
Phong Deformation: A better 𝐶0 interpolant for embedded deformation

DOUG L. JAMES, Pixar Animation Studios and Stanford University

Physics-based simulations of deforming tetrahedral meshes are widely used
to animate detailed embedded geometry. Unfortunately most practitioners
still use linear interpolation (or other low-order schemes) on tetrahedra,
which can produce undesirable visual artifacts, e.g., faceting and shading
artifacts, that necessitate increasing the simulation’s spatial resolution and,
unfortunately, cost.

In this paper, we propose Phong Deformation, a simple, robust and practical
vertex-based quadratic interpolation scheme that, while still only𝐶0 contin-
uous like linear interpolation, greatly reduces visual artifacts for embedded
geometry. The method first averages element-based linear deformation mod-
els to vertices, then barycentrically interpolates the vertex models while also
averaging with the traditional linear interpolation model. The method is a
fast, robust, and easily implemented replacement for linear interpolation that
produces visually better results for embedded deformation with irregular
tetrahedral meshes.
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1 INTRODUCTION
Physics-based animations of detailed geometric models are often
performed by embedding the latter in simulated tetrahedral meshes,
with coarse tetrahedral meshes used for speedwhenever possible. By
far the most common approach for transferring deformations from
tetrahedral simulation meshes to high-resolution embedded meshes
is linear interpolation within each tetrahedron, and for good reason:
it is simple, fast, and trivial to implement. Unfortunately, linear
interpolation produces only 𝐶0 continuous displacement fields that
have unsightly visual artifacts, such as faceting, in deformations and
shading (see Figure 1). Popular alternatives, such as kernel-based
scattered data interpolation schemes like Houdini’s “attribute trans-
fer” [SideFX 2020] can reduce faceting but introduce other artifacts.
Animators seeking to avoid such artifacts are forced to increase the
simulation resolution and lament the cost of FEM solvers, and/or
reduce the resolution of embedded meshes. While higher continu-
ity than 𝐶0 is not strictly necessary when deforming embedded
meshes, reducing interpolation errors for embedded deformation
would benefit practitioners everywhere.
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Fig. 1. Bad embedded deformations make simulations look worse!
(FarLeft) An elastic cylinder is stretched between two plates in this Hou-
dini FEM simulation (70,476 tetrahedra) and looks reasonable. However,
embedded deformation of a high-resolution cylinder mesh (30,720 triangles)
produces unsightly visual artifacts when using popular displacement in-
terpolants: (MidLeft) Houdini FEM’s default “attribute transfer” approach,
or (MidRight) traditional linear interpolation. Such artifacts can lead prac-
titioners to unnecessarily increase the FEM simulation resolution (which
is very costly), or decrease the tri-mesh resolution, to hide artifacts. (Far-
Right) In contrast, our proposed Phong Deformation scheme provides a fast,
high-quality embedded deformation with minimal artifacts.

In this paper, we introduce Phong Deformation, a simple and practi-
cal interpolation scheme that, while still only𝐶0 continuous, greatly
reduces visual artifacts for embedded deformations using coarse
tetrahedral meshes (see Figures 1 and 3). Phong Deformation is, like
its counterpart, linear interpolation, inherently simple, fast, robust,
and easy to implement. However it is far more effective at reducing
interpolation artifacts due to its quadratic deformation. Mathemat-
ically, a robust cell-to-vertex reconstruction is first performed to
estimate second-order-accurate deformation gradients, and related
linear deformation models, at vertices. Embedded deformation then
involves barycentrically interpolating these vertex deformers across
the element while also averaging with the traditional barycentric
(linear) interpolation model (see Figure 2). Phong Deformation is
fast, trivial to implement, affine invariant, and it produces visually
better results than linear interpolation in practice, in part because
the latter is only a second-order accurate interpolation scheme,
whereas we show that Phong Deformation can achieve third-order
accuracy, i.e.,𝑂 (ℎ2) vs𝑂 (ℎ3) truncation error. The Phong deformer
is similar to classical 10-node tetrahedral quadratic interpolants, but
its novel construction is entirely vertex based and so it avoids the
computation and storage of intermediate edge midpoint values, and
it has a simple evaluation based on barycentric interpolation of ver-
tex quantities. Finally, a key contribution is the robust regularized
estimation of vertex gradients such that Phong Deformation grace-
fully degrades from cubic- to second-order accuracy (depending on
what neighbor data is available), and never fails in practice.

ACM Trans. Graph., Vol. 39, No. 4, Article 56. Publication date: July 2020.



56:2 • D. James

Fig. 2. Overview of Phong Deformation construction

2 RELATED WORK
Embedded Deformation. Driven by increasing geometric complex-

ity and advances in computing and tetrahedral meshing [Hu et al.
2018; Labelle and Shewchuk 2007], the embedded simulation of de-
tailed geometric models using irregular tetrahedral meshes with
low-order isoparametric elements has become pervasive in com-
puter graphics, and a core part of industrial animation systems, e.g.,
Houdini’s FEM and Vellum solvers [SideFX 2020] and Ziva VFX’s
tet-embedded FEM solvers [Ziva Dynamics 2020]. Major benefits
of embedded deformation include the ability to deform arbitrary
geometric assets, and the speed that comes with using relatively
coarse simulation meshes. Fundamental research advances include
decades of real-time deformable simulations using coarse tetrahe-
dral models [Capell et al. 2002; Debunne et al. 2001; Müller and Gross
2004]; simulation support for topological changes during cutting and
fracture [Molino et al. 2004], and adaptively (re)meshed tetrahedra
for embedded modeling of elastoplastic deformations [Wicke et al.
2010; Wojtan and Turk 2008]. Embedded deformation is the central
part of lattice-based deformers [MacCracken and Joy 1996; Muller
et al. 2004; Patterson et al. 2012; Rivers and James 2007; Sederberg
and Parry 1986], coarsened simulation models [Kharevych et al.
2009; Nesme et al. 2009], and some dimensional model reduction
implementations [Barbič and James 2005].

In most works using tetrahedral meshes the embedded deforma-
tion is reconstructed using linear interpolation due to (a) its low cost
for detailed meshes, (b) its second-order accuracy (i.e., linear repro-
ducing), and (c) obviousness—the shape function often matches the
underlying isoparametric (finite element) analysis. Unfortunately,
linear interpolation can produce visual artifacts due to deforma-
tion gradient discontinuities. Limiting embedded mesh resolution,
or using subdivision [DeRose et al. 1998], or multi-resolution dis-
placement mapping [James and Pai 2003] can hide artifacts to some
extent, but do not address the core reconstruction deficiency. Alter-
native interpolation schemes include scattered data methods such
as Shepard’s interpolation (low-quality), radial basis functions (e.g.,
metaballs), and thin-plate splines [Nelles 2013; Wendland 2004].
These general-purpose methods do not exploit the tetrahedral mesh
structure, and can struggle to achieve higher-order interpolation
accuracy while remaining fast for detailed meshes, in part by using

local computations that avoid (global) linear solves at runtime. Mov-
ing Least Squares (MLS) methods [Levin 1998] can achieve local data
interpolation and𝐶∞ continuity, but require special data structures,
and are more expensive for dense volume deformations, e.g., it must
solve a linear system (and/or cache weights) at each evaluation
point. For reference, Houdini’s tetrahedral FEM and Vellum imple-
mentations [SideFX 2020] use a point-based attribute transfer (e.g.,
Point Deform SOP) scheme that involves distance-based metaball
weighting—a practical yet only first-order accurate interpolation
scheme. In contrast, our approach is meant to be simple, fast, and
local, but also third-order accurate when possible.
Generalized barycentric coordinate schemes have been devised

for interpolation on nonconvex 2D polygonal or 3D polyhedral
domains, such as Mean Value Coordinates [Floater 2003; Ju et al.
2005], Harmonic Coordinates [Joshi et al. 2007], etc. However, such
schemes are typically used with “cages” and simplify to linear in-
terpolation within a single tetrahedron, whereas we propose a 𝐶0

quadratic interpolant for vertex data on tetrahedral meshes.
In recent years, various schemes have been proposed to smoothly

deform embedded or coarsely “rigged” geometry. For example, Sum-
ner et al. [2007] proposed a general-purpose embedded deformation
model based on a graph-based mesh skinning interpolant estimated
using optimization; node deformers are similar to our linear vertex
deformers, however, the Shepard interpolation of scattered nodes is
only first-order accurate, and therefore, while smooth, it is second-
order accurate at best. Huang et al. [2008] optimizes a modified
barycentric interpolation scheme for a tetrahedral control mesh
that is analogous to a linear-blend skinning scheme with displace-
ment and transform data located at mesh vertices; the method is
best suited for low-resolution control meshes, since a linear solve is
required at each time step to solve the global optimization problem.
Unfortunately, this nonlocal nature is undesirable for simulation
applications that require detailed meshes with low per-element
reconstruction costs, e.g., the simple cylinder in Figure 1 has 70k
tetrahedra, whereas a character can have millions of elements. Re-
quiring a global matrix solve (or back substitution) just to interpolate
the solution at each timestep is a barrier to adoption in terms of
implementation overhead, and performance.

Phong Shading and Tessellation. Our method is inspired, in part,
by Phong shading [Phong 1975], and especially Phong Tessella-
tion for triangle surface deformation [Boubekeur and Alexa 2008].
The latter quadratically deforms a triangle mesh using vertex nor-
mals to reduce polygonal artifacts of coarse meshes; it amounts
to blending each barycentric triangle position with the linearly in-
terpolated position on each vertex’s tangent plane model. Phong
Deformation is analogous but performs a volumetric deformation,
with reconstructed vertex deformation gradient models replacing
vertex tangent planes; blending is performed to combine linear in-
terpolation with a blended vertex deformation model. We are able
to show formally that Phong Deformation is a third-order accurate
interpolation scheme under certain conditions. Related approaches
exist that use cubic spline patches, such as PN Triangles [Vlachos
et al. 2001], but their volumetric spline analogues are less appealing
for our problem.
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(a) Tetrahedral Embedding (b) Attribute Transfer (c) Linear Interpolation (d) Phong Deformation

Fig. 3. A bunny head shake simulated by deforming (a) a tetrahedral mesh (14,763 tets, 2796 nodes) with Houdini FEM using spring control forces (on the
face and bottom). The embedded triangle mesh (69,664 tri, 34,834 vtx) is deformed using three techniques with varying interpolation artifacts near the face
and neck regions: (b) Houdini’s default attribute transfer tends to produce irregular bumpy artifacts, (c) linear interpolation produces characteristic faceted
artifacts, and (d) Phong Deformation has faceted but significantly reduced visual artifacts. The rendered mesh is subdivided once (278k tri).

Higher-order interpolation on tetrahedral meshes. 𝐶1 and higher
continuity schemes are possible on tetrahedral meshes, and a natural
replacement for deficient𝐶0 schemes, but they are vastly more com-
plicated than linear interpolation and, unfortunately, impractical.
For example, discrete𝐶1 interpolants on tetrahedral meshes require
complex schemes to ensure continuity [Alfeld 1984, 1985], require
the user to provide both vertex data and many higher derivatives—
the latter not usually being available—and can be computationally
expensive (see [Alfeld and Sorokina 2009] for a recent comparison of
methods). Higher-order 𝐶𝑚 interpolation on tetrahedra is possible,
but requires the user provide or estimate higher-order quantities,
e.g.,𝐶2𝑚 data at vertices [Xu 2001], which is impractical in computer
animation. Furthermore, unlike in the case of higher-order inter-
polation on regular grid-based hexahedral meshes where reusable
stencils exist [Patterson et al. 2012], the significant computation and
memory overhead of estimating higher-order schemes can not be
amortized for irregular tetrahedral meshes. In contrast, we propose
a simple 𝐶0 quadratic interpolant that is more accurate than linear
interpolation, and still cheap to evaluate; the scheme interpolates
the original vertices, but only approximates gradients.
Our novel quadratic interpolant is vertex based and avoids mid-

point values used by classical 10-node quadratic interpolants on
tetrahedra [Zienkiewicz et al. 2005], which has practical benefits
such as a simpler implementation and lower memory usage (dis-
cussed further in §3.3). Other advanced visualization techniques
include data-bounded quadratic interpolants that limit interpolation

accuracy to avoid over-shooting of bounded quantities [Berzins
2000], but these are unnecessary for embedded deformation.

Higher-order deformation analysis. It is also possible to improve
the smoothness properties of the underlying deformation analysis,
such as by using higher-order finite elements. Unfortunately, for
irregular tetrahedral meshes, 𝐶1 finite elements are impractical and
rarely used, although constructions exist using ninth-degree poly-
nomials [Ženíšek 1973]. Higher-order (but still 𝐶0) finite element
deformation schemes are common in engineering and are used in
graphics, e.g., quadratic elements [Bargteil and Cohen 2014]; while
they can reduce simulation error and visual artifacts, they come
with higher simulation costs that reduce the number of elements
possible. In this work, we target the more widespread low-order
tetrahedral deformation models; we assume a deformed tetrahedral
mesh is provided, and simply attempt to improve the 𝐶0 interpo-
lation scheme used to rapidly transfer deformations to detailed
embedded geometry.

Vertex deformation gradients. Phong Deformation requires the es-
timation of vertex deformation gradients from available cell-centered
deformation gradients using appropriate cell-to-vertex weights–
analogous to weights for estimating vertex normals from facet nor-
mals [Max 1999]. Vertex deformation gradients can be estimated
from the displaced vertices of the immediately surrounding tetra-
hedra using weighted least squares, however care must be taken to
achieve robustness and second-order accuracy. In the finite volume
community, cell-vertex reconstruction methods are commonly used
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to consistently interpolate tetrahedral centroid data to vertices, that
we use to interpolate tetrahedral deformation gradients to vertices.
Second-order interpolation methods (that can reconstruct linear
polynomial functions) are commonly estimated using linear least
squares [Frink 1994; Holmes and Connell 1989; Rausch et al. 1992]
with extensions for interpolants with positive weights [Costa et al.
2014]. In this work, we adapt the variant of Chandrashekar and
Garg [2013] consisting of modified Shepard’s inverse-distance inter-
polation with weights constrained to reconstruct linear polynomial
functions, since it is sufficient and fast to precompute on the unde-
formed mesh, e.g., one 3x3 matrix solve per tet-mesh vertex.

3 PHONG DEFORMATION
In this section, we introduce the Phong Deformation model in the
context of tetrahedral meshes.

3.1 Background and Notation
Consider a tetrahedron with undeformed (material space) vertex
positions 𝑿0,𝑿1,𝑿2,𝑿3, that is deformed by a smooth function,

𝒙 = f (𝑿 ), (1)

to yield deformed vertex positions 𝒙0, 𝒙1, 𝒙2, 𝒙3, where 𝒙𝑖 = f (𝑿𝑖 ).
Linear interpolation is commonly used to approximate the defor-

mation of an interior point, 𝑿 , to its displaced position

𝒙 (𝑿 ) =
3∑

𝑖=0
𝛽𝑖 (𝑿 ) 𝒙𝑖 [Linear interpolation] (2)

where 𝛽𝑖 = 𝛽𝑖 (𝑿 ) are the barycentric coordinates such that

𝑿 =

3∑
𝑖=0

𝛽𝑖 𝑿𝑖 , and 1 =

3∑
𝑖=0

𝛽𝑖 (3)

(dropping explicit summation over 𝑖 = 0, 1, 2, 3 hereafter). Given
𝑿 , the barycentric coordinates of the embedding in an element are
precomputed by solving a 3 × 3 linear system,

(𝛽1, 𝛽2, 𝛽3) = V−1 (𝑿 − 𝑿0) (4)
𝛽0 = 1 − 𝛽1 − 𝛽2 − 𝛽3 (5)

where V is the undeformed 3 × 3 edge basis matrix,

V = [(𝑿1 − 𝑿0) (𝑿2 − 𝑿0) (𝑿3 − 𝑿0)] . (6)

We can also interpret linear interpolation 𝒙 (𝑿 ) as a linear model
in terms of the element’s 3 × 3 deformation gradient, 𝜕𝒙

𝜕𝑿 evaluated
at the cell center, 𝑭𝐶 :

f𝐶 (𝑿 ) = 𝒄 + 𝑭𝐶 (𝑿 − 𝑪), (7)

where 𝒄 =
∑
𝑖 𝒙𝑖/4 is the deformed position of the undeformed

centroid, 𝑪 =
∑
𝑖 𝑿𝑖/4. The linear tetrahedral element’s deformation

gradient is 𝑭𝐶 = v V−1, where v is the deformed edge basis matrix,

v = [(𝒙1 − 𝒙0) (𝒙2 − 𝒙0) (𝒙3 − 𝒙0)] . (8)

For general deformations, 𝑭𝐶 can be interpreted as a second-order
accurate approximation of 𝜕𝒙

𝜕𝑿 at the element’s centroid, 𝑪 .

3.2 Phong Deformer
For each vertex 𝑖 of the tetrahedron, we define a linear deformer
with vertex deformation gradient, 𝑭𝑖 , so that

f𝑖 (𝑿 ) = 𝒙𝑖 + 𝑭𝑖 (𝑿 − 𝑿𝑖 ), (9)

interpolates the deformation at vertex 𝑖 and has matching vertex
gradient.We then barycentrically interpolate these vertex deformers,
f𝑖 (𝑿 ), across the element:

f𝑉 (𝑿 ) =
∑
𝑖

𝛽𝑖 f𝑖 (𝑿 ) =
∑
𝑖

𝛽𝑖

(
𝒙𝑖 + 𝑭𝑖 (𝑿 − 𝑿𝑖 )

)
. (10)

Unfortunately it turns out that this f𝑉 (𝑿 ) interpolant is only second-
order accurate, similar to linear interpolation. Serendipitiously, by
blending these two cell- and vertex-based deformers,

(1 − 𝛼) f𝐶 (𝑿 ) + 𝛼 f𝑉 (𝑿 ), (11)

the result can be improved (analogous to the case of Phong Tessella-
tion [Boubekeur and Alexa 2008]). We show in §5 that when 𝛼 = 1/2
it actually provides a third-order accurate approximation, which is
our proposed Phong Deformation model:

fPhong (𝑿 ) ≡ f𝐶 (𝑿 ) + f𝑉 (𝑿 )
2 . (12)

Other useful forms are

fPhong (𝑿 ) = 𝒙 (𝑿 ) + f𝑉 (𝑿 )
2 =

1
2

[∑
𝑖

𝛽𝑖𝒙𝑖 +
∑
𝑖

𝛽𝑖 f𝑖 (𝑿 )
]

(13)

= 𝒙 (𝑿 ) + 1
2
∑
𝑖

𝛽𝑖 (𝑿 ) 𝑭𝑖 (𝑿 − 𝑿𝑖 ), (14)

and the piecewise linear deformation gradient,

∇ fPhong (𝑿 ) = 1
2

[
𝑭𝐶 +

∑
𝑖

(
𝛽𝑖 (𝑿 ) 𝑭𝑖 + f𝑖 (𝑿 ) ∇𝛽𝑇𝑖

)]
. (15)

3.3 Properties
𝐶0 continuous and interpolating. Since both linear interpolation

f𝐶 (𝑿 ) and the vertex model f𝑉 (𝑿 ) are 𝐶0 continuous and preserve
vertex values, 𝒙𝑖 , the Phong Deformation model is also 𝐶0 continu-
ous and preserves vertex values.

Third-order accurate. For elements of scale ℎ, traditional linear
interpolation is 𝑂 (ℎ2) accurate, whereas we show in §5 that Phong
Deformation is 𝑂 (ℎ3) accurate.

Affine invariance. Since both linear interpolation f𝐶 (𝑿 ) and the
vertex deformer f𝑉 (𝑿 ) exhibit affine invariance, i.e., the shape re-
sulting from transforming the input points f (𝑿 ; {𝑻𝒙𝑖 }) produces
the same result as transforming the output, 𝑻 f (𝑿 ; {𝒙𝑖 }), we can
conclude that the Phong Deformation result is also affine invariant.

Quadratic correction. The Phong deformer is simply a quadratic
correction (in 𝛽) to the linear interpolant (linear in 𝛽) as the correc-
tion to 𝒙 (𝑿 ) in (14) is quadratic in 𝛽 : since 𝑿 =

∑
𝑗 𝛽 𝑗𝑿 𝑗 ,

fPhong (𝑿 ) = 𝒙 (𝑿 ) + 1
2
∑
𝑖, 𝑗

𝛽𝑖𝛽 𝑗 𝑭𝑖 (𝑿 𝑗 − 𝑿𝑖 ). (16)
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Triangle Tessellation w/ Twist (1) Linear Interpolation, f𝐶 (2) Phong Deformation, fPhong (3) Blended vertex deformer, f𝑉
Fig. 4. 2D embedded deformation of a triangle tessellation using (1) linear interpolation, f𝐶 ; (2) Phong Deformation, fPhong =

f𝐶+f𝑉
2 , and (3) the blended

vertex deformer, f𝑉 . Triangle colors indicate the coarse-mesh embedding; a twist rotation (with 𝜃 ∝ 𝑟 ) is sampled at coarse nodes (in black). While all three
interpolation schemes are only𝐶0 continuous, Phong Deformation’s quadratic deformations do a better job of hiding discontinuity artifacts.

Correction only depends on variation in 𝐹𝑖 . By properties of the
barycentric coordinates (3), for any constant matrix 𝑭 ,

0 =
∑
𝑖

𝛽𝑖 (𝑿 − 𝑿𝑖 ) =
∑
𝑖

𝛽𝑖 𝑭 (𝑿 − 𝑿𝑖 ), (17)

so it follows that the quadratic correction is only sensitive to varia-
tions in the vertex deformation gradients, 𝑭𝑖 . Therefore we could
write the correction as

𝒙 (𝑿 ) + 1
2
∑
𝑖

𝛽𝑖 Δ𝑭𝑖 (𝑿 − 𝑿𝑖 ) (18)

for, e.g., Δ𝑭𝑖 = 𝑭𝑖 − 𝑭𝐶 on a tetrahedron, to illustrate that only gra-
dient changes contribute to the quadratic correction. Consequently,
if all vertex gradients are equal, the quadratic correction is zero, and
Phong Deformation simplifies to linear interpolation.

Half-gradient interpretation. Interestingly, the Phong Deforma-
tion model can be interpreted as the interpolated linear vertex de-
former model f𝑉 (𝑿 ) in (10), but with “half-gradients,” 𝑯𝑖 = 𝑭𝑖/2:

fPhong (𝑿 ) =
∑
𝑖

𝛽𝑖

(
𝒙𝑖 + 𝑯𝑖 (𝑿 − 𝑿𝑖 )

)
. (19)

This also provides a straightforward recipe to apply Phong Defor-
mation to other 2D and 3D settings.
For example, on hexahedral grids, 𝛽𝑖 are the trilinear interpola-

tion weights of 𝑿 within the cell, 𝑯𝑖 are the vertex half-gradients
estimated from cell-centered half-gradients using the cell-to-vertex
reconstruction algorithm in §4 (or centered differences for interior
nodes of regular grids). We have verified this achieves third-order
accuracy for regular grids with second-order accurate 𝑯𝑖 ; for iso-
lated cells with constant 𝑯𝑖 , fPhong (𝑿 ) simplifies to 𝒙 (𝑿 )—trilinear
interpolation.

A vertex-based quadratic interpolant without midpoints. Given
the four vertex deformation gradients, 𝑭𝑖 , one could alternately
estimate and store 𝒙𝑚 at the six edge midpoints using Hermite
interpolation [Alfeld 1984], and then use classical 10-node qua-
dratic interpolation based on Lagrange interpolating polynomi-
als [Zienkiewicz et al. 2005] to deform the embedded geometry.
Given an edge (𝑿0,𝑿1) −→ (𝒙0, 𝒙1) with vertex gradients 𝑭0 and
𝑭1, the Hermite-interpolated midpoint value is

𝒙𝑚 =
1
2 (𝒙0 + 𝒙1) +

1
8 (𝒙

′
0 − 𝒙 ′1) (20)

=
1
2 (𝒙0 + 𝒙1) +

1
8 (𝑭0 (𝑿1 − 𝑿0) − 𝑭1 (𝑿1 − 𝑿0)) (21)

=
1
2 (𝒙0 + 𝒙1) +

1
2

(
𝑭0
2
𝑿1 − 𝑿0

2 + 𝑭1
2
𝑿0 − 𝑿1

2

)
(22)

=
∑

𝑖∈{0,1}
𝛽𝑖

(
𝒙𝑖 + 𝑯𝑖 (𝑿𝑚 − 𝑿𝑖 )

)
(23)

where the last line matches the half-gradient Phong Deformation
formula (19). Therefore, by uniqueness of the 10-dof quadratic poly-
nomial, the Phong Deformer and the 10-node quadratic interpolant
will produce mathematically identical quadratic functions.

However, there are practical benefits of the vertex-based Phong
Deformation scheme: (1) it avoids the extra step of computing and
storing midpoint values, which (2) reduces the amount of data that
must be cached and accessed (tetrahedral meshes can have > 7×
as many edges as vertices making midpoint storage worse than
just adding vertex gradients), and (3) the vertex-based Phong De-
formation scheme with linear barycentric interpolation leads to a
much simpler implementation without the need for edge-based data
structures to store/access midpoint attributes. So, the 10-node inter-
polant is a natural choice for isoparametric finite element analysis,
but Phong Deformation is better suited to quadratic reconstruction.

4 VERTEX GRADIENT ESTIMATION
The Phong deformer requires robust estimation of vertex deforma-
tion gradients, 𝑭𝑖 , in order to interpolate the vertex deformation
models f𝑖 (𝑿 ). Given the newly deformed vertex positions, we com-
pute all tetrahedral cell gradients, 𝑭𝑘 , then perform a cell-to-vertex
reconstruction to estimate each vertex gradient, 𝑭𝑖 , using a modifi-
cation of the second-order accurate scheme of [Chandrashekar and
Garg 2013]. The latter is based on a weighted Shepard interpolation
scheme of the form

𝑭𝑖 ≈
∑
𝑘∈𝐶𝑖

𝑤𝑘

𝑟𝑘
𝑭 (𝒓𝑘 )∑

𝑗 ∈𝐶𝑖

𝑤𝑗

𝑟 𝑗

=
∑
𝑘∈𝐶𝑖

𝑤 ′
𝑘
𝑭 (𝒓𝑘 ), (24)

where the sums run over all tetrahedral cells 𝐶𝑖 adjacent to the
vertex 𝑖 , with relative material-frame vertex-to-centroid vector 𝒓𝑘 , of
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magnitude 𝑟𝑘 , and unit vector 𝒓𝑘 = 𝒓𝑘/𝑟𝑘 ; here𝑤𝑘 are interpolation
weights (𝑤 ′

𝑘
are the final normalized weights used at runtime), and

𝑭𝑘 = 𝑭 (𝒓𝑘 ) is the gradient at the centroid of the 𝑘𝑡ℎ adjacent cell.
The interpolant (24) trivially reproduces constant functions, but

to enforce second-order accuracy the weights must also reproduce
linear functions, and thus satisfy the three consistency conditions:∑

𝑘

𝑤𝑘 𝒓𝑘 = 0. (25)

Minimizing 1/2
∑
𝑘 (𝑤𝑘 − 1)2 subject to (25) has the solution

𝑤𝑘 = 1 + 𝝀 · 𝒓𝑘 (26)

where the Lagrange multipliers 𝝀 satisfy[∑
𝑘

𝒓𝑘 𝒓
𝑇
𝑘

]
𝝀 = −

∑
𝑘

𝒓𝑘 ⇔ 𝑨𝝀 = 𝒃 . (27)

This second-order interpolation scheme was proposed in [Chan-
drashekar and Garg 2013], and works well for finite volume meth-
ods on good-quality tetrahedral grids, and, because of the objective,
tends to encourage (but not guarantee) positive weights.

Regularization. Unfortunately, for our irregular tetrahedralmeshes,
this procedure can fail when 𝑨 is ill-conditioned or singular, such
as for surface vertices with insufficient neighboring tetrahedra (see
Figure 5 for an example with just two tetrahedra). In such cases, the
conditions for second-order accurate interpolation (25) can not be
satisfied, and a compromise is needed. We use Tikhonov regular-
ization to robustly solve (𝑨 + 𝜀𝑰 ) 𝝀 = 𝒃 , where 𝑨 is the symmetric
positive semi-definite matrix, and 𝜀 is the regularization parameter.
We observe that a wide range of 𝜀 values produce good results on
average but small 𝜀 values can cause over-fitting near the surface
(see Figure 6); we used 𝜀 = 1 in our examples. This method works
even in the extreme case of a single adjacent tetrahedron where
the reconstructed vertex gradient is simply the element’s value. We
experimented with using additional k-nearest neighbors to avoid
tet-deficient cases, such as for the line-like licorice mesh, however,
we found that it provided a smoothing effect but tended to degrade
numerical accuracy in general.

Normalized weights. Finally, the normalized cell-to-vertex inter-
polation weights𝑤 ′

𝑘
= (𝑤𝑘/𝑟𝑘 )/(

∑
𝑗 ∈𝐶𝑖

𝑤𝑗

𝑟 𝑗
) are precomputed and

cached for each vertex, then reused at runtime to reconstruct vertex
gradients 𝑭𝑖 prior to Phong Deformation of the embedded mesh.

5 ERROR ANALYSIS
We now show that the Phong Deformer provides a piecewise qua-
dratic approximation to the deformation field. Given the messiness
of the 3D truncation error analysis, we first provide a simpler 1D
analysis for illustrative purposes.

5.1 Motivation: 1D Case
Analyzing our scheme in the one-dimensional setting provides a sim-
ple illustration of its benefits, and also allows us to derive truncation
error estimates to clarify what is happening. The simplest setting
that provides insight is for uniformly gridded data, with spacing
ℎ; let 𝑋𝑖 samples be at {0,±ℎ,±2ℎ, . . .}. Analogous vertex gradients

(a) Undeformed (b) f𝐶 (c) fPhong =
f𝐶+f𝑉

2 (d) f𝑉
Fig. 5. Animated vertex deformation gradient: (a) In this two tetrahe-
dra mesh, the small top element is rotated 90𝑜 to animate a single vertex
deformation gradient (via regularized cell-to-vertex averaging) on the large
bottom fixed-vertex element. While (b) linear interpolation f𝐶 only uses
cell-constant gradients, (c) the Phong Deformer fPhong exhibits smooth de-
formation coupling to the larger element, whereas (d) the blended vertex
deformer f𝑉 produces an exaggerated response. (see video for animations)
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Fig. 6. Dependence on regularization parameter, 𝜀: (Left) Maximum
and average vertex error shows weak dependence, whereas (Right) large
cell-to-vertex weights𝑤′ (over-fitting) occurs for small 𝜀 values, as shown by

a normalized deviation measure, 𝜎 =

√∑
𝑘=1...𝑛 (𝑤′

𝑘
𝑛 − 1)2/𝑛. Results are

for the “Cell” example using the Kelvinlet deformer (shown later in Figure 8).

can be interpreted as averaging element/edge gradients obtained
from centered differences, e.g., 𝑓 ′0 ≡ 𝑓 ′(0) ≈ 𝑓 ′ (ℎ/2)+𝑓 ′ (−ℎ/2)

2 ≈(
𝑓1−𝑓0
ℎ

+ 𝑓0−𝑓−1
ℎ

)
/2. Consider the element interval 𝑋 ∈ [0, ℎ], and

let 𝛽 = 𝑋/ℎ ∈ [0, 1].
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f𝑉
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0.06

O(f ( ) h ) coefficient

f𝐶

fPhong

f𝑉

Coefficient of 𝑓 ′′0 ℎ2 Coefficient of 𝑓 ′′′0 ℎ3

Fig. 7. Truncation error analysis of 1D uniform-grid case: Plots of the
truncation error coefficients of the (Left) 𝑓 ′′0 ℎ2 and (Right) 𝑓 ′′′0 ℎ3 terms
vs 𝛽 (where 𝑋 = 𝛽ℎ) are shown for (f𝐶 in blue) linear interpolation; (f𝑉
in green) the linearly interpolated vertex-gradient model; and (fPhong in
orange) the Phong Deformation model which is their average (𝛼 = 1/2).
Observe two things: (Left) the proposed Phong model’s𝑂 (ℎ2) error term
vanishes entirely making it third-order accurate, and (Right) the 𝑂 (ℎ3)
error term’s coefficient is much smaller. Although the Phong model is still
merely𝐶0 continuous, its smaller truncation error is an improvement over
piecewise linear interpolation.
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A standard truncation error analysis of linear interpolation, 𝑓 (𝑋 ) ≈
(1 − 𝛽) 𝑓0 + 𝛽 𝑓1, shows second-order error:

−1
2 (𝛽 − 1)𝛽 𝑓 ′′0 ℎ2 − 1

6 𝛽 (𝛽
2 − 1) 𝑓 ′′′0 ℎ3 +𝑂 (ℎ4). (28)

The linearly interpolated vertex-gradient model is
𝑓 (𝑋 ) ≈ (1 − 𝛽) 𝑓0 (𝑋 ) + 𝛽 𝑓1 (𝑋 ) (29)
𝑓𝑖 (𝑋 ) = 𝑓𝑖 + (𝑋 − 𝑋𝑖 ) 𝑓 ′𝑖 , (30)

and has truncation error:
1
2 (𝛽 − 1)𝛽 𝑓 ′′0 ℎ2 − 1

6 (𝛽 − 2) (𝛽 − 1)𝛽 𝑓 ′′′0 ℎ3 +𝑂 (ℎ4) (31)

which is also only second-order accurate. Interestingly the coeffi-
cient of the 𝑂 (ℎ2) term is identical to linear interpolation, except
that it has the opposite sign.

Our Phong deformation model combines these two previous mod-
els using a 𝛼-blended version with truncation error:
1
2 (2𝛼 − 1) (𝛽 − 1)𝛽 𝑓 ′′0 ℎ2 − 1

6 (𝛽 − 1)𝛽 (−3𝛼 + 𝛽 + 1) 𝑓 ′′′0 ℎ3 +𝑂 (ℎ4)

for which the leading-order term vanishes when 𝛼 = 1/2:

− 1
12 (𝛽 − 1)𝛽 (2𝛽 − 1) 𝑓 ′′′0 ℎ3 +𝑂 (ℎ4) . (32)

Plots of the coefficients of these expansions are shown in Figure 7,
and reveal that the leading nonzero coefficient (ℎ3) is also smaller.
Of course, in 1D one could use Hermite interpolation of the in-

terval’s end-point function and gradient values to obtain an 𝑂 (ℎ4)
approximation, so this 𝑂 (ℎ3) interpolant scheme is uncompetitive
in 1D, and merely serves to provide intuition for the 3D case.

5.2 Error Analysis: 3D Case
To show that the Phong Deformation model has 𝑂 (ℎ3) truncation
error, it is sufficient to consider a canonical tetrahedronwith vertices
at (0, 0, 0), (ℎ, 0, 0), (0, ℎ, 0), (0, 0, ℎ), with function values f0, f1, f2,
f3, and gradients 𝑭0, 𝑭1, 𝑭2, 𝑭3. Consider the first component of
the f field, denoted by 𝑢 = 𝑢 (𝑿 ). To perform error analysis, we
again expanded all functions and gradients about the origin. The
second-order truncation error of the linear interpolant is then

𝐸Linear = − ©­«
∑
𝑖< 𝑗

𝛽𝑖𝛽 𝑗 𝜕𝑖 𝜕𝑗𝑢 + 1
2
∑
𝑖

(𝛽𝑖 − 1)𝛽𝑖 𝜕2
𝑖 𝑢

ª®¬ℎ2 +𝑂 (ℎ3)

where 𝛽𝑖 = 𝑋𝑖/ℎ, 𝑖 = 1, 2, 3, and all derivatives of 𝑢 are evaluated at
the origin. Similar to the 1D case, the interpolated vertex-gradient
model also has𝑂 (ℎ2) error, and its coefficients have equal but oppo-
site signs as those of the linear error. The Phong Deformation model
averages these two 𝑂 (ℎ2) interpolants (and so cancels the 𝑂 (ℎ2)
error terms) yielding an 𝑂 (ℎ3) truncation error:

𝐸Phong = − ©­«𝛽1𝛽2𝛽3 𝜕1𝜕2𝜕3𝑢 + 1
4
∑
𝑖≠𝑗

𝛽𝑖 (2𝛽𝑖 − 1)𝛽 𝑗 𝜕2
𝑖 𝜕𝑗𝑢

+ 1
12

∑
𝑖

(𝛽𝑖 − 1)𝛽𝑖 (2𝛽𝑖 − 1) 𝜕3
𝑖 𝑢

)
ℎ3 +𝑂 (ℎ4).

Notice that the 3D error simplifies to the 1D case when 𝑢 = 𝑢 (𝑋 ).
Finally, this analysis assumes that the vertex gradients, 𝑭𝑖 , are

exact, but the Phong Deformer uses approximate vertex gradients.

It follows that the deformer is still𝑂 (ℎ3) accurate provided that the
vertex gradients are 𝑂 (ℎ2) accurate, which can be achieved using
the second-order accurate cell-to-vertex reconstruction scheme (§4)
when sufficient neighbors exist.

6 RESULTS
Please see the accompanying video for animations and other results.

Implementation. Phong Deformation was implemented in Hou-
dini (v17.0), with runtime evaluation done in VEX1 code using At-
tribute Wrangles. Micro-timings are difficult to do precisely in Hou-
dini, however its Performance Monitor for the Bunny (a representa-
tive example) indicates Phong Deformation evaluation costed about
10x as much as trivial linear interpolation, but just 3% of a FEM step
(ABE2 w/ 2 substeps), or 5% of the subsequent Loop subdivision
and normal calculation. Approximately 10% of Phong Deformation
runtime is spent estimating tetrahedra deformation gradient models,
34% performing their cell-to-vertex weighted averages, and about
33% of the time evaluating the actual f𝐶 and f𝑉 displacements.

FEM Examples. Several three-way comparisons have been made
with popular interpolation schemes (attribute transfer (Houdini’s
Point Deform SOP), linear interpolation, and Phong Deformation)
on FEM simulations generated using Houdini. Please see the accom-
panying figures for details. These examples are “rubber toy impact”
(see Figure 9), the “licorice twist” (see Figure 11), the “bunny head
shake” (see Figure 3), and the cylinder stretch and twist tests (see
Figure 1 and video). In all cases, we observed that the Phong Defor-
mation results were an improvement upon the prior popular meth-
ods. Please see the video for supporting animations. Unfortunately
these comparisons are primarily visual in nature, and therefore we
estimated interpolation separately.

Error Analysis. To assess the error of Phong Deformation, we
have performed a detailed truncation error analysis in §5 to estab-
lish third-order accuracy provided second-order accurate vertex
gradients are available. Numerical experiments were performed to
support this third-order accurate convergence rate and those of
other schemes (see Figure 10 (Left)). In addition, we confirmed that
Phong Deformation’s fell back to second-order accuracy when in-
sufficient neighbors were available, e.g., neighbors missing on one
side (see Figure 10 (Right)). Finally, numerical estimation and visual
depiction of interpolation error was conducted for an instrumented
“cell” model using a pinch Kelvinlet deformation, which revealed a
2.9× reduction in ℓ2 vertex error (see Figure 8).

7 CONCLUSION
We have introduced Phong Deformation, a simple extension of
linear interpolation for embedded mesh deformation on tetrahedral
meshes. Themethod interpolates deformation gradients of deformed
tetrahedra to vertices using precomputed cell-to-vertex weights
and uses them to achieve quadratic interpolation. The scheme is
fast, simple to implement, robust, and achieves clear improvements
over linear interpolation due to improved accuracy that results in a
reduction in visual artifacts for embedded deformation.

1Houdini compiles VEX code with VCC to produce multithreaded C++ code.
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(a) Undeformed TriMesh (b) Ground Truth (Kelvinlet) (c) Linear Interpolation (d) Phong Deformation

(e) Undeformed TetMesh (f) Deformed TetMesh (Kelvinlet) (g) Linear Error (h) Phong Error
Fig. 8. Numerical error reduction: (a) A cell-like mesh (24,000 tri, 12,252 vtx) is embedded in (e) a coarse tetrahedral mesh (1307 tets, 341 nodes)), both of
which are deformed (b,f) using an incompressible pinch Kelvinlet deformation [De Goes and James 2017, eq. 17]. We compared the embedded deformation of
triangle mesh (a) resulting from the TetMesh deformation e→f using two methods: (c) linear interpolation exhibits visible faceting artifacts, whereas (d)
Phong Deformation is clearly better. Plots of Euclidean vertex errors (g,h) (computed using the ground truth TriMesh (b)) reveal reduced errors for Phong
Deformation (≈2.9× reduction in ℓ2 error).

(a) Tet. Mesh (b) Attr. Transfer (c) Linear (d) Phong
Fig. 9. Rubber toy face plant: An embedded triangle mesh (shown “flat
shaded”, 51,416 tri, 51,436 vtx) is deformed by its (a) coarse tetrahedral
Houdini FEM model (3511 tets, 989 nodes) impacting an invisible ground
plane. Close-up renderings of the face and fin show unsightly embedded-
mesh artifacts for both (b) Houdini’s default attribute transfer scheme and
(c) linear interpolation, whereas (d) Phong Deformation produces fewer
visual artifacts. Please see the video for related animations.

Limitations and Future Work. As mentioned, the accuracy of ver-
tex deformation gradients can suffer at vertices with missing tetra-
hedral neighbors, and the regularized scheme may fail to achieve
third-order accuracy. The quadratically deformed geometry can
extend outside the deformed tetrahedron, and may be undesirable
in certain cases, e.g., collisions processed with linearly embedded
geometry may exhibit contact inconsistencies when displayed using
the quadratic Phong deformer. The Phong Deformation scheme
can be applied to triangles, tetrahedra in higher dimensions, and
hexahedra (see §3.3). Future work might generalize the technique
to higher dimensions, and models with varying co-dimensions.

Attribute Transfer

Linear Interpolation

Phong Deformation

10-5 10-4 0.001 0.010 0.100
h

10-6

10-5

10-4

0.001

0.010

RMS Error

Attribute Transfer

Linear Interpolation

Phong Deformation

10-5 10-4 0.001 0.010 0.100
h

10-6

10-5

10-4

0.001

0.010

RMS Error

Interior tetrahedron Surface tetrahedron
Fig. 10. Convergence error analysis versus ℎ (average tetrahedra edge
length) exhibits different slopes for competing methods in this log-log plot:
(Left) rapid𝑂 (ℎ3) convergence of Phong Deformation, versus the slower
𝑂 (ℎ2) behavior of Linear Interpolation, and the 𝑂 (ℎ) Attribute Transfer
interpolant in Houdini (“Point Deform SOP” with “radius” parameter hand
tuned for best results). The test scenario consists of 25 points deformed
using an analytical bending and twisting deformer, embedded in a scaled
tetrahedral lattice (see inset mesh) translated to achieve isobarycentric test-
point locations. Single-precision calculations in Houdini result in the noise
floor seen below 10−6. (Right) For surface elements (missing neighbors on
top side) we observed slower convergence for Phong Deformation (only
𝑂 (ℎ2)) due to deficient vertex gradients, however the error was still over
10× smaller than linear interpolation.
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