Terrain Level Of Detail

Martin Reddy
Contents

- Background
 - History, applications, data sizes

- Important Concepts
 - regular grids v TINs, quadtrees v bintrees, out-of-core paging, web streaming

- Implementations
 - Lindstrom 96, Duchaineau 97, Röttger 98, Hoppe 98, DeFloriani 00, Lindstrom 01

- Further resources
Background

- One of the first real uses of LOD
- Important for applications such as
 - Flight simulators
 - Terrain-based computer games
 - Geographic Information Systems (GIS)
 - Virtual tourism, real-estate, mission planning
- Sustained R&D since the 1970s
- Other terms include
 - *generalization* (GIS)
Screenshot of the Grand Canyon with debug view using the Digital Dawn Toolkit, now incorporated into Crystal Space
Terrain LOD vs Generic LOD

- **Terrain is easier...**
 - Geometry is more constrained
 - Normally uniform grids of height values
 - More specialized and simpler algorithms

- **Terrain is more difficult...**
 - Continuous and very large models
 - Simultaneously very close and far away
 - Necessitates view-dependent LOD
 - Often requires paging from disk (out-of-core)
Large Terrain Databases

- **USGS GTOPO30**
 - 30 arc-second (~1 km) resolution elevation
 - 43,200 x 21,600 = 1.8 billion triangles

- **NASA EOS satellite ASTER**
 - 30-m resolution elevation data
 - from 15-m near infrared stereo imagery

- **USGS National Elevation Dataset (NED)**
 - 50,000 quads at around 50 GB
Regular Grids

- Uniform array of height values
- Simple to store and manipulate
- Encode in raster formats (DEM, GeoTIFF)
- Easy to interpolate to find elevations
- Less disk/memory (only store z value)
- Easy view culling and collision detection
- Used by most implementers
TINs

- Triangulated Irregular Networks
- Fewer polygons needed to attain required accuracy
- Higher sampling in bumpy regions and coarser in flat ones
- Can model maxima, minima, ridges, valleys, overhangs, caves
- Used by Hoppe 98 & DeFloriani 00
Quadtrees and bintrees
Terminology
- binary triangle tree (bintree, bintritree, BTT)
- right triangular irregular networks (RTIN)
- longest edge bisection

Easier to avoid cracks and T-junctions

Neighbor is never more than 1 level away

Used by Lindstrom 96 & Duchaineau 97
Avoiding T-junctions
Out-of-core operation

- Virtual memory solutions
 - `mmap()` used by Lindstrom 01
 - `VirtualAlloc()` / `VirtualFree()` used by Hoppe 98
- Explicit paging from disk
 - NPSNET (NPS): Falby 93
 - VGIS (GVU): Davis 99
 - OpenGL Performer Active Surface Def (ASD)
 - SGI InfiniteReality (IR) Clipmapping
Streaming over the Web

- TerraVision (SRI) – Leclerc 94, Reddy 99
Texture issues

- Need to handle paging of imagery as well as geometry (satellite imagery resolution is generally greater than elevation resolution)
- Hardware support for paging (clipmaps)
- Detail textures for close-to-ground detail
- Texture compression useful?
One of first real-time view-dependent algorithms, referred to as continuous LOD (CLOD)

Regular grid, bintree, quadtree blocks
- Mesh broken into rectangular blocks with a top-down coarse-grained simplification
- Then per-vertex simplification performed within each block

Frame-to-frame coherence:
- Maintain an active cut of blocks
- Only visit vertices if could change in frame
Lindstrom et al. 1996

- Vertex removal scheme
- Merge based upon a measure of screen-space error between the two surfaces, δ
- Used nonlinear mapping of δ to represent 0..65535 in only 8-bits
Lindstrom et al. 1996

Hunter-Liggett
US Army base
2-m res
8 x 8km
32 M polys
Lindstrom et al. 1996

Real-Time, Continuous Level of Detail Rendering of Height Fields
Real-time Optimally Adapting Meshes (ROAM)

- Regular grid, bintree, 2 priority queues:
 - 1 priority-ordered list of triangle splits
 - 1 priority-ordered list of triangle merges

- Frame coherence
 - pick up from previous frame’s queue state

- Very popular with source code and implementation nodes available
- Principal metric was screen-based geometric error with guaranteed bound on the error
- Hierarchy of volumes called wedgies
Extended Lindstrom’s CLOD work

Regular grid, quadtree, top-down

World space metric considered:
 – viewer distance & terrain roughness

Integrated vertex geomorphing

Deal with tears by skipping center vertex of higher resolution adjacent edge
Röttger et al. 1998

Hawai‘i
Hoppe 1998

- View-Dependent Progressive Meshes (VDPM) from Hoppe 97 applied to terrain
- TIN-based, out-of-core (VirtualAlloc/Free)
- Integrated vertex geomorphing
- Tears between blocks avoided by not simplifying at block boundaries
- Notes that larger errors can occur between grid points and precomputes maximum height deviations
Hoppe 1998

Grand Canyon, Arizona

4,097 x 2,049

8 x 4 blocks of 513 x 513
DeFloriani et al. 2000

- VARIANT. Uses Multi-Triangulation (MT)
- General TIN approach applied to terrain
- Plug in different simp. & error routines
- Supports analyses: visibility, elevation along a path, contour extraction, viewshed
- Frame coherence (use previous state)
- Freely available C++ library for MT
Visualization of Large Terrains Made Easy

- Regular gridded, top-down, bintree
- Out-of-core with mmap() and spatial org.
- Fast hierarchical culling, triangle stripping, and optional multithreading of refinement and rendering tasks
- Uses a nesting of error metric terms (bounding spheres)
Puget Sound, Washington
16,385 x 16,385
512 MB
Further Resources

- Virtual Terrain Project (VTP)
 - http://www.vterrain.org/
- Large terrain databases:
 - http://www.cc.gatech.edu/projects/large_models/
- Source code links (ROAM, VTP, MT, etc.)
 - http://www.LODBook.com/
- “LOD for 3D Graphics”, Chapter 7