellish polygonal models, our
system uses subdivision as a means to define piecewise smooth sur-
faces. Since our system reasons about the limit surface itself, polyg-
onal artifacts are never present, no matter how the surface animates
or how closely it is viewed.

The use of subdivision surfaces posed new challenges through-
out the production process, from modeling and animation to ren-
dering. In modeling, subdivision surfaces free the designer from
worrying about the topological restrictions that haunt NURBS mod-
elers, but they simultaneously prevent the use of special tools that
have been developed over the years to add features such as variable
radius fillets to NURBS models. In Section 3, we describe an ap-
proach for introducing similar capabilities into subdivision surface
models. The basic idea is to generalize the infinitely sharp creases
of Hoppeet. al. [10] to obtain semi-sharp creases – that is, creases
whose sharpness can vary from zero (meaning smooth) to infinite.

Once models have been constructed with subdivision surfaces,
the problems of animation are generally easier than with corre-
sponding NURBS surfaces because subdivision surface models are
seamless, so the surface is guaranteed to remain smooth as the
model is animated. Using subdivision surfaces for physically-based
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Figure 3: Recursive subdivision of a topologically complicated
mesh: (a) the control mesh; (b) after one subdivision step; (c) after
two subdivision steps; (d) the limit surface.

animation of clothing, however, poses its own difficulties which we
address in Section 4. First, it is necessary to express the energy
function of the clothing on subdivision meshes in such a way that
the resulting motion does not inappropriately reveal the structure
of the subdivision control mesh. Second, in order for a physical
simulator to make use of subdivision surfaces it must compute col-
lisions very efficiently. While collisions of NURBS surfaces have
been studied in great detail, little work has been done previously
with subdivision surfaces.

Having modeled and animated subdivision surfaces, some
formidable challenges remain before they can be rendered. The
topological freedom that makes subdivision surfaces so attractive
for modeling and animation means that they generally do not
admit parametrizations suitable for texture mapping. Solid tex-
tures [12, 13] and projection textures [9] can address some pro-
duction needs, but Section 5.1 shows that it is possible to go a good
deal further by using programmable shaders in combination with
smooth scalar fields defined over the surface.

The combination of semi-sharp creases for modeling, an appro-
priate and efficient interface to physical simulation for animation,
and the availability of scalar fields for shading and rendering have
made subdivision surfaces an extremely effective tool in our pro-
duction environment.

2 Background

A single NURBS surface, like any other parametric surface, is lim-
ited to representing surfaces which are topologically equivalent to
a sheet, a cylinder or a torus. This is a fundamental limitation for
any surface that imposes a global planar parameterization. A single
subdivision surface, by contrast, can represent surfaces of arbitrary
topology. The basic idea is to construct a surface from an arbitrary
polyhedron by repeatedly subdividing each of the faces, as illus-
trated in Figure 3. If the subdivision is done appropriately, the limit
of this subdivision process will be a smooth surface.

Catmull and Clark [2] introduced one of the first subdivision
schemes. Their method begins with an arbitrary polyhedron called



the control mesh. The control mesh, denotedM0 (see Figure 3(a)),
is subdivided to produce the meshM1 (shown in Figure 3(b)) by
splitting each face into a collection of quadrilateral subfaces. A
face havingn edges is split inton quadrilaterals. The vertices of
M1 are computed using certain weighted averages as detailed be-
low. The same subdivision procedure is used again onM1 to pro-
duce the meshM2 shown in Figure 3(c). The subdivision surface is
defined to be the limit of the sequence of meshesM0;M1; ::: created
by repeated application of the subdivision procedure.

To describe the weighted averages used by Catmull and Clark it
is convenient to observe that each vertex ofMi+1 can be associated
with either a face, an edge, or a vertex ofMi ; these are called face,
edge, and vertex points, respectively. This association is indicated
in Figure 4 for the situation around a vertexv0 of M0. As indicated
in the figure, we usef ’s to denote face points,e’s to denote edge
points, andv’s to denote vertex points. Face points are positioned
at the centroid of the vertices of the corresponding face. An edge
point ei+1

j , as indicated in Figure 4 is computed as

ei+1
j =

vi +ei
j + f i+1

j�1+ f i+1
j

4
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where subscripts are taken modulo the valence of the central vertex
v0. (The valence of a vertex is the number of edges incident to it.)
Finally, a vertex pointvi is computed as
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Vertices of valence 4 are called ordinary; others are called extraor-
dinary.
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Figure 4: The situation around a vertexv0 of valencen.

These averaging rules — also called subdivision rules, masks, or
stencils — are such that the limit surface can be shown to be tangent
plane smooth no matter where the control vertices are placed [14,
19].1

Whereas Catmull-Clark subdivision is based on quadrilaterals,
Loop’s surfaces [11] and the Butterfly scheme [6] are based on tri-
angles. We chose to base our work on Catmull-Clark surfaces for
two reasons:

1. They strictly generalize uniform tensor product cubic B-
splines, making them easier to use in conjunction with exist-
ing in-house and commercial software systems such as Alias-
Wavefront and SoftImage.

2. Quadrilaterals are often better than triangles at capturing the
symmetries of natural and man-made objects. Tube-like sur-
faces — such as arms, legs, and fingers — for example, can
be modeled much more naturally with quadrilaterals.

1Technical caveat for the purist: The surface is guaranteed to be smooth
except for control vertex positions in a set of measure zero.

Figure 5: Geri’s hand as a piecewise smooth Catmull-Clark surface.
Infinitely sharp creases are used between the skin and the finger
nails.

Figure 6: A surface where boundary edges are tagged as sharp and
boundary vertices of valence two are tagged as corners. The control
mesh is yellow and the limit surface is cyan.

Following Hoppeet. al.[10] it is possible to modify the subdivi-
sion rules to create piecewise smooth surfaces containing infinitely
sharp features such as creases and corners. This is illustrated in
Figure 5 which shows a close-up shot of Geri’s hand. Infinitely
sharp creases were used to separate the skin of the hand from the
finger nails. Sharp creases can be modeled by marking a subset
of the edges of the control mesh as sharp and then using specially
designed rules in the neighborhood of sharp edges. Appendix A
describes the necessary special rules and when to use them.

Again following Hoppeet. al., we deal with boundaries of the
control mesh by tagging the boundary edges as sharp. We have also
found it convenient to tag boundary vertices of valence 2 as corners,
even though they would normally be treated as crease vertices since
they are incident to two sharp edges. We do this to mimic the behav-
ior of endpoint interpolating tensor product uniform cubic B-spline
surfaces, as illustrated in Figure 6.

3 Modeling fillets and blends

As mentioned in Section 1 and shown in Figure 5, infinitely sharp
creases are very convenient for representing piecewise-smooth sur-
faces. However, real-world surfaces are never infinitely sharp. The
corner of a tabletop, for instance, is smooth when viewed suffi-
ciently closely. For animation purposes it is often desirable to cap-
ture such tightly curved shapes.

To this end we have developed a generalization of the Catmull-



Clark scheme to admit semi-sharp creases – that is, creases of con-
trollable sharpness, a simple example of which is shown in Figure 7.

(a) (b)

(c) (d)

(e)

Figure 7: An example of a semi-sharp crease. The control mesh for
each of these surfaces is the unit cube, drawn in wireframe, where
crease edges are red and smooth edges are yellow. In (a) the crease
sharpness is 0, meaning that all edges are smooth. The sharpnesses
for (b), (c), (d), and (e) are 1, 2, 3, and infinite, respectively.

One approach to achieve semi-sharp creases is to develop subdi-
vision rules whose weights are parametrized by the sharpnesss of
the crease. This approach is difficult because it can be quite hard
to discover rules that lead to the desired smoothness properties of
the limit surfaces. One of the roadblocks is that subdivision rules
around a crease break a symmetry possessed by the smooth rules:
typical smooth rules (such as the Catmull-Clark rules) are invariant
under cyclic reindexing, meaning that discrete Fourier transforms
can be used to prove properties for vertices of arbitrary valence (cf.
Zorin [19]). In the absence of this invariance, each valence must
currently be considered separately, as was done by Schweitzer [15].
Another difficulty is that such an approach is likely to lead to a
zoo of rules depending on the number and configuration of creases
through a vertex. For instance, a vertex with two semi-sharp creases
passing through it would use a different set of rules than a vertex
with just one crease through it.

Our approach is to use a very simple process we call hybrid sub-
division. The general idea is to use one set of rules for a finite but

arbitrary number of subdivision steps, followed by another set of
rules that are applied to the limit. Smoothness therefore depends
only on the second set of rules. Hybrid subdivision can be used to
obtain semi-sharp creases by using infinitely sharp rules during the
first few subdivision steps, followed by use of the smooth rules for
subsequent subdivision steps. Intuitively this leads to surfaces that
are sharp at coarse scales, but smooth at finer scales.

Now the details. To set the stage for the general situation where
the sharpness can vary along a crease, we consider two illustrative
special cases.

Case 1: A constant integer sharpnesss crease: We subdivide
s times using the infinitely sharp rules, then switch to the smooth
rules. In other words, an edge of sharpnesss> 0 is subdivided us-
ing the sharp edge rule. The two subedges created each have sharp-
nesss� 1. A sharpnesss= 0 edge is considered smooth, and it
stays smooth for remaining subdivisions. In the limit wheres! ∞
the sharp rules are used for all steps, leading to an infinitely sharp
crease. An example of integer sharpness creases is shown in Fig-
ure 7. A more complicated example where two creases of different
sharpnesses intersect is shown in Figure 8.

(a) (b)

(c) (d)

Figure 8: A pair of crossing semi-sharp creases. The control mesh
for all surfaces is the octahedron drawn in wire frame. Yellow de-
notes smooth edges, red denotes the edges of the first crease, and
magenta denotes the edges of the second crease. In (a) the crease
sharpnesses are both zero; in (b), (c), and (d) the sharpness of the
red crease is 4. The sharpness of the magenta crease in (b), (c), and
(d) is 0, 2, and 4, respectively.

Case 2:A constant, but not necessarily integer sharpnesss: the
main idea here is to interpolate between adjacent integer sharp-
nesses. Lets# ands" denote the floor and ceiling ofs, respectively.
Imagine creating two versions of the crease: the first obtained by
subdividings# times using the sharp rules, then subdividing one ad-
ditional time using the smooth rules. Call the vertices of this first
versionv#0;v#1; :::. The second version, the vertices of which we
denote byv"0;v"1; :::, is created by subdividings" times using the
sharp rules. We take thes"-times subdivided semi-sharp crease to



Figure 9: A simple example of a variable sharpness crease. The
edges of the bottom face of the cubical control mesh are infinitely
sharp. Three edges of the top face form a single variable sharpness
crease with edge sharpnesses set to 2 (the two magenta edges), and
4 (the red edge).

have vertex positionsvs"
i computed via simple linear interpolation:

vs"
i = (1�σ)v#i +σv"i (3)

whereσ = (s�s#)=(s" �s#). Subsequent subdivisions are done us-
ing the smooth rules. In the case where all creases have the same
non-integer sharpnesss, the surface produced by the above process
is identical to the one obtained by linearly interpolating between
the integer sharpness limit surfaces corresponding tos# ands". Typ-
ically, however, crease sharpnesses will not all be equal, meaning
that the limit surface is not a simple blend of integer sharpness sur-
faces.

The more general situation where crease sharpness is non-integer
and varies along a crease is presented in Appendix B. Figure 9 de-
picts a simple example. A more complex use of variable sharpness
is shown in Figure 10.

4 Supporting cloth dynamics

The use of simulated physics to animate clothing has been widely
discussed in the literature (cf. [1, 5, 16]). Here, we address the
issues that arise when interfacing a physical simulator to a set of
geometric models constructed out of subdivision surfaces. It is not
our intent in this section to detail our cloth simulation system fully
– that would require an entire paper of its own. Our goal is rather to
highlight issues related to the use of subdivision surfaces to model
both kinematic and dynamic objects.

In Section 4.1 we define the behavior of the cloth material by
constructing an energy functional on the subdivision control mesh.
If the material properties such as the stiffness of the cloth vary over
the surface, one or more scalar fields (see Section 5.1) must be de-
fined to modulate the local energy contributions. In Section 4.2 we
describe an algorithm for rapidly identifying potential collisions in-
volving the cloth and/or kinematic obstacles. Rapid collision detec-
tion is crucial to achieving acceptable performance.

Figure 10: A more complex example of variable sharpness creases.
This model, inspired by an Edouard Lanteri sculpture, contains nu-
merous variable sharpness creases to reduce the size of the control
mesh. The control mesh for the model made without variable sharp-
ness creases required 840 faces; with variable sharpness creases the
face count dropped to 627. Model courtesy of Jason Bickerstaff.

4.1 Energy functional

For physical simulation, the basic properties of a material are gen-
erally specified by defining an energy functional to represent the
attraction or resistance of the material to various possible deforma-
tions. Typically, the energy is either specified as a surface integral
or as a discrete sum of terms which are functions of the positions of
surface samples or control vertices. The first type of specification
typically gives rise to a finite-element approach, while the second
is associated more with finite-difference methods.

Finite-element approaches are possible with subdivision sur-
faces, and in fact some relevant surface integrals can be computed
analytically [8]. In general, however, finite-element surface in-
tegrals must be estimated through numerical quadrature, and this
gives rise to a collection of special cases around extraordinary
points. We chose to avoid these special cases by adopting a finite-
difference approach, approximating the clothing with a mass-spring
model [18] in which all the mass is concentrated at the control
points.

Away from extraordinary points, Catmull-Clark meshes under
subdivision become regular quadrilateral grids. This makes them
ideally suited for representing woven fabrics which are also gen-
erally described locally by a gridded structure. In constructing the
energy functions for clothing simulation, we use the edges of the
subdivision mesh to correspond with the warp and weft directions
of the simulated woven fabrics.

Since most popular fabrics stretch very little along the warp
or weft directions, we introduce relatively strong fixed rest-length
springs along each edge of the mesh. More precisely, for each edge
from p1 to p2, we add an energy termksEs(p1; p2) where

Es(p1; p2) =
1
2

�
jp1� p2j

jp�1� p�2j
�1

�2

: (4)

Here,p�1 and p�2 are the rest positions of the two vertices, andks is



the corresponding spring constant.
With only fixed-length springs along the mesh edges, the simu-

lated clothing can undergo arbitrary skew without penalty. One way
to prevent the skew is to introduce fixed-length springs along the
diagonals. The problem with this approach is that strong diagonal
springs make the mesh too stiff, and weak diagonal springs allow
the mesh to skew excessively. We chose to address this problem
by introducing an energy term which is proportional to the product
of the energies of two diagonal fixed-length springs. Ifp1 and p2
are vertices along one diagonal of a quadrilateral mesh face andp3
andp4 are vertices along the other diagonal, the energy is given by
kdEd(p1; p2; p3; p4) wherekd is a scalar parameter that functions
analagously to a spring constant, and where

Ed(p1; p2; p3; p4) = Es(p1; p2)Es(p3; p4): (5)

The energyEd(p1; p2; p3; p4) reaches its minimum at zero when
either of the diagonals of the quadrilateral face are of the original
rest length. Thus the material can fold freely along either diago-
nal, while resisting skew to a degree determined bykd. We some-
times use weak springs along the diagonals to keep the material
from wrinkling too much.

With the fixed-length springs along the edges and the diagonal
contributions to the energy, the simulated material, unlike real cloth,
can bend without penalty. To add greater realism to the simulated
cloth, we introduce an energy term that establishes a resistance to
bending along virtual threads. Virtual threads are defined as a se-
quence of vertices. They follow grid lines in regular regions of the
mesh, and when a thread passes through an extraordinary vertex of
valencen, it continues by exiting along the edgebn=2c-edges away
in the clockwise direction. Ifp1; p2; and p3 are three points along
a virtual thread, the anti-bending component of the energy is given
by kpEp(p1; p2; p3) where

Ep(p1; p2; p3) =
1
2
� [C(p1; p2; p3)�C(p�1; p

�
2; p

�
3)]

2 (6)

C(p1; p2; p3) =

���� p3� p2

jp�3� p�2j
�

p2� p1

jp�2� p�1j

���� (7)

andp�1; p
�
2; andp�3 are the rest positions of the three points.

By adjustingks, kd and kp both globally and locally, we have
been able to simulate a reasonably wide variety of cloth behavior. In
the production ofGeri’s game, we found that Geri’s jacket looked a
great deal more realistic when we modulatedkp over the surface of
the jacket in order to provide more stiffness on the shoulder pads, on
the lapels, and in an area under the armpits which is often reinforced
in real jackets. Methods for specifying scalar fields likekp over a
subdivision surface are discussed in more detail in section 5.1.

4.2 Collisions

The simplest approach to detecting collisions in a physical simula-
tion is to test each geometric element (i.e. point, edge, face) against
each other geometric element for a possible collision. WithN geo-
metric elements, this would takeN2 time, which is prohibitive for
largeN. To achieve practical running times for large simulations,
the number of possible collisions must be culled as rapidly as possi-
ble using some type of spatial data structure. While this can be done
in a variety of different ways, there are two basic strategies: we
can distribute the elements into a two-dimensional surface-based
data structure, or we can distribute them into a three-dimensional
volume-based data structure. Using a two-dimensional structure
has several advantages if the surface connectivity does not change.
First, the hierarchy can be fixed, and need not be regenerated each
time the geometry is moved. Second, the storage can all be stati-
cally allocated. Third, there is never any need to rebalance the tree.

Finally, very short edges in the surface need not give rise to deep
branches in the tree, as they would using a volume-based method.

It is a simple matter to construct a suitable surface-based data
structure for a NURBS surface. One method is to subdivide the
(s;t) parameter plane recursively into an quadtree. Since each node
in the quadtree represents a subsquare of the parameter plane, a
bounding box for the surface restricted to the subsquare can be
constructed. An efficient method for constructing the hierarchy of
boxes is to compute bounding boxes for the children using the con-
vex hull property; parent bounding boxes can then be computed in a
bottom up fashion by unioning child boxes. Having constructed the
quadtree, we can find all patches withinε of a point p as follows.
We start at the root of the quadtree and compare the bounding box
of the root node with a box of size 2ε centered onp. If there is
no intersection, then there are no patches withinε of p. If there is
an intersection, then we repeat the test on each of the children and
recurse. The recursion terminates at the leaf nodes of the quadtree,
where bounding boxes of individual subpatches are tested against
the box aroundp.

Subdivision meshes have a natural hierarchy for levels finer than
the original unsubdivided mesh, but this hierarchy is insufficient
because even the unsubdivided mesh may have too many faces to
test exhaustively. Since there is there is no global(s;t) plane from
which to derive a hierarchy, we instead construct a hierarchy by
“unsubdividing” or “coarsening” the mesh: We begin by forming
leaf nodes of the hierarchy, each of which corresponds to a face
of the subdivision surface control mesh. We then hierarchically
merge faces level by level until we finish with a single merged face
corresponding to the entire subdivision surface.

The process of merging faces proceeds as follows. In order to
create thè th level in the hierarchy, we first mark all non-boundary
edges in thè �1st level as candidates for merging. Then until all
candidates at thèth level have been exhausted, we pick a candidate
edgee, and remove it from the mesh, thereby creating a “superface”
f � by merging the two facesf1 and f2 that sharede: The hierarchy
is extended by creating a new node to representf � and making its
children be the nodes corresponding tof1 and f2. If f � were to
participate immediately in another merge, the hierarchy could be-
come poorly balanced. To ensure against that possibility, we next
remove all edges off � from the candidate list. When all the candi-
date edges at one level have been exhausted, we begin the next level
by marking non-boundary edges as candidates once again. Hierar-
chy construction halts when only a single superface remains in the
mesh.

The coarsening hierarchy is constructed once in a preprocessing
phase. During each iteration of the simulation, control vertex posi-
tions change, so the bounding boxes stored in the hierarchy must be
updated. Updating the boxes is again a bottom up process: the cur-
rent control vertex positions are used to update the bounding boxes
at the leaves of the hierarchy. We do this efficiently by storing with
each leaf in the hierarchy a set of pointers to the vertices used to
construct its bounding box. Bounding boxes are then unioned up
the hierarchy. A point can be “tested against” a hierarchy to find
all faces withinε of the point by starting at the root of the hierar-
chy and recursively testing bounding boxes, just as is done with the
NURBS quadtree.

We build a coarsening hierarchy for each of the cloth meshes, as
well as for each of the kinematic obstacles. To determine collisions
between a cloth mesh and a kinematic obstacle, we test each vertex
of the cloth mesh against the hierarchy for the obstacle. To deter-
mine collisions between a cloth mesh and itself, we test each vertex
of the mesh against the hierarchy for the same mesh.



5 Rendering subdivision surfaces

In this section, we introduce the idea of smoothly varying scalar
fields defined over subdivision surfaces and show how they can be
used to apply parametric textures to subdivision surfaces. We then
describe a collection of implementation issues that arose when sub-
division surfaces and scalar fields were added to RenderMan.

5.1 Texturing using scalar fields

NURBS surfaces are textured using four principal methods: para-
metric texture mapping, procedural texture, 3D paint [9], and solid
texture [12, 13]. It is straightforward to apply 3D paint and solid
texturing to virtually any type of primitive, so these techniques
can readily be applied to texture subdivision surfaces. It is less
clear, however, how to apply parametric texture mapping, and more
generally, procedural texturing to subdivision surfaces since, unlike
NURBS, they are not defined parametrically.

With regard to texture mapping, subdivision surfaces are more
akin to polygonal models since neither possesses a global(s;t)
parameter plane. The now-standard method of texture mapping
a polygonal model is to assign texture coordinates to each of the
vertices. If the faces of the polygon consist only of triangles and
quadrilaterals, the texture coordinates can be interpolated across
the face of the polygon during scan conversion using linear or bi-
linear interpolation. Faces with more than four sides pose a greater
challenge. One approach is to pre-process the model by splitting
such faces into a collection of triangles and/or quadrilaterals, us-
ing some averaging scheme to invent texture coordinates at newly
introduced vertices. One difficulty with this approach is that the
texture coordinates are not differentiable across edges of the origi-
nal or pre-processed mesh. As illustrated in Figures 11(a) and (b),
these discontinuities can appear as visual artifacts in the texture,
especially as the model is animated.

(a) (b)

(c) (d)

Figure 11: (a) A texture mapped regular pentagon comprised of
5 triangles; (b) the pentagonal model with its vertices moved; (c)
A subdivision surface whose control mesh is the same 5 triangles
in (a), and where boundary edges are marked as creases; (d) the
subdivision surface with its vertices positioned as in (b).

Fortunately, the situation for subdivision surfaces is profoundly
better than for polygonal models. As we prove in Appendix C,
smoothly varying texture coordinates result if the texture coordi-
nates(s;t) assigned to the control vertices are subdivided using
the same subdivision rules as used for the geometric coordinates
(x;y;z). (In other words, control point positions and subdivision can
be thought of as taking place in a 5-space consisting of(x;y;z;s;t)
coordinates.) This is illustrated in Figure 11(c), where the surface
is treated as a Catmull-Clark surface with infinitely sharp bound-
ary edges. A more complicated example of parametric texture on a
subdivision surface is shown in Figure 12.

As is generally the case in real productions, we used a combi-
nation of texturing methods to create Geri: the flesh tones on his
head and hands were 3D-painted, solid textures were used to add
fine detail to his skin and jacket, and we used procedural texturing
(described more fully below) for the seams of his jacket.

The texture coordinatess and t mentioned above are each in-
stances of a scalar field; that is, a scalar-valued function that varies
over the surface. A scalar fieldf is defined on the surface by as-
signing a valuefv to each of the control verticesv. The proof sketch
in Appendix C shows that the functionf (p) created through sub-
division (wherep is a point on the limit surface) varies smoothly
wherever the subdivision surface itself is smooth.

Scalar fields can be used for more than just parametric texture
mapping — they can be used more generally as arbitrary parameters
to procedural shaders. An example of this occurs on Geri’s jacket.
A scalar field is defined on the jacket that takes on large values for
points on the surface near a seam, and small values elsewhere. The
procedural jacket shader uses the value of the this field to add the
apparent seams to the jacket. We use other scalar fields to darken
Geri’s nostril and ear cavities, and to modulate various physical
parameters of the cloth in the cloth simulator.

We assign scalar field values to the vertices of the control mesh
in a variety of ways, including direct manual assignment. In some
cases, we find it convenient to specify the value of the field directly
at a small number of control points, and then determine the rest by
interpolation using Laplacian smoothing. In other cases, we spec-
ify the scalar field values by painting an intensity map on one or
more rendered images of the surface. We then use a least squares
solver to determine the field values that best reproduce the painted
intensities.

(a) (b)

Figure 12: Gridded textures mapped onto a bandanna modeled us-
ing two subdivision surfaces. One surface is used for the knot, the
other for the two flaps. In (a) texture coordinates are assigned uni-
formly on the right flap and nonuniformly using smoothing on the
left to reduce distortion. In (b) smoothing is used on both sides and
a more realistic texture is applied.



5.2 Implementation issues

We have implemented subdivision surfaces, specifically semi-sharp
Catmull-Clark surfaces, as a new geometric primitive in Render-
Man.

Our renderer, built upon the REYES architecture [4], demands
that all primitives be convertible into grids of micropolygons (i.e.
half-pixel wide quadrilaterals). Consequently, each type of prim-
itive must be capable of splitting itself into a collection of sub-
patches, bounding itself (for culling and bucketing purposes), and
dicing itself into a grid of micropolygons.

Each face of a Catmull-Clark control mesh can be associated
with a patch on the surface, so the first step in rendering a Catmull-
Clark surface is to split it in into a collection of individual patches.
The control mesh for each patch consists of a face of the control
mesh together with neighboring faces and their vertices. To bound
each patch, we use the knowledge that a Catmull-Clark surface lies
within the convex hull of its control mesh. We therefore take the
bounding box of the mesh points to be the bounding box for the
patch. Once bounded, the primitive is tested to determine if it is
diceable; it is not diceable if dicing would produce a grid with too
many micropolygons or a wide range of micropolygon sizes. If
the patch is not diceable, then we split each patch by performing a
subdivision step to create four new subpatch primitives. If the patch
is diceable, it is repeatedly subdivided until it generates a grid with
the required number of micropolygons. Finally, we move each of
the grid points to its limit position using the method described in
Halsteadet. al.[8].

An important property of Catmull-Clark surfaces is that they
give rise to bicubic B-splines patches for all faces except those in
the neighborhood of extraordinary points or sharp features. There-
fore, at each level of splitting, it is often possible to identify one or
more subpatches as B-spline patches. As splitting proceeds, more
of the surface can be covered with B-spline patches. Exploiting
this fact has three advantages. First, the fixed 4� 4 size of a B-
spline patch allows for efficiency in memory usage because there
is no need to store information about vertex connectivity. Second,
the fact that a B-spline patch, unlike a Catmull-Clark patch, can be
split independently in either parametric direction makes it possible
to reduce the total amount of splitting. Third, efficient and well
understood forward differencing algorithms are available to dice B-
spline patches [7].

We quickly learned that an advantage of semi-sharp creases over
infinitely sharp creases is that the former gives smoothly varying
normals across the crease, while the latter does not. This implies
that if the surface is displaced in the normal direction in a creased
area, it will tear at an infinitely sharp crease but not at a semi-sharp
one.

6 Conclusion

Our experience using subdivision surfaces in production has been
extremely positive. The use of subdivision surfaces allows our
model builders to arrange control points in a way that is natural
to capture geometric features of the model (see Figure 2), without
concern for maintaining a regular gridded structure as required by
NURBS models. This freedom has two principal consequences.
First, it dramatically reduces the time needed to plan and build an
initial model. Second, and perhaps more importantly, it allows the
initial model to be refined locally. Local refinement is not possi-
ble with a NURBS surface, since an entire control point row, or
column, or both must be added to preserve the gridded structure.
Additionally, extreme care must be taken either to hide the seams
between NURBS patches, or to constrain control points near the
seam to create at least the illusion of smoothness.

By developing semi-sharp creases and scalar fields for shading,

we have removed two of the important obstacles to the use of subdi-
vision surfaces in production. By developing an efficient data struc-
ture for culling collisions with subdivisions, we have made subdi-
vision surfaces well suited to physical simulation. By developing a
cloth energy function that takes advantage of Catmull-Clark mesh
structure, we have made subdivision surfaces the surfaces of choice
for our clothing simulations. Finally, by introducing Catmull-Clark
subdivision surfaces into our RenderMan implementation, we have
shown that subdivision surfaces are capable of meeting the demands
of high-end rendering.

A Infinitely Sharp Creases

Hoppe et. al. [10] introduced infinitely sharp features such as
creases and corners into Loop’s surfaces by modifying the subdi-
vision rules in the neighborhood of a sharp feature. The same can
be done for Catmull-Clark surfaces, as we now describe.

Face points are always positioned at face centroids, independent
of which edges are tagged as sharp. Referring to Figure 4, suppose
the edgevi ei

j has been tagged as sharp. The corresponding edge
point is placed at the edge midpoint:

ei+1
j =

vi +ei
j

2
: (8)

The rule to use when placing vertex points depends on the number
of sharp edges incident at the vertex. A vertex with one sharp edge
is called a dart and is placed using the smooth vertex rule from
Equation 2. A vertexvi with two incident sharp edges is called a
crease vertex. If these sharp edges areei

j v
i andviei

k, the vertex point

vi+1 is positioned using the crease vertex rule:

vi+1 =
ei

j +6vi +ei
k

8
: (9)

The sharp edge and crease vertex rules are such that an isolated
crease converges to a uniform cubic B-spline curve lying on the
limit surface. A vertexvi with three or more incident sharp edges
is called a corner; the corresonding vertex point is positioned using
the corner rule

vi+1 = vi (10)

meaning that corners do not move during subdivision. See
Hoppeet. al. [10] and Schweitzer [15] for a more complete dis-
cussion and rationale for these choices.

Hoppeet. al. found it necessary in proving smoothness proper-
ties of the limit surfaces in their Loop-based scheme to make further
distinctions between so-called regular and irregular vertices, and
they introduced additional rules to subdivide them. It may be nec-
essary to do something similar to prove smoothness of our Catmull-
Clark based method, but empirically we have noticed no anamolies
using the simple strategy above.

B General semi-sharp creases

Here we consider the general case where a crease sharpness is al-
lowed to be non-integer, and to vary along the crease. The follow-
ing procedure is relatively simple and strictly generalizes the two
special cases discussed in Section 3.

We specify a crease by a sequence of edgese1;e2; ::: in the con-
trol mesh, where each edgeei has an associated sharpnessei :s. We
associate a sharpness per edge rather than one per vertex since there
is no single sharpness that can be assigned to a vertex where two or
more creases cross.2

2In our implementation we do not allow two creases to share an edge.



ea eceab ebc

eb

Figure 13: Subedge labeling.

During subdivision, face points are always placed at face cen-
troids. The rules used when placing edge and vertex points are
determined by examining edge sharpnesses as follows:

� An edge point corresponding to a smooth edge (i.e,e:s= 0) is
computed using the smooth edge rule (Equation 1).

� An edge point corresponding to an edge of sharpnesse:s>= 1
is computed using the sharp edge rule (Equation 8).

� An edge point corresponding to an edge of sharpnesse:s< 1 is
computed using a blend between smooth and sharp edge rules:
specifically, letvsmoothandvsharpbe the edge points computed
using the smooth and sharp edge rules, respectively. The edge
point is placed at

(1�e:s)vsmooth+e:svsharp: (11)

� A vertex point corresponding to a vertex adjacent to zero or
one sharp edges is computed using the smooth vertex rule
(Equation 2).

� A vertex point corresponding to a vertexv adjacent to three
or more sharp edge is computed using the corner rule (Equa-
tion 10).

� A vertex point corresponding to a vertexv adjacent to two
sharp edges is computed using the crease vertex rule (Equa-
tion 9) if v:s� 1, or a linear blend between the crease vertex
and corner masks ifv:s< 1, wherev:s is the average of the
incidence edge sharpnesses.

When a crease edge is subdivided, the sharpnesses of the result-
ing subedges is determined using Chaikin’s curve subdivision algo-
rithm [3]. Specifically, ifea, eb, ec denote three adjacent edges of
a crease, then the subedgeseab andebc as shown in Figure 13 have
sharpnesses

eab:s = max(
ea:s+3eb:s

4
�1;0)

ebc:s = max(
3eb:s+ec:s

4
�1;0)

A 1 is subtracted after performing Chaikin’s averaging to ac-
count for the fact that the subedges (eab;ebc) are at a finer level than
their parent edges (ea;eb;ec). A maximum with zero is taken to
keep the sharpnesses non-negative. If eitherea or eb is infinitely
sharp, theneab is; if either eb or ec is infinitely sharp, thenebc
is. This relatively simple procedure generalizes cases 1 and 2 de-
scribed in Section 3. Examples are shown in Figures 9 and 10.

C Smoothness of scalar fields

In this appendix we wish to sketch a proof that a scalar fieldf is
smooth as a function on a subdivision surface wherever the surface
itself is smooth. To say that a function on a smooth surfaceS is
smooth to first order at a pointp on the surface is to say that there

exists a parametrizationS(s;t) for the surface in the neighborhood
of psuch thatS(0;0) = p, and such that the functionf (s;t) is differ-
entiable and the derivative varies continuously in the neighborhood
of (0;0).

The characteristic map, introduced by Reif [14] and extended by
Zorin [19], provides such a parametrization: the characteristic map
allows a subdivision surfaceS in three space in the neighborhood
of a pointp on the surface to be written as

S(s;t) = (x(s;t);y(s;t);z(s;t)) (12)

whereS(0;0) = p and where each ofx(s;t), y(s;t), andz(s;t) is
once differentiable if the surface is smooth atp. Since scalar fields
are subdivided according to the same rules as thex;y, andzcoordi-
nates of the control points, the functionf (s;t) must also be smooth.
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