
Pixar Technical Memo 13-01

Correlated Multi-Jittered Sampling
Andrew Kensler

March 5, 2013

We present a new technique for generating sets of stratified samples on the

unit square. Though based on jittering, this method is competitive with low-

discrepancy quasi-Monte Carlo sequences while avoiding some of the struc-

tured artifacts to which they are prone. An efficient implementation is pro-

vided that allows repeatable, random access to the samples from any set

without the need for precomputation or storage. Further, these samples can

be either ordered (for tracing coherent ray bundles) or shuffled (for combin-

ing without correlation).

Introduction

Image synthesis techniques requiringMonteCarlo integration frequentlyneed
to generate uniformly distributed samples within the unit hypercube. The
ideal sample generation method will maximize the variance reduction as the
numberof samples increases. Stratiଃcationvia jitteringࣝ is one simple, tractable, ࣝR. L. Cook. Stochastic sampling in computer

graphics. ACM Transactions on Graphics,
5(1):51–72, January 1986.

well known and well understood technique for generating samples, though
there are other methods.

Of these, low-discrepancy quasi-Monte Carlo (QMC) sequences such as
Sobol’s (0,2) sequenceࣞ and the Larcher-Pillichshammer sequenceࣟ have be- ࣞI. M. Sobol’. On the distribution of points in

a cube and the approximate evaluation of inte-
grals. USSR Computational Mathematics and
Mathematical Physics, 7(4):86–112, 1967.

ࣟG. Larcher and F. Pillichshammer. Walsh se-
ries analysis of the Lݟ-discrepancy of symmetri-
sized point sets. Monatsheرe für Mathematik,
132:1–18, April 2001.

come quite popular for their deterministic generation and improved variance
reduction versus jitter. See Kollig and Keller࣠ for an overview. Many QMC

࣠T. Kollig and A. Keller. Eଅcient multidimen-
sional sampling. Computer Graphics Forum,
21(3):557–563, September 2002.

sampling methods also oଂer easy random access to shuଆed sets of samples.
This makes it easy to “pad” or combine together samples from several decor-
related lower-dimensional distributions into a single higher-dimensional sam-
ple (e.g., combining image samples, lens samples, material samples, and light
samples) whereas the equivalent shuଆing of jittered samples typically requires
enumerating the full set ଃrst. Unfortunately,QMCmethods can alsobeprone
to structured artifacts.

Therefore we seek an alternative that combines the robust foundation of
jittered sampling with the beneଃts of QMC. Our new approach is based on
three main contributions: ଃrst, a modiଃcation to Chiu et al’s multi-jittered
sampling࣡ that greatly improves the convergence rate. Second, a way to gener- ࣡K. Chiu, P. Shirley, and C.Wang. Multi-jittered

sampling. In Graphics Gems IV, chapter V.4,
pages 370–374. Academic Press, May 1994.

ate patterns with arbitrary sample counts (including prime numbers) without
noticeable gaps or clumps. Finally, we provide an implementation that builds
a pseudorandom permutation function out of a reversable hash. This allows
us to compute any arbitrary sample directly from its index and a pattern index.

Multi-Jittered Sampling

In 2D, jittered sampling stratiଃes a set ofN samples by dividing the unit square
into equal area cells using an m × n grid (where N = mn and m ≈ n) and
randomly positioning a single sample within each cell. This reduces clump-
ing since samples can only clump near the cell boundaries; no more than four
samples can ever clump near a given location.

1

However, jittering suଂers when these samples are projected onto the X- or
Y-axis. In this case, we eଂectively have onlym or n strata rather thanN. This
can greatly increase the variance at edges, especially when they are nearly axis-
aligned. TheN-rooks samplingpattern࣢ ଃxes this by jittering independently in ࣢P. Shirley. Discrepancy as a quality measure for

sample distributions. In Eurographics ’91, pages
183–193, September 1991.

each dimension, shuଆing the samples from one of the dimensions, and then
pairing the samples from each dimension. This gives the full N strata when
projecting onto an axis, but may result in more clumping in 2D.

Figure 1: The canonical arrangement. Heavy
lines show the boundaries of the 2D jitter cells.
Light lines show the horizontal and vertical sub-
strata of N-rooks sampling. Samples are jittered
within the subcells.

Chiu et al’s multi-jittered sample pattern achieves both of these properties
simultaneously. Each cell and each horizontal or vertical substratum is occu-
pied by a single jittered sample. Their method for producing these samples
begins by placing them in an ordered, “canonical” arrangement as shown in
Figure 1:

Listing 1: Producing the canonical arrangement.
ݾ for (int j = 0; j < n; ++j) {
ݿ for (int i = 0; i < m; ++i) {
ހ p[j * m + i].x = (i + (j + drand48()) / n) / m;
ށ p[j * m + i].y = (j + (i + drand48()) / m) / n;
ނ }
ރ }

The next step shuଆes the arrangement. First, the X coordinates in each
column of 2D cells are shuଆed. Then, the Y coordinates in each row are shuf-
଄ed:

Listing 2: Shuଆing the canonical arrangement.
ݾ for (int j = 0; j < n; ++j) {
ݿ for (int i = 0; i < m; ++i) {
ހ int k = j + drand48() * (n - j);
ށ std::swap(p[j * m + i].x,
ނ p[k * m + i].x);
ރ }
ބ }
ޅ for (int i = 0; i < m; ++i) {
ކ for (int j = 0; j < n; ++j) {
އݾ int k = i + drand48() * (m - i);
ݾݾ std::swap(p[j * m + i].y,
ݿݾ p[j * m + k].y);
ހݾ }
ށݾ }

Figure 2: A multi-jittered sampling pattern.

Figure 2 shows an example of the result. The shuଆe preserves the 2D jitter
and the N-rooks properties of the original canonical arrangement. The result
is slightly better than plain jitter, but still shows a degree of clumpiness and
unevenness in the distribution of samples.

Correlated Multi-Jittered Sampling

Our key observation is that a small tweak to the shuଆing strategy can make a
dramatic improvement to the sample distribution: apply the same shuଆe to
the X coordinates in each column, and apply the same shuଆe to the Y coordi-
nates in each row. Listing 2 can be trivially changed to accomplish this simply
by exchanging line 2 with 3, and line 9 with 10.

Figure 3: With correlated shuଆing.

This change greatly reduces the clumpiness as shown by the example pat-
tern in Figure 3. There is a still a randomness to the position of the samples
but they are much more evenly distributed throughout the unit square. The
correlation in the shuଆes means that each sample is now roughly m/ݞ apart

2

horizontally from its neighbors to the leތ and right in the 2D jitter cells and n/ݞ
apart vertically from its top and bottom neighbors (though they have greater
lateral freedom in the relative placement). The only chance for clumping is
from samples in diagonally connected jitter cells and because of the nature of
the initial pattern and the special shuଆing, nomore than two pairs of samples
within a patternmay ever be in directly diagonally neighboring subcells. Note
that these properties hold even under toroidal shiތs.

Figure 4: Irregular sample counts (N = ݤݞ in
this example) by stretching and clipping.

IfN is prime or otherwise not easily factored intom and n, there is a slight
variation on the above algorithm that works very well. Choose m and n by
rounding up such that N ≤ mn but they are otherwise as close to equal as
possible. Then stretch the pattern along one axis by mn/N and clip the last
mn − N samples (which should now be outside the unit square) from the
end. This is illustrated in Figure 4. The remaining samples are evenly spaced
along the stretched axis. Though this produces gaps in the substrata along the
other axis, they will tend to be well distributed. It can also also result in minor
clumping of the samples when wrapping the stretched axis toroidally.

Results of Sampling on the Square

Figure 5 shows an example of correlated multi-jittered sampling in use in a di-
rect lighting test. Here, it compares favorably to jittered andQMC techniques
for sampling an area light source; it is less noisy than the standard jittered sam-
pling and avoids the structured artifacts seenwith the Larcher-Pillichshammer
sampling.

Figure 5: Sampling a square area light. Rendered using 1 image sample and 25 light samples per pixel with per-pixel scrambling. The light-blockers are
hidden to the camera. From top to bottom: standard jitter, Larcher-Pillichshammer, and correlated multi-jittered sampling.

3

Figure 6: Larcher-Pillichshammer points. Light
lines are at N/ݞ intervals.

The cause of the artifacts for Larcher-Pillichshammer is shown in Figure 6;
each sample falls at a regular N/ݞ interval along one axis (X in this case). This
property is sharedwithHammersley sampling and it is part ofwhat gives them
such low discrepancy. Presumably, adding jitter could help with this, albeit at
the cost of increasing noise. Alternatively, instead of using per-pixel scram-
bling to produce a unique pattern at each pixel, some sampling patterns may
be stretched over the entire image and used to produce all of the samples.
This strategy can still alias, however (e.g., using the Halton sequence for im-
age plane samples with an inଃnite checkerboard plain sceneࣣ). In general, low-

ࣣM. Pharr and G. Humphreys. Physically Based
Rendering: From Theory To Implementation.
Morgan Kaufmann, 2nd edition, 2010.

discrepancy QMC sequences trade a higher potential for structured artifacts
against faster convergence.

The convergence rate of these and other sampling patterns in the above
scene is shown in Figure 7. Here, variance is measured as the mean squared
error relative to a reference image computed using 16384 jittered light samples
per pixel. Above 25 samples per pixel, correlated multi-jittering generally out-
performs all other methods except for the Larcher-Pillichshammer sequence.

10-8

10-7

10-6

10-5

10-4

10-3

 1 10 100 1000

Va
ri

an
ce

Samples per Pixel

Uniform random
Jittered

Multi-jittered
Sobol's (0,2)

Correlated multi-jittered
Larcher-Pillichshammer

Figure 7: Samples per pixel versus variance in the above rectangular light source test scene.

Similar measurements were done on scenes that tested other applications
including the sampling of disk area lights, uniform- and cosine-weightedhemi-
spheres for BRDFs, image plane positions for antialiasing, and lens positions
for depth of ଃeld. All showed the variance with correlated multi-jittering to
be competitive with Sobol’s (0,2) sequence and occasionally competitive with
the Larcher-Pillichshammer sequence. However, Sobol’s sequence has an ad-
vantage in that it does not require a bound on the number of samples to be
known ahead of time and that it is hierarchical (i.e., the initial points in the
sequence are well distributed) which can simplify progressive rendering.

Pattern Discrepancy
Uniform random ݢݤݟݧ.ݧ
N-rooks ݦݢݞݧ.ݧ
Poisson disk ݧݢݞݧ.ݧ
Jittered ݞݧ.ݧ ݧݞ
Multi-jittered ݦݢݧݧ.ݧ
Halton ݠݢݧݧ.ݧ
Sobol’s (0,2) ݤݡݧݧ.ݧ
Correlated multi-jittered ݟݡݧݧ.ݧ
Hammersley ݧݠݧݧ.ݧ
Larcher-Pillichshammer ݞݟݧݧ.ݧ

Table 1: Patterns ordered by decreasing star dis-
crepancy.

Table 1 shows the results of our ଃnal evaluation method: for a number
of diଂerent pattern generation algorithms, an example point set containing

4

1600 points on the unit square was generated and the star discrepancyࣤ was ࣤE. Thiémard. An algorithm to compute bounds
for the star discrepancy. Journal of Complexity,
17(4):850–880, September 2001.

estimated to within 0.0001. The relative ranking here corresponds well to the
ranking seen in Figure 7. In this test, correlated multi-jittered sampling had
lowerdiscrepancy thanHalton andSobol, the twohierarchical low-discrepancy
sequences. Note that low discrepancy does not guarantee a good image how-
ever; the two lowest discrepancy patterns here are also the two most prone to
the artifact seen in Figure 5.

Results of Sampling on the Disk

Figure 8: Polar warp with m = ,ݟݞ n = .ݠݞ
Heavy lines show the edges from the original
unit square. Light lines show the boundaries of
the 2D jitter cells.

Because sampling disks and hemispheres are so crucial to BRDFs, we repeated
the variance measurements using several methods for uniformly sampling a
disk. The simplest of these approaches would be to assume that m ≈ n ≈√
N as for sampling a square and then warp the samples from (x, y) in the

square to polar coordinates on the disk with (θ, r) = πx,√yݟ)). Figure 8
shows an example of this. Note that the “seam” in themapping is well hidden
because the sample pattern wraps toroidally.

Figure 9: Polar warp withm = ,ݟݟ n = .ݤ

Avariation fromWardandHeckbertࣥ uses standard jitteringwith the same

ࣥG. J. Ward and P. S. Heckbert. Irradiance gradi-
ents. In Third Eurographics Rendering Work-
shop, pages 85–98, May 1992.

square-to-disk polarmapping, but chooses the number of 2D jitter cells so that
m ≈ πn in order to stratify more strongly along the axis used for the angular
component. This is perfectly doable with our correlatedmulti-jittering as well
and an example of the result is shown in Figure 9.

Figure 10: “Concentric” diskmappingwithm =
,ݟݞ n = .ݠݞ

The last approach that we tested, illustrated in Figure 10, was to use the
originalm ≈ n ratio, but instead of the simple polar mapping we used Shirley
and Chiu’sࣝࣜ low distortion “concentric” disk mapping.

ࣝࣜP. Shirley and K. Chiu. A low distortion map
between disk and square. Journal of Graphics
Tools, 2(3):45–52, 1997.

Surprisingly, the simpler polarmapping consistently outperformedShirley
and Chiu’s mapping in terms of variance when used with our sampling algo-
rithm. Of the two jitter stratiଃcation ratios, m ≈ n appeared to give slightly
better results for sampling hemispheres (both uniformly and cosine weighted)
whilem ≈ πn was the slightly better ratio for soތ shadows from disk shaped
area light sources. Note that the exact ratio is somewhat less relevant to corre-
lated multi-jittering when compared to standard jittering due to the N-rooks
property of the former; regardless of the actual ratio, the samples will be dis-
tributed intoN stratawhenprojectedonto theX-orY-axis. It is still important
to maintaining the average 2D distance between the points, however.

Pseudorandom Permutations

The previously describedmethod for generating correlatedmulti-jittered sam-
ples suଅces if we wish to generate all the samples in a given pattern at once.
For practical reasons, however, we alsowant to be able to deterministically and
repeatably compute an arbitrary sample out of the set ofN in a given pattern.
These samples may be needed in any order and some samples may never actu-
ally be needed.

The diଅculty, then, arises mainly from the random shuଆes on m or n
elements at a time. As a shuଆe is equivalent to indexing through a random
permutation vector, we can reduce this to needing to eଅciently compute the
element at position i in a random permutation vector of length l where the
value p is used to select one of the l ! possible permutations.

Interestingly, it turns out that this is a problem well studied in cryptog-
raphy. For example, a 128-bit block cipher such as the Advanced Encryption

5

Standardࣝࣝ divides the plain text into 128-bit blocks and maps these through ࣝࣝNational Institute of Standards andTechnology.
Speciଃcation for theAdvanced Encryption Stan-
dard (AES). Federal Information Processing
Standards Publication (FIPS 197), 2001.

a permutation selected by bits from the key. It must be a permutation to be
decryptable, and it must be statistically indistinguishable from a random per-
mutation in order to be strong against an adversary.

Unfortunately, the domain of most block ciphers is much larger than we
need. “Format preserving”, “data preserving”, or “small block” encryption at-
tempts to address the need for smaller domains but can be quite expensive in
time or space due to the need to withstand an adversary. Nonetheless, some
of the concepts will prove useful.

For a simpler, faster method we turn to hash functions. Several of the ele-
mentary functions used to create hash functions are reversible:ࣝࣞ ࣝࣞB. Mulvey. Hash functions. http://home.

comcast.net/~bretm/hash/, 2007.
hash ^= constant;
hash *= constant; // if constant is odd
hash += constant;
hash -= constant;
hash ^= hash >> constant;
hash ^= hash << constant;
hash += hash << constant;
hash -= hash << constant;
hash = (hash << constant) | (hash >> (wordsize-constant));

Thesebitwise operations are reversible for anypower-of-two sizeddomain.
Given this, a hash function composed entirely of such operations must be a
permutation. Of these, the second and ଃތh operations in the list are less triv-
ial to reverse. The former is also good formixing the lower bits into the higher
bits of the hash while the later is good for mixing the higher bits back into the
lower bits.

We can evaluate the quality of a hash function by the “avalanche” prop-
erty:ࣝࣟ for any input, ଄ipping any single bit of the input should, on average, ࣝࣟH. Feistel. Cryptography and computer privacy.

Scientific American, 228(5):15–23, May 1973.cause half of the output bits to ଄ip. Using a hill-climbing optimization pro-
gram to generate candidate hashes and evaluate them by the avalanche prop-
erty, we have found a short hash function composed only of reversible oper-
ations that achieves good results at word sizes between 33 and 59 bits. Allot-
ting 32 bits to choose a permutation, this allows us random permutations on
power-of-two-sized domains up to 2ࣣࣞ.

If the size of the permutation vector, l, is not a power of two we can use a
technique called cycle walking:ࣝ࣠ we map a pseudorandom permutation with ࣝ࣠J. Black and P. Rogaway. Ciphers with arbitrary

ଃnite domains. Topics in Cryptoloॹ – CT-RSA
2002, pages 114–130, February 2002.

a larger domain to a smaller one by iteratively applying the larger permutation
until we get a value within the range of the smaller. So long as the initial value
is within the smaller range, this is guaranteed to terminate with an expected
number of iterations proportional to the ratio of their sizes. In this case, we can
round l up to the next power of two and so the expected number of iterations
will always be fewer than two.

In short, our pseudorandom permutation function looks like this:

Listing 3: A pseudorandom permutation function.
ݾ unsigned permute(unsigned i, unsigned l, unsigned p) {
ݿ unsigned w = l - 1;
ހ w |= w >> 1;
ށ w |= w >> 2;
ނ w |= w >> 4;
ރ w |= w >> 8;
ބ w |= w >> 16;
ޅ do {
ކ i ^= p; i *= 0xe170893d;
އݾ i ^= p >> 16;

6

http://home.comcast.net/~bretm/hash/
http://home.comcast.net/~bretm/hash/

ݾݾ i ^= (i & w) >> 4;
ݿݾ i ^= p >> 8; i *= 0x0929eb3f;
ހݾ i ^= p >> 23;
ށݾ i ^= (i & w) >> 1; i *= 1 | p >> 27;
ނݾ i *= 0x6935fa69;
ރݾ i ^= (i & w) >> 11; i *= 0x74dcb303;
ބݾ i ^= (i & w) >> 2; i *= 0x9e501cc3;
ޅݾ i ^= (i & w) >> 2; i *= 0xc860a3df;
ކݾ i &= w;
އݿ i ^= i >> 5;
ݾݿ } while (i >= l);
ݿݿ return (i + p) % l;
ހݿ }

The other piece that we will need (for repeatable jittering within the sub-
strata) is away tomap an integer value to a pseudorandom଄oating point num-
ber in the [0,1) interval where the sequence is determined by a second inte-
ger. Again using hill-climbing to evaluate candidate hash functions for the
avalanche property we found the following to work well:

Listing 4: A pseudorandom ଄oating point number generator.
ݾ float randfloat(unsigned i, unsigned p) {
ݿ i ^= p;
ހ i ^= i >> 17;
ށ i ^= i >> 10; i *= 0xb36534e5;
ނ i ^= i >> 12;
ރ i ^= i >> 21; i *= 0x93fc4795;
ބ i ^= 0xdf6e307f;
ޅ i ^= i >> 17; i *= 1 | p >> 18;
ކ return i * (1.0f / 4294967808.0f);
އݾ }

Implementation

Given these pieces, we can now construct a function that eଅciently computes
a repeatable arbitrary sample s from a set ofN = mn samples in the pattern p
without requiring signiଃcant precomputation or storage:

Listing 5: Computing an arbitrary sample from a correlated multi-jittered pattern.
ݾ xy cmj(int s, int m, int n, int p) {
ݿ int sx = permute(s % m, m, p * 0xa511e9b3);
ހ int sy = permute(s / m, n, p * 0x63d83595);
ށ float jx = randfloat(s, p * 0xa399d265);
ނ float jy = randfloat(s, p * 0x711ad6a5);
ރ xy r = {(s % m + (sy + jx) / n) / m,
ބ (s / m + (sx + jy) / m) / n};
ޅ return r;
ކ }

Essentially, thismaps s to its 2D jitter cell and then oଂsets it within that cell
to the appropriate substratum in X by the permutation of its cell coordinate
in Y and vice-versa. A small bit of additional random jitter is also added to its
position in the substratum. With higher sample counts (e.g., N ≥ ,(ݡݣ this
may be removed to slightly reduce the variance. For lower sample counts, it is
necessary for avoiding structured artifacts. If strict repeatability is not needed,
the randfloat() function may be omitted and calls to it replaced with calls
to drand48() or similar.

Note that this function produces samples in roughly scan-line order by jit-
ter cell as s increases. Thismay actually be desirable for ray coherence. Further-
more, this makes it straightforward to enumerate the samples from within a

7

subregion of the full pattern. If the ordering is not wanted, an additional per-
mutation step on s can be added to decorrelate corresponding samples from
diଂerent patterns.

With a small variation, we can also easily implement the stretching and
clippingmethod previously described for handling irregularN. The following
modiଃes the previous function to compute a suitablem andnwith aspect ratio
a and apply the stretch and clip. It also shuଆes the samples’ order:

Listing 6: The ଃnal sampling code.
ݾ xy cmj(int s, int N, int p, float a = 1.0f) {
ݿ int m = static_cast<int>(sqrtf(N * a));
ހ int n = (N + m - 1) / m;
ށ s = permute(s, N, p * 0x51633e2d);
ނ int sx = permute(s % m, m, p * 0x68bc21eb);
ރ int sy = permute(s / m, n, p * 0x02e5be93);
ބ float jx = randfloat(s, p * 0x967a889b);
ޅ float jy = randfloat(s, p * 0x368cc8b7);
ކ xy r = {(sx + (sy + jx) / n) / m,
އݾ (s + jy) / N};
ݾݾ return r;
ݿݾ }

Finally, note that though the code shownhere is aimed at conciseness rather
than speed, most C++ compilers do a good job of optimizing it bymoving in-
variants out of the loop when computing a pattern’s worth of samples at a
time; we can get 16.9M samples/s on a single 2.8GHz Xeon X5660 core with
ICC 12.1. Computing a single sample at a time (as for path tracing), however,
tends to defeat this and force recomputation of the invariants. Manually cre-
ating a small thread-local single-item cache that recomputes the permutation
masks and multiplicative inverses only whenN truly does change can provide
a signiଃcant speed improvement.

Conclusion

We have presented a modiଃcation to jittering and multi-jittering that greatly
reduces the noise in rendered images at higher sample counts while gracefully
degrading to unstructured noise at low sample counts. The provided imple-
mentation iswell suited for parallel environments: it produces repeatable sam-
ples, is ଄exible with respect to sample ordering, and allows for eଅcient sam-
pling from subregions of a full pattern. It will be the foundation for stratiଃed
sampling in Pixar’s RenderMan Pro Server begining with version 18.0.

While the focus of this work has been on 2D, the functions permute()
and randfloat() can trivially be used for shuଆed 1D jittered sampling as
well. The ease of shuଆingmakes generating higher dimensional samples from
combinations of 1D and 2D samples quite straightforward. Nonetheless, we
are currently exploring generalizations of the algorithm to 3D and above.

Other areas for future work include modifying the shuଆing of the sam-
ples’ order to visit well-spaced samples ଃrst. This would make the sample se-
quence hierarchical and improve the initial feedback in progressive rendering.
We would also like to consider spatially-varying sample densities, arbitrary di-
mensional samples (for paths), and mapping sample patterns over entire im-
ages rather than individual pixels.

The authorwishes to thank themembers of theRenderMan team for their
help on this project, especially PerChristensenwho commentedon early draތs
of this paper. LeonhardGrünschloß ofWeta also provided helpful comments.

8

	Introduction
	Multi-Jittered Sampling
	Correlated Multi-Jittered Sampling
	Results of Sampling on the Square
	Results of Sampling on the Disk
	Pseudorandom Permutations
	Implementation
	Conclusion

