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Fig. 1. Geometry processing on polygonal meshes: Our approach enriches the available numerical toolbox for polygonal meshes by offering discrete
differential operators (gradient, Laplacian, covariant derivative, shape operator, etc) acting either on discrete forms [Desbrun et al. 2008] or directional
fields [Vaxman et al. 2017]. Our operators allow for the seamless extension of existing geometry processing algorithms to meshes with arbitrary 3D polygons,
including non-planar and non-convex faces. Here, an example showing grooming on a quad mesh where fur and feathers are designed interactively by solving
scalar and vector Poisson equations. Offset blue curves represent handles to guide the tangent direction and local shape of strands of fur and feathers.

Geometry processing of surface meshes relies heavily on the discretization

of differential operators such as gradient, Laplacian, and covariant deriva-

tive. While a variety of discrete operators over triangulated meshes have

been developed and used for decades, a similar construction over polygonal

meshes remains far less explored despite the prevalence of non-simplicial

surfaces in geometric design and engineering applications. This paper intro-

duces a principled construction of discrete differential operators on surface

meshes formed by (possibly non-flat and non-convex) polygonal faces. Our

approach is based on a novel mimetic discretization of the gradient operator

that is linear-precise on arbitrary polygons. Equipped with this discrete

gradient, we draw upon ideas from the Virtual Element Method in order

to derive a series of discrete operators commonly used in graphics that

are now valid over polygonal surfaces. We demonstrate the accuracy and

robustness of our resulting operators through various numerical examples,

before incorporating them into existing geometry processing algorithms.
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1 INTRODUCTION
Discrete differential operators play a central role in geometry pro-

cessing, allowing for the analysis and manipulation of 3D surfaces.

The vast majority of discrete differential operators assume a trian-

gulated surface, as its simplicial and piecewise-linear nature renders

the derivation and error analysis of operators particularly simple.

Yet, modeling and engineering applications often rely on polygonal

meshes to better capture geometric features and ease both artistic

design and fabrication. Deriving discrete differential operators for

polygonal meshes by first triangulating each polygonal face is ill-

advised since it introduces unnecessary computational bias due to

the dependence of the results on the choice of triangulation. While

recent works have offered extensions of the Laplacian operator on

polygonal meshes [Alexa and Wardetzky 2011; Sharp et al. 2019;

Bunge et al. 2020], there remains a long list of basic discrete differ-

ential operators used in geometry processing for which variants

that are valid on non-simplicial meshes do not exist.

In this paper, we introduce a systematic construction of discrete

differential operators on surface meshes made out of (possibly non-

planar and non-convex) polygonal faces. At its core is a new dis-

cretization of the gradient operator that is linear-precise for arbitrary

polygons. From this gradient, we bootstrap the derivation of various

first- and second-order discrete operators, including the covariant

derivative and the shape operator, by mimicking key structural
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properties of their continuous counterparts. Our approach also of-

fers improvements over existing polygonal Laplacians, and suggests

an extension of the Virtual Element Method [Beirão et al. 2013]

to handle non-planar polygons. Finally, we show that our discrete

operators can be seamlessly integrated into a wide range of existing

geometry processing algorithms, from shape editing and suggestive

contours to parameterization and vector field design.

1.1 Related Work
Before delving into our contributions, we first review prior work,

restricting our exposition to discretization methods instead of sur-

veying the large number of applications in which they are used.

Calculus on triangle meshes. Various discretizations of scalar and
vector calculus over triangulated surfaces have been proposed in

geometry processing, typically using a coordinate-free representa-

tion like in Discrete Exterior Calculus (DEC) [Desbrun et al. 2008;

Crane et al. 2013a], or through finite element methods with con-

forming [Tong et al. 2003] and non-conforming [Polthier and Preuss

2003; Wardetzky 2006] linear basis functions. First- and second-

order derivatives of tangent vectors and directional fields have also

been proposed [de Goes et al. 2016a; Vaxman et al. 2017], involv-

ing a discrete definition of connection [Zhang et al. 2006; Knöppel

et al. 2013; Liu et al. 2016], local tensor decompositions [de Goes

et al. 2014], or functional maps [Azencot et al. 2015]. Alas, all these

methods rely heavily on the fact that the surface mesh is simplicial.

Curvatures and shape operator. The evaluation of curvatures over

surface meshes has also attracted a large amount of attention. Early

on, the work of Taubin [1995] defined a discrete shape operator

as a weighted average of normal curvatures. Other approaches as-

sembled a discrete shape operator from dihedral angles between

triangles [Cohen-Steiner and Morvan 2003], triangle and edge nor-

mals [Grinspun et al. 2006], or via multi-scale spherical kernels

[Yang et al. 2006]. Mixed finite element and finite volume methods

were used to approximate curvature values in [Meyer et al. 2003],

while Hildebrandt and Polthier [2011] discretized the shape operator

by leveraging vector calculus on meshes. Local surface fitting was

also considered based on least-squares regression [Rusinkiewicz

2004], osculating jets [Cazals and Pouget 2005], statistical estimation

[Kalogerakis et al. 2007], and Minkowski mixed volumes [Sullivan

2008]. Once again, all these approaches focus on triangle meshes.

Polygonal finite element. An important body of work to review in

the context of our goals is themechanics literature, which brimswith

computational methods using 2D polygonal meshes. This includes

the typical use of quadrilateral meshes as well as unstructured grids

such as Voronoi-like cell complexes, which are particularly conve-

nient for meshing complex geometries [Mengolini et al. 2019]. Early

work applied the finite element framework to convex polygons based

on rational basis functions [Wachspress 1975], an approach later

revisited and extended to non-convex polygons using generalized

barycentric coordinates [Floater 2003; Sukumar and Tabarraei 2004;

Gillette et al. 2016]. This formulation also covers the common case

of quadrilateral elements interpolated by bilinear basis functions.

Solving numerically for basis functions over non-convex polygons

via the boundary element method was also proposed [Copeland
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Fig. 2. The perils of triangulating: We compare the analytical mean cur-
vature of a torus against a numerical approximation computed per vertex
using the dot product between the vertex normal and the discrete Laplacian
of vertex positions divided by twice the vertex area. The calculated mean
curvatures (top) and their residuals to the ground-truth values (bottom)
are color-coded per mesh vertex. While a hexagonal mesh of a torus (left)
accurately captures the mean curvature of the shape, triangulating the
hexagons (center and right) results in far less accurate approximations.

2009; Rjasanow and Weißer 2012]. However, these methods require

cubature schemes to perform integration against the constructed

polygonal basis functions. To bypass the evaluation of non-linear

basis functions altogether, virtual node methods employ an inter-

mediate triangulation within each flat polygon that inserts a virtual

node at its centroid, and maps triangle values back to polygons via

averaging [Dai et al. 2007; Tang et al. 2009]. The Mimetic Finite

Difference method (MFD) [Lipnikov et al. 2014] presents instead an

extension of finite volume and finite difference techniques to poly-

gons that first discretizes a prime operator (typically, the gradient

or the divergence) via a boundary integral, and then derives other

operators by mimicking continuous structural properties. While

MFD applied to triangulated surfaces is similar to DEC, it handles

polygonal meshes as well by observing that discrete inner products

must include a stabilization term to ensure they remain positive-

definite for non-simplicial faces [Brezzi et al. 2005]. More recently,

the Virtual Element Method (VEM) [Beirão et al. 2013] showed that

MFD can, in fact, be derived from a finite element point of view

where the basis functions inside the polygons are fully determined

by boundary basis functions, but do not need to be constructed ex-

plicitly, hence the term “virtual element”. Importantly, VEM points

out that the stabilization of inner products to enforce their positive-

definiteness is directly linked to the virtual functional space, thus

leading to a principled construction of operators over polygonal

cells [Beirão et al. 2017].

Polygonal Laplacians. While polygonal finite element techniques

offer stable computations over 2D meshes with non-convex poly-

gons, they cannot handle non-flat polygons typically found in ge-

ometry processing applications. In [Alexa and Wardetzky 2011], a

geometric approach was described to construct a discrete Laplacian

for polygonal surfaces that exploits the gradient of the magnitude

of the polygonal vector area [Sullivan 2008] combined with a MFD-

based inner product stabilization [Brezzi et al. 2005]. The work of

Herholz et al. [2015] later characterized polygonal meshes that admit

a discrete Laplacian with only non-negative weights, while Sharp

et al. [2019] enriched this polygonal operator with vertex-to-vertex
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rotations in order to assemble a discrete vector Laplacian. Recently,

Bunge et al. [2020] adapted the virtual node method to non-flat poly-

gons by refining each polygon with a triangle fan, emanating not

from the face centroid but from the position that minimizes the sum

of squared triangle areas. However, these formulations do not offer

other mesh operators compatible with their polygonal Laplacian,

severely limiting their applicability to geometry processing.

1.2 Contributions
In this paper, we present a principled construction of discrete differ-

ential operators on polygonal surface meshes, including covariant

derivative, shape operator and Laplacians. Our work can be inter-

preted as a generalization of MFD/VEM [Brezzi et al. 2005; Beirão et

al. 2013] to arbitrary 3D polygons based on a new discretization of

the gradient operator. In the process, we define a polygonal version

of DEC that adapts the stabilization term used in VEM [Beirão et

al. 2013] to discrete differential forms, thus extending the work of

Alexa and Wardetzky [2011] to offer polygonal operators that are

both structure-preserving and compatible to our discrete gradient.

Discrete derivatives of tangent vectors and directional fields are also

introduced, along with a discrete shape operator. Finally, we show

that all our discrete operators on polygonal meshes are local, nu-

merically convergent under mesh refinement, and simple to retrofit

into archetypal geometry processing algorithms.

2 DEFINITIONS AND NOTATIONS
In this work, we consider an arbitrary discrete surface M repre-

sented by an oriented two-manifold cell complex embedded in 3D.

The spatial location of a mesh vertex v is indicated by xv ∈R3,
while a mesh face f is assumed to be a simple but possibly non-

convex and/or non-planar 3D polygon with nf vertices. We de-

note by Xf the matrix of size nf ×3 where the position of the

vertices of f ordered counter-clockwise are stacked row-wise, i.e.,

Xf =
[
xv

1

. . . xvnf
]
t

. We also denote the center of a polygonal face

f as cf =X
t

f 1f /nf , where 1f is the nf -sized vector of ones.

For each mesh face f , we make use of two auxiliary matrices Df
and Af of size nf ×nf . The matrix Df computes the difference of

any vertex-based values between consecutive vertices along the face,

i.e., Di ,i+1
f =1, Di ,i

f =−1, and zero otherwise. Conversely, the matrix

Af computes the average of values between pairs of consecutive

vertices of the face, i.e., Ai ,i+1
f =Ai ,i

f =
1/2, and Ai , j

f =0 otherwise.

Note that At

f Df +D
t

f Af =0 by definition. Using these two matrices,

we can express the edge vectors of the polygon f via Ef =Df Xf
and its edge midpoints by Bf =Af Xf . These face attributes are

summarized in Table 1 for the reader’s convenience.

We discretize the restriction of any scalar functionϕ to a face f by

defining a vector ϕf of size nf , where the i-th entry of ϕf indicates

the value of ϕ at the i-th vertex of f in counter-clockwise order,

i.e.,ϕf =
[
ϕ(v

1
) . . .ϕ(vnf )

]
t

. With this notation, a linear function on

face f must be of the form:

ϕf = Xf s + 1f r for s ∈R3, r ∈R. (1)

Lastly, we indicate by I the identity matrix, whose dimension will be

clear from context, and denote by [p] the map from a 3D vector p to

a 3×3 skew-symmetric matrix such that [p]q=p × q for any q ∈R3.

Table 1. Summary of the main symbols per face f and their definitions.

Symbol Meaning Definition

nf Number of vertices v
1
, ... , vnf ∈ f

Xf Vertex positions Xf =
[
xv

1

. . . xvnf

]
t

∈R
nf ×3

Df Difference operator Di ,i+1f =1, Di ,if =−1

Af Average operator Ai ,i+1f =Ai ,if = 1/2

Ef Edge vectors Ef =Df Xf

Bf Edge midpoints Bf =Af Xf

cf Face center cf =X
t

f 1f /nf

af Polygonal vector area af = 1/2
∑
vi ∈f

xvi × xvi+1
af Area of polygonal face af = |af |

nf Normal of polygonal face nf =af /af

hf Vertex heights for polygonal face hf =
(
Xf −1f c

t

f
)
nf

Unless explicitly stated, the definitions of our discrete differential

operators will always be provided through their restriction to a

given polygonal face f .

3 GRADIENT OPERATOR
We begin by introducing a new discrete gradient operator over arbi-

trary 3D polygons. In order to extend the traditional finite element

discretization from triangulated to polygonal meshes, we wish to

construct for each polygonal face f a matrix Gf of size 3×nf such

that applying this matrix to the vector ϕf (which encodes a scalar

function ϕ restricted to f ) returns a 3D vector Gf ϕf offering an

approximation of the gradient ∇ϕ. A usual means to define a dis-

crete gradient is to evaluate its integral over each mesh face. In

the case of simplicial elements or flat polygonal faces where the

surface normal is constant locally, this integral can be expressed as

a boundary integral through Stokes’ theorem:∫
f
∇ϕ(x)dx =

∮
∂f

ϕ(x) t(x)×n(x)dx, (2)

where n(x) is the unit surface normal vector and t(x) is the unit
tangent vector at boundary point x. Consequently, the discrete

gradient can be evaluated purely based on ϕf , the face edge vectors
and the constant face normal. However, Eq. (2) no longer holds

for non-planar polygons as the normal field n(x) now varies based

on the choice of a particular surface interpolating the polygonal

boundary. Therefore, there exists no canonical expression for this

weak form of the gradient defined over arbitrary 3D polygons.

To bypass the need for an interpolant, we propose instead to

evaluate a weak form of the cogradient operator ∇ϕ⊥= [n(x)]∇ϕ,
i.e., the gradient∇ϕ locally rotated by π/2 around the surface normal

n(x). Applying Stokes’ theorem, we obtain∫
f
∇ϕ⊥(x)dx =

∮
∂f

ϕ(x) t(x)dx, (3)

which now involves only the boundary tangent, independent of how

the surface interpolates the polygonal boundary. Since this tangent

field is well-defined along the polygonal boundary, we can exactly
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evaluate Eq. (3) for linear functions ϕ as a sum over each polygonal

edge of the average of the values of ϕ along the edge multiplied by

the edge vector, that is, the integrated cogradient of ϕ is Etf Af ϕf .
We can also use the weak form of the cogradient to relate linear

functions to the surface normals n(x) integrated over the polygon f .
Since the cogradient of a linear function ϕ(x)=stx+r should return

the vector [n(x)]s , we can expand the left-hand side of Eq. (3) into∫
f
∇ϕ⊥(x)dx =

(∫
f
[n(x)]dx

)
s . (4)

Combining this result with the boundary integral of Eq. (3) applied

to linear functions (whose discrete form is given in Eq. (1)), we have(∫
f
[n(x)]dx

)
s = Etf Af

(
Xf s + 1f r

)
= Etf Bf s, (5)

where the term Etf Af 1f cancels out due to the edge vectors forming

a closed path. We thus conclude that Etf Bf encodes the integrated

normals over 3D polygons, agnostic to any surface interpolant.

Remarkably, the matrix Etf Bf also reveals a simple geometric

construction of a normal vector constant over any 3D polygon. As

shown by Lemma 1 of [Alexa andWardetzky 2011], the matrix Etf Bf
is equivalent to the skew-symmetric matrix [af ] associated with

the vector area af of the polygonal face f [Sullivan 2008], where

af =
1

2

∮
∂f

x × t(x)dx =
1

2

∑
vi ∈f

xvi × xvi+1 . (6)

As detailed in Alexa and Wardetzky [2011], the magnitude of the

polygonal vector area af corresponds to the largest area over all

orthogonal projections of the polygon f onto 3D planes, while the

the direction of af represents the normal of the projection plane

maximizing the area. We thus define the area of a polygonal face f
as af = |af |, and assign nf =af /af as its constant normal vector.

Equipped with this polygonal vector area, we can now mimic

the relation ∇ϕ⊥= [n(x)]∇ϕ between gradient and cogradient in the

smooth setting and finally deduce our discrete gradient operator

from the weak form of the cogradient, resulting in

Gf = −
1

a f
[nf ]E

t

f Af . (7)

We can further isolate the contribution of each vertex in f from our

gradient matrix Gf to better understand the geometric construction

inherent to our operator. By expanding Gf ϕf =
∑
v ∈f g

v
f ϕ(xv ), we

denote the gradient vector associated with the vertex v in f as

gvf =
1

2af
nf ×

(
xvi−1 − xvi+1

)
. (8)

As expected, our gradient vector gvf for a triangular face matches the

gradient of barycentric coordinates as commonly found in piecewise

linear finite element methods. Importantly, our construction of the

discrete gradient is linear-precise as shown in the following lemma.

Lemma 1. For any linear function restricted to a 3D polygonal face
f (Eq. (1)), the discrete gradient in Eq. (7) is linear-precise, i.e.,

Gf
(
Xf s + 1f r

)
=
(
I − nf n

t

f
)
s . (9)

Fig. 3. Convergence plots: In the top row, L
2
error plots in log-log scale

for a variety of polygonal meshes indicate at least linear convergence for our
discrete gradient operator as a function of the mesh resolution, computed
by evaluating the function sin(4πx ) cos(4πy) at mesh vertices and com-
paring its face gradient to the ground-truth value. In the bottom row, the
Frobenius norm of the difference between our discrete covariance derivative
and its ground-truth values exhibits a similar behavior, computed using the
analytical tangent vector

√
1−z2 [−y, x , 0] sampled at vertices of polygonal

meshes approximating a unit sphere.

Proof: For a linear function as in Eq. (1), the face gradient is

Gf
(
Xf s + 1f r

)
= −

1

a f
[nf ]

(
Etf Bf s + r E

t

f Af 1f
)
= −[nf ]

2 s,

where the first term Etf Bf is replaced by [af ]=af [nf ]. Noting that

−[n]2= I−nnt for any unit vector n completes the proof. □

With this discrete gradient, we can now derive discrete operators

acting on either discrete forms or directional fields defined onM,

as we detail in the next two sections.

4 OPERATORS ON DISCRETE FORMS
Discrete exterior calculus (DEC) [Desbrun et al. 2008] provides

a coordinate-free discretization of calculus on discrete manifolds

which has been shown versatile for geometry processing [Crane et al.

2013a]. In this numerical framework, differential operators act solely

on discrete forms, i.e., values assigned to mesh elements that encode

either functions evaluated at vertices, tangent vectors through their

circulation along oriented edges, or densities integrated over faces.
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Next, we exploit our discrete gradient to derive a discrete exterior

calculus valid on arbitrary polygonal meshes. In the process, we

point out differences between our results and the similar endeavor

of Alexa and Wardetzky [2011], and discuss how our approach can

be seen as an extension of the Virtual Element Method [Beirão et al.

2013] to discrete forms over non-flat polygons.

4.1 Exterior Derivatives
The derivatives of discrete forms are computed by discretizing the

exterior derivative operators. Similar to the simplicial case [Des-

brun et al. 2008], we construct two discrete exterior derivatives over

polygonal meshes using the transpose of the signed adjacency ma-

trices ofM. The discrete exterior derivative for 0-forms is expressed

by a sparse matrix d
0
that maps the differences of vertex values

to a 1-form assigned to their corresponding oriented edges, while

the discrete exterior derivative for 1-forms is another sparse matrix

d
1
that sums the oriented edge circulations into a 2-form at their

respective faces. Even in our polygonal case, these discrete exterior

derivatives trivially verify d
1
d
0
=0, thus ensuring that they produce

a de-Rham sequence. For notational convenience, we express these

derivatives through restriction to a single polygonal face f as we

will systematically derive our other operators per face. To this end,

we reshape the values of a given discrete k-form (k=0, 1) incident to
face f into a nf -sized vector with entries ordered counter-clockwise,
thus defining a local discrete k-form per face f . The discrete opera-
tor corresponding tod

0
restricted to the face f reduces to the matrix

Df defined in §2, which computes the difference of values between

consecutive vertices. Similarly, the restriction of d
1
to face f sim-

plifies to 1tf as it returns the total circulation of a 1-form summed

over the polygonal edges.

4.2 Sharp and Flat Operators
The sharp ♯ and flat ♭ operators, nicknamed musical isomorphisms,

convert 1-forms to tangent vector fields and vice-versa [Abraham

et al. 1988]. Although these two operators are rarely used in DEC

applications since tangent vectors are manipulated solely through

their 1-form representation, they are key to establishing the equiv-

alence between exterior calculus and vector calculus. Therefore,

we provide expressions for their discrete counterparts on arbitrary

polygonal meshes so as to leverage our gradient operator in the

discretization of differential operators on discrete forms.

The discrete flat operator should map a single vector on a polygo-

nal face f into a local discrete 1-form encoding the vector circulation

along the edges of f . We can thus construct this operation through

a matrix Vf of size nf ×3 defined as

Vf = Ef
(
I − nf n

t

f
)
. (10)

Applying the discrete flat operator Vf to an input 3D vector first

extracts its tangential part, and then computes its circulation along

each edge of f oriented counter-clockwise. By construction, assum-

ing that the polygonal face is not degenerate, the rank of Vf is 2 and

its kernel only contains 3D vectors along nf . Note that this operator
is only suited for local computations per face. If a piecewise-constant

vector field over a mesh needs to be mapped into a discrete 1-form,

one should average on each non-boundary edge the result of the

discrete flat operators computed on its two adjacent faces.

The discrete sharp operator should, conversely, aggregate the

values of a discrete 1-form into a tangent vector per face of the

polygonal mesh. We construct the discrete sharp operator restricted

to a face f as a matrix Uf of size 3×nf expressed as

Uf =
1

a f
[nf ]

(
Btf − cf 1

t

f
)
. (11)

Note that, here again, the rank of Uf is 2 for non-degenerate poly-

gons, and its kernel is of size nf −2. Importantly, this sharp operator

links our discrete gradient to the discrete exterior derivative of 0-

forms, reproducing the continuous definition ∇ϕ = (dϕ)# for any
scalar function ϕ.

Lemma 2. The operator Uf satisfies Gf =Uf Df on each face f .

Proof:
(
Btf −cf 1

t

f
)
Df =X

t

f A
t

f Df =−E
t

f Af due toD
t

f Af +A
t

f Df =0.

Thus, we deduce Uf Df =−(1/af ) [nf ]E
t

f Af =Gf by Eq. (7). □

Geometrically, each column of Uf represents a 3D vector associ-

ated with the barycentric dual mesh that connects the face center

cf to edge midpoints rotated by π/2 around the face normal and di-

vided by the polygonal area. Instead of cf in Eq. (11), any other face

center could have been used without altering the result of Lemma

2. However, we chose cf as an unbiased center which further re-

produces, in the special case of triangular faces, the evaluation of

1-form Whitney basis functions at the face centroid cf .

Lemma 3. In the simplicial case, applying the sharp operator Uf
to a local discrete 1-form is equivalent to the tangent vector resulting
from the area-average of the corresponding sharpened discrete 1-form
reconstructed via Raviart-Thomas edge elements.

Proof: Whitney 1-form elements [Desbrun et al. 2008] sharpened

into a vector field correspond to Raviart-Thomas edge basis func-

tions [Raviart and Thomas 1977]. From the oriented edge values of

a simplicial mesh, these edge basis functions produce a piecewise

linear vector field inside each mesh face. As noted in [Auchmann

and Kurz 2006], using barycentric dual edges linking the barycen-

ter of a triangle to the edge midpoints corresponds to a pointwise

evaluation of this Raviart-Thomas vector field reconstruction at

the face barycenter. Since the value of a function at the barycenter

is a quadrature known to be exact for linear functions, our sharp

operator is thus equal to the integral of the piecewise reconstructed

vector field on the triangle face divided by its area. □

4.3 Projection Operator
The musical operators are both isomorphisms in the continuous

setting in the sense that they only convert quantities (by raising or

lowering the indices in their tensorial notation) without any loss

of information [Abraham et al. 1988], and thus they should be the

exact inverse of each other. Unfortunately, our discretization of the

flat and sharp operators only preserves this structure partially, just

like in the simplicial case [Hirani 2003]. For instance, a vector s ∈R3

tangent to a polygonal face f (that is, satisfying stnf =0) can be

flattened to a local discrete 1-form, and a further sharpening of this

1-form returns the same vector s , i.e., Uf Vf s=s as we prove next.
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Quad mesh Hexagonal mesh Concave mesh

Fig. 4. Laplacian accuracy: On various polygonal discretizations of a unit sphere, we show the L
2
error in log-log scale of a Poisson solve using our discrete

Laplacian operator with the right-hand side set to the spherical harmonic function Y 4

2
(x , y, z)= (x 2

−y2

)(7z2−1) sampled at mesh vertices, versus this same
function scaled by the inverse of its associated eigenvalue. As expected, errors decrease as the mesh resolution increases, measured using the inverse of the
mean edge length. While the choice of stabilization parameter λ affects the overall accuracy of our approach, the same convergence trend is witnessed for all
λ’s, with λ=1 being invariably best. Compared to [Alexa and Wardetzky 2011] and [Bunge et al. 2020] (labeled AW11 and BHKB20, respectively), our method
exhibits similar accuracy with a small but noticeable improvement on most meshes.

Lemma 4. Given an arbitrary 3D polygon f , the discrete musical
operators satisfy Uf Vf = I−nf n

t

f .

Proof: Combining Eqs. (10) and (11), and using [af ]=E
t

f Bf , yields

Uf Vf = (1/af ) [nf ][af ]
t
(
I − nf n

t

f
)
= I − nf n

t

f . □

However, a similar property does not hold if one applies sharp and

flat in the reverse order. Indeed, our sharp operator is rank-deficient

as it reduces nf values from a discrete 1-form on face f down to

only a vector tangent to f . Taking a cue from the functional space

projection used in VEM [Beirão et al. 2013] and adapting it to the

case of discrete 1-forms, we introduce a projection operator Pf for

each face f defined via a scale-invariant matrix of size nf ×nf :

Pf = I − Vf Uf . (12)

This operator acts on discrete 1-forms by quantifying the failure of

the discrete sharp and flat operators to be the inverse of each other.

In essence, it takes a discrete 1-form and removes its component that

would result in a 3D tangent vector once sharpened. Consequently,

the operator Pf annihilates all discrete 1-forms in the image of Vf .

Lemma 5. For any polygonal face f , one has Pf Vf =0.

Proof: Expanding Eq. (12) and using Lemma 4, one finds

Pf Vf =Vf −Vf
(
Uf Vf

)
=Vf −Vf

(
I−nf n

t

f
)
=0. □

We can use Lemma 5 to show that Pf is an idempotent matrix,

thus confirming that Pf defines a projection operator.

Lemma 6. For any polygonal face f , one has P2f =Pf .
Proof: Trivially by Lemma 5, Pf Pf =Pf −

(
Pf Vf

)
Uf =Pf . □

From Lemma 6, we deduce that Im Pf = {w ∈ Rnf | Pf w =w},

which implies that Ker Pf ⊕Im Pf =R
nf

. We can also relate the im-

age of the projection matrix Pf to our sharp operator Uf .

Lemma 7. For any polygonal face f , one has Im Pf =KerUf .
Proof: We must prove that, for any discrete 1-form w , 0 local

to the face f , one has Uf w = 0 ⇔ Pf w = w . If Uf w =0, then

Pf w =w−Vf (Uf w)=w . Conversely, Pf w =w implies Vf Uf w =0
by Eq. (12). Since Uf w generates a tangent vector but the kernel of

Vf contains only normal vectors, there exists no 1-formw ,0 such
that both Uf w ,0 and Vf Uf w =0, thus completing the proof. □

Using these results, we conclude that the kernel of the projection

operator Pf is indeed equal to the subspace spanned by Vf .

Lemma 8. For any polygonal face f , one has Ker Pf = ImVf .

Proof: From Lemma 7, we deduce that dim(Im Pf ) = nf −2. Since
Ker Pf ⊕Im Pf =R

nf
, we can conclude that dim(Ker Pf )=2. More-

over, Lemma 5 implies that ImVf ⊂Ker Pf , but since these spaces
have the same rank, we have Ker Pf = ImVf . □

The projection operator as well as its properties will be essential

to enforce positive-definiteness of the inner product of 1-forms on

arbitrary polygonal faces as we discuss next.

4.4 Inner Products
Defining inner products of discrete forms requires care as one must

ensure that these operators are symmetric, positive-definite, scale-

aware, and exact for constant fields [Auchmann and Kurz 2006].

For 0- and 2-forms, the corresponding discrete inner products are

simply encoded using local areas associated to vertices and faces, re-

spectively. Restricted to a single polygonal face f , the inner product
for discrete 0-forms is set to the nf ×nf diagonal matrix (af /nf ) I
where we evenly distribute the polygonal area af to its vertices,

while the inner product for discrete 2-forms is simply the inverse of

the polygonal area 1/af .

To form the inner product for discrete 1-forms, we can emulate

the continuous setting and compute the dot product between the

tangent vectors resulting from our discrete sharp operator, thus

suggesting a matrix per face f of size nf ×nf equal to af U
t

f Uf .

However, as discussed in §4.3, the sharp operator is rank-deficient,

making the discrete inner product only positive semi-definite. Lever-

aging Lemma 7, we can now use the projection operator Pf as a

stabilization term that penalizes the kernel of Uf . We thus define
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the inner product matrix for local discrete 1-forms as

Mf = af U
t

f Uf + λ P
t

f Pf , (13)

where the parameter λ>0 weights the contribution of the projection
term. We now show that our construction of the discrete inner

product satisfies important structural properties.

Lemma 9. The matrix Mf is symmetric, positive-definite, scale-
invariant, and constant-precise.
Proof: The matrix Mf is trivially symmetric and scale-invariant.

The squared norm of a discrete 1-formw can be expressed as

w tMf w =af ∥Uf w ∥
2

+λ∥Pf w ∥
2.

Using Lemma 7, we deduce that only trivial discrete 1-forms have

zero norm, thus confirming that Mf is positive-definite. Finally,

given a constant vector s tangent to face f , we can use Lemmas 4

and 5 to show that the squared norm of the corresponding 1-form

local to f is (Vf s)
tMf (Vf s)=af ∥s ∥

2

, therefore, our discrete inner

product of 1-forms is constant-precise. □

We point out that our construction of the discrete inner product

is an extension of the VEM stabilization proposed in [Beirão et al.

2013]. Indeed, VEM also uses a projection operator as a stabilization

to the inner product matrix, but its projection operator measures

how a scalar function fails to be captured by their discrete functional

space locally. Our work adapts the notion of projection to discrete

1-forms instead of functions by evaluating the lack of isomorphism

between the local sharp and flat operators. Additionally, while VEM

only considered polygons in the plane, our stabilization is valid for

arbitrary 3D polygons, including non-flat faces commonly found in

surface meshes. The case of near-degenerate polygons is also simple

to handle: as the magnitude of the vector area goes to zero, our

sharp and gradient operators collapse to zero, while the associated

projection operator simplifies to the identity matrix. We thus set

these operators accordingly when the face area is below a small

threshold to remove possible roundoff errors. Finally, we notice that

our inner product matrix computed on a single triangle reduces to a

stabilized (and thus, non-singular) version of the geometric Hodge

operator proposed by Auchmann and Kurz [2006].

4.5 Divergence, Curl, and Laplace-Beltrami Operator
Equipped with discrete exterior derivatives and inner products, we

can now assemble discrete versions of standard calculus operators.

For instance, the divergence of a discrete 1-form within a face f
is computed via Dt

f Mf , while the curl is simply 1tf . We can also

construct the discrete Laplace-Beltrami operator per face f as a

matrix Lf of size nf ×nf of the form:

Lf = Dt

f Mf Df . (14)

Based on Lemma 9, it is straightforward to show that our operator is

symmetric, scale-invariant, positive semi-definite, and linear-precise

in planar domains. Moreover, we can use this matrix to compute,

per face, the Dirichlet energy of a discrete function ϕf via

ED (ϕf ) = af ∥Gf ϕf ∥
2

+ λ∥Pf Df ϕf ∥
2

= ϕt

f Lf ϕf . (15)

As expected, our Laplacian operator also reproduces the well-known

cotan-Laplacian in the case of simplicial meshes.

4.6 Discussion
Our extension of the DEC machinery to polygonal meshes bears

many similarities with the work of Alexa and Wardetzky [2011].

In particular, our stabilization operator λPtf Pf corresponds to a

choice of “admissible” matrix used in their work to make the inner

product of 1-forms positive-definite (see their Section 3.3). This can

be verified by noticing that our flat operatorVf uses the edge vectors
of a 3D polygon projected to the plane. As a result, the singular

vectors computed by Alexa and Wardetzky [2011] are orthogonal to

the image ofVf , which also implies that these vectors are orthogonal

to the kernel of Pf due to Lemma 8. However, our construction of

the stabilization term in Mf requires no SVD computations since

we know the closed-form expression for the projection matrix from

Eq. (12). We can even generalize our stabilization term by replacing

λPtf Pf by Ptf Zf Pf in Eq. (13), where Zf is any symmetric matrix of

size nf ×nf so thatw tZf w >0 for any vectorw in the kernel of Uf ,

thus reproducing Theorem 1 from [Alexa and Wardetzky 2011].

In addition to the stabilization term, another difference between

our approach and the work of Alexa and Wardetzky [2011] is that

they compute the inner product of discrete 1-forms using edge

midpoints Bf centered at zero, while we employ the discrete sharp

operator Uf . Consequently, their inner product matrix includes an

extra term of the form (1/af )(Df hf )(Df hf )
t

, where hf denotes

the nf -sized vector with the height of every vertex v incident to

face f relative to the face center cf in counter-clockwise order, i.e.,

hf =
(
Xf −1f c

t

f
)
nf . While this term is zero for planar polygons, it is

in the image of Pf for non-flat polygons and, therefore, it is already

accounted for by the stabilization term inMf .

Lemma 10. For any non-planar face f , one has Pf Df hf =Df hf .

Proof: We first show that Df hf ∈KerUf :

Uf Df hf = (1/af )[nf ]B
tEf nf =

(
I − nf n

t

f
)
nf =0,

where we use the fact that Df hf =Ef nf and Btf Ef =−[af ]. Using
Lemma 7 completes the proof. □

Finally, it is worth pointing out that our operators given in Eqs. (10-

14) can be trivially extended to subdivision surfaces. By adopting

the so-called Subdivision Exterior Calculus (SEC) [de Goes et al.

2016b] framework, we can exploit the refinability of subdivision

basis functions and convert computations from the polygonal to the

subdivision setting seamlessly.

5 OPERATORS ON DIRECTIONAL FIELDS
While DEC encodes vector fields as 1-forms, processing tangent

vectors and, more generally, directional fields sampled at vertices

of discrete surfaces has been increasingly common in geometry

processing. For this purpose, we now formulate discrete differential

operators of vector fields on polygonal meshes. We assume that

a normal vector nv is assigned to each mesh vertex v using, e.g.,

the normalized sum of the polygonal vector areas af incident to v .
We then discretize tangent vectors as a 2D vector uv per vertex v
expressed in an arbitrary, but fixed local frame Tv ∈R3×2 orthogonal
to nv , i.e., T

t

vTv = I and ntvTv =0. Similarly, we select an arbitrary

3×2 matrix Tf for each polygonal face f defining an orthonormal

tangent frame perpendicular to nf . Akin to the way we assembled
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Fig. 5. Robustness to polygon types: From user-specified strokes indicating constrained directions (left), we compute a tangent direction field by minimizing
the vector Dirichlet energy under these constraints on different polygonal meshes. The resulting tangent fields (right) demonstrate the robustness of our
discrete operators to mesh discretization. For better illustration, insets show an interpolation of the vertex-based directions generated via vertex-to-face
parallel-transport and generalized barycentric coordinates.

the face vector ϕf for a scalar function ϕ, we gather the 2D vectors

of all vertices adjacent to f and concatenate them into a column

vector uf of size 2nf , that is, uf =
[
utv

1

. . .utvnf

]
t

.

5.1 Discrete Levi-Civita Connection
Since tangent vectors are expressed in their own tangent frames,

one first needs to parallel-transport them to their shared faces before

evaluating differential operators. To this end, we compute a 3×3

rotation matrixQv
f for each vertex v incident to a polygonal face

f that aligns the vertex normal nv to the face normal nf with the

smallest rotation. The discrete connection fromv to f is then defined
as a 2×2 rotation matrix of the form

Rvf = Ttf Q
v
f Tv . (16)

These 2D rotations correspond to a discrete equivalent to the Levi-

Civita connection induced by the metric of the surface inherited

from the 3D Euclidean space. Other connections can be discretized

as well, if necessary, similar to [Crane et al. 2010; Liu et al. 2016],

but we stick to the usual Levi-Civita connection in our derivations.

5.2 First-order Derivatives
We now leverage our gradient operator from §3 to discretize the

covariant derivative of vector fields per face f . Mimicking the contin-

uous realm, we first make use of the discrete connection to parallel-

transport the vectors uf from the vertices incident to f to the local

coordinate system on f , and then compute the discrete gradient of

each coordinate of these transported vectors. The resulting discrete

covariant derivativeG∇

f produces a linear operator that maps vertex-

based vectors restricted to f to a 2 × 2 matrix expressed relative to

the local tangent space on f , which we write out as

G∇

f uf =
∑
v ∈f

(
Ttf g

v
f
) (
Rvf uv

)
t

. (17)

Note that each gradient vector gvf is tangent to f (Eq. (8)), hence

multiplying it by Ttf simply results in a local change of coordinates.

Other first-order derivatives of vector fields are easily derived us-

ing the geometric decomposition of the covariant derivative matrix

provided in [Liu et al. 2016]. For instance, the trace of the resulting

matrix G∇

f uf on face f corresponds to the divergence of uf , while
the skew-symmetric part ofG∇

f uf measures the curl ofuf . Similarly,

the Killing operator of uf can be computed as the symmetric part of

G∇

f uf , while the directional derivative ofuf along a tangent vector s
is the matrix-vector product st(G∇

f uf ). Additional derivatives, such
as the holomorphic derivative or the complex conjugate (Cauchy-

Riemann) derivative, are also expressible as combinations of these

aforementioned terms.

To further highlight the link between the discrete covariant de-

rivative and the gradient operator applied to vector coordinates,

we form the matrix u∇f of size nf ×2 containing the vertex-based

vectors uf incident to the face f parallel-transported to f via Rvf ,
i.e., u∇f =

[
R
v
1

f uv
1

...Rvnff uvnf

]
t

. The discrete covariant derivative on

face f from Eq. (17) can now be more compactly rewritten as

G∇

f uf = Ttf Gf u
∇

f . (18)

This construction also reveals that our discrete covariant deriva-

tive inherits both the linear precision of the gradient operator as

well as its rank-deficiency. To penalize the null-space of G∇

f on the

polygonal face f , we extend the projection operator Pf from §4.3

to act on vector fields instead of discrete 1-forms. More concretely,

we define the covariant projection operator P∇

f per face f as a linear

mapping that parallel-transports the vertex-based vectors to the

tangent space of face f and returns a matrix of size nf ×2 with the

1-form projection of the exterior derivative of the vector coordinates

in f , which we write out as

P∇

f uf = Pf Df u
∇

f . (19)

5.3 Vector Laplacian
Using the discrete covariant derivative and the connection projec-

tion, we can now extend the Dirichlet energy defined in Eq. (15) from

scalar functions to vector fields and construct a vector Laplacian

matrix L∇f of size 2nf ×2nf restricted to face f :

ED (uf ) = af ∥G
∇

f uf ∥
2

F
+ λ∥P∇

f uf ∥
2

F
= utf L

∇

f uf , (20)

where the first term computes the squared Frobenius norm of the

our discrete covariant derivative, while the second term accounts
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for the stabilization for each coordinate of the vertex-based vectors

transported to the face f . As in the scalar case, the vector Laplacian

matrix is symmetric, scale-invariant, positive semi-definite, and

linear-precise in planar meshes.

5.4 Discussion
Once a vertex-to-face connection is established, our discrete gra-

dient operator allows for simple and intuitive expressions of the

covariant derivative and all the other typical vector processing op-

erators. We note that Sharp et al. [2019] also proposed a discrete

vector Laplacian for polygonal meshes by multiplying coefficients of

the scalar Laplacian matrix from [Alexa and Wardetzky 2011] with

rotations encoding a vertex-to-vertex connection. Our approach of-

fers a similar assembly of the vector Laplacian matrix per polygonal

face, but using vertex-to-face rotations instead. Importantly, since

our discretization is compatible with a discrete covariant deriva-

tive, we can easily penalize various combinations of the first-order

derivatives as detailed in §5.2 and construct alternative quadratic

energies for vector fields, e.g., the discrete Hodge-Laplace operator

or the squared Frobenius norm of the Killing operator [Solomon

et al. 2011]. Finally, we point out that our discrete operators are

easy to extend to n-vector fields [Vaxman et al. 2017]. As described

in [Knöppel et al. 2013], processing a n-vector field is achieved by

converting the input field to representative vectors per vertex, re-

placing the 2D rotations of the discrete connection by their n-th
power, and after computations, reverting the resulting vertex-based

representative vectors back to a n-vector field.

6 ADDITIONAL OPERATORS
So far we have covered a series of discrete differential operators

acting on discrete forms and tangent vectors. Building upon these

previous results, we discuss next a few additional discrete operators

that are particularly relevant to geometry processing.

Rest Shape reconstructed w/ ∥Pf Df Yf ∥
2

reconstructed w/ λ=0

Fig. 6. Avoiding spurious deformations: Given a polygonal mesh with
face-based Jacobian matrices set to Jf = I, the minimization of Eq. (21) re-
produces the input rest shape (left) exactly as expected. In contrast, ignoring
the rest points from the stabilization term (i.e., using only ∥Pf Df Yf ∥

2) pe-
nalizes the input vertex heights hf , thus resulting in more planar polygons
(center). Disabling the stabilization term altogether (i.e., λ=0) introduces
spurious deformations (right). Pseudo-colors encoding the signed heights
of vertices per face are used for visual comparison.

Fig. 7. Parameterization of polygonal meshes: Be it with the spectral
approach of [Mullen et al. 2008] using a discrete conformal energy (left:
car model with quads), the Symmetric Dirichlet energy [Smith and Schae-
fer 2015] (center: spot model with quads), or the As-Rigid-As-Possible en-
ergy [Liu et al. 2008] (right: buddha model with hex tiles), our discrete
deformation gradient allows the parameterization of arbitrary polygonal
meshes for a wide variety of non-linear forms of distortion.

6.1 Deformation Gradient and Distortion Energies
Be it for deformation or parameterization, computing the defor-

mation gradient from a rest shape of a discrete surface M to a

different pose is a common task in geometry processing. In the case

of polygonal meshes, our discrete gradient operator from Eq. (7)

can be directly used to derive a deformation gradient. After forming

the gradient matrix Gf of a polygonal face f using its rest shape

embedding Xf , we compute the deformation gradient on a target

shape embedding Yf as a 3×3 matrix of the form Gf Yf , which
simply applies the gradient to each coordinate separately.

The total distortion caused by the deformation gradient is of-

ten quantified as a single scalar value through the definition of an

application-specific distortion energy E(·). For instance, Poisson
editing techniques [Yu et al. 2004; Sumner and Popoviç 2004] con-

struct an embedding that minimizes the sum of all squared Frobenius

norms between the deformation gradient Gf Yf and a prescribed

3 × 3 Jacobian matrix Jf per face f . For polygonal meshes where

faces may be non-planar, special care must be taken to handle the

various heights of a face as well as to avoid spurious deformations

modes (see Figure 6). This can be achieved by extending the Poisson

distortion energy with a stabilization term, yielding

E
3D

(Yf )=af ∥Gf
(
Yf −Xf Jf

)
∥
2

F
+ λ∥Pf Df

(
Yf −Xf Jf

)
∥
2

F
, (21)

where the first termmeasures the linear in-plane deformation, while

the second term penalizes normal and non-affine variations of the

polygon. The energy derivative w.r.t. the unknown points Yf is

then simply expressed per face f as Lf Yf =Lf Xf Jf , where the

stabilization is already included in the polygonal Laplacian matrix.

For mesh parameterization, one aims instead to find a 2D embed-

ding Y that minimizes a given distortion energy so as to flatten the

original 3D embedding X with the least amount of face distortion.

Here again, we can employ our discrete operators to adapt existing

parametrization methods to polygonal meshes with the addition of
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Fig. 8. Shape operator: With vertex normals set to the normalized sum of polygonal vector areas, our face-based shape operator approximates ground-truth
curvature values om various tessellations of a torus. We show the L

2
error plots in log-log scale for the Gaussian (left) and mean curvature (center) values

computed using the determinant and the trace of our discrete shape operator, respectively. While we symmetrize our shape operator to better reproduce its
continuous properties, the Frobenius norm of the skew-symmetric part of the gradient of the normals is shown to converge to zero as expected (right). We also
note that quadrangulated surfaces used in this test produced symmetric shape operators due to radial symmetry of the mesh, thus explaining the near-zero
residual represented by the orange line in the rightmost plot.

a stabilization term, resulting in a general energy of the form

E
2D

(Yf )=af Ψ(Gf Yf )+λ∥Pf Df Yf ∥
2

F
, (22)

where Ψ(·) encodes any of the isotropic distortion energies typi-

cally used in parametrization, including As-Rigid-As-Possible [Liu

et al. 2008] and Symmetric Dirichlet [Smith and Schaefer 2015]. In

particular, our formulation trivially accommodates efficient opti-

mization methods such as the projected Newton solver with analytic

eigensystems described in Smith et al. [2019].

6.2 Shape Operator
We can also use our results to discretize the shape operator on

polygonal meshes. In the smooth setting, the shape operator is

equal to the gradient of the surface normal field, that is, S = ∇n.
Following this definition and using Nf to denote the matrix of size

nf ×3 storing the vertex normals nv incident at f row-wise, we

construct the discrete shape operator as a 2×2 matrix Sf per face f
that computes the gradient of each coordinate of Nf , and then takes

the symmetrized tangential part of the result, producing

Sf =
1

2
Ttf

(
Gf Nf + N

t

f G
t

f
)
Tf . (23)

Compared to existing methods on simplicial meshes [Rusinkiewicz

2004; Hildebrandt and Polthier 2011], our approach is directly valid

on triangle and polygonal surfaces with no alterations.

6.3 Adjoint Operators
The discrete differential operators we derived so far offer mappings

from values at vertices to faces. Through duality, we can also con-

struct adjoint operators that act, conversely, from faces to vertices.

We define an adjoint gradient operator per vertex v as a matrix that

takes a scalar value per incident face and returns a vector orthogonal

to the vertex normal nv . With the vertex area av =
∑
f ∋v af/nf , we

compute the vertex-based gradient operator via

∼
Gv ϕv =

1

av

∑
f ∋v

af
(
Qv
f
)
tgvf ϕ(cf ), (24)

where the rotation

(
Qv
f
)
t

is used to parallel-transport the 3D vector

gvf from face to vertex. Likewise, an adjoint covariant derivative

can be defined for face-based vector fields through

∼
G∇

v uv =
1

av

∑
f ∋v

af
(
(Rvf )

t Ttf g
v
f
) (
(Rvf )

tuf
)
t

. (25)

With these expressions, we can also formulate other vertex-based

discrete operators through derivations similar to our previous sec-

tions. For instance, an adjoint shape operator per vertex v can be

constructed by first stacking the normals nf of the faces adjacent

to v row-wise into a matrix Nv , and then computing

∼
Sv=

1

2
Ttv

(∼
Gv Nv + N

t

v
∼
G
t

v
)
Tv . (26)

7 RESULTS AND APPLICATIONS
In this section, we present a series of numerical tests and geometry

processing examples using our discrete differential operators that

demonstrate the accuracy and versatility of our discretization.

7.1 Numerical Tests
In order to provide insight on the accuracy of our operators, we

compare our numerical results against ground-truth analytical ex-

pressions and analyze the convergence of residual errors on polyg-

onal meshes with increasing resolution. Figure 3(top) shows the

error plot for our discrete gradient operator computed on various

tessellations of a square domain as a function of the mesh resolution

measured as the inverse of the mean edge length. In this example,

we evaluate the scalar function sin(4πx) cos(4πy) on mesh vertices

and compare the L
2
norm of the residual between our numerical

gradient vector and the analytical gradient at the barycenter of each

polygonal face. These error plots include a triangle mesh refined

through Loop subdivision, a quad mesh refined via Catmull-Clark

subdivision, a Voronoi diagram for which finer discretizations are

obtained by adding more vertices and running a few CVT relaxation

steps [Du et al. 1999], and a mesh with concave cells produced from

a quad mesh through edge splitting and vertex sliding to create

zigzagged edges. The accuracy of our discrete covariant derivative
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is demonstrated in Figure 3(bottom) for different polygonal meshes

of a unit sphere, with tessellations mirroring our previous setup.

For this test, we assign the tangent vector

√
1−z2 [−y, x, 0] to each

mesh vertex, compute the covariant derivative per face, and measure

the Frobenius norm of the residual with the analytical covariant

derivative. Both of these plots show at least linear convergence for

all the different tessellations. We also note that the L∞ errors of

these numerical tests exhibit a similar behavior.

In Figure 8(left and middle), we display the L
2
errors of the Gauss-

ian and mean curvatures computed via the determinant and trace of

our face-based shape operators, compared with the analytical values

on a torus. In this experiment, we discretized the torus with polyg-

onal meshes formed by triangles, hexagons, regular and sheared

quadrilaterals. We also plot the magnitude of the skew-symmetric

part of our gradient applied to the vertex normals in Figure 8(right),

confirming that the discrete gradient of the normal field becomes

symmetric under refinement. Additionally, Figure 2 compares the

accuracy of the mean curvature estimation on a torus-shaped polyg-

onal mesh with the accuracy obtained after the polygons are trian-

gulated, exemplifying the numerical bias induced by triangulating

polygons. In this case, we approximate the mean curvature at mesh

vertices by first multiplying the discrete Laplacian matrix with the

vertex positions, which returns an integrated mean curvature vector

per vertex, and then computing the dot product of these vectors

with the vertex normals, divided by twice the vertex area. On the

coarsest resolution, the L∞ residual of the vertex-based mean curva-

tures compared to the ground-truth values is of 0.2 on the polygonal

torus versus 2.3 and 6.1 on the triangulated meshes.

To analyze the influence of the stabilization parameter λ on the

accuracy of our discrete Laplacian operator, we consider approxima-

tions of a scalar Poisson equation computed on various discretiza-

tions of a unit sphere. In our tests, we set the weak form of the

right-hand side of the Poisson equation to a spherical harmonic

function sampled at mesh vertices and multiplied by their vertex

areas. As spherical harmonics are by definition eigenvectors of the

Laplacian, we compare the numerical solution of the discrete Pois-

son equation to the input values divided by its exact eigenvalue.

Figure 4 includes a representative example of our tests showing

the L
2
errors for the solution of the discrete Poisson equation with

various values of λ. These plots indicate a quadratic convergence
rate, with λ = 1 consistently producing the most accurate results.

We thus used λ=1 systematically for all our geometry processing

applications. For reference, we also compute the residual using the

discrete Laplacian from [Alexa and Wardetzky 2011] (with their

recommended value of λ = 2) as well as from [Bunge et al. 2020],

and observed results of the same order of accuracy as ours.

Finally, we test the robustness of our discrete operators on direc-

tional fields in Figure 5. Starting from a sparse set of user-specified

directions, we solve the method of [Knöppel et al. 2013] using our

operators for polygonal meshes in order to generate a smooth di-

rection field that best aligns to the constrained directions. Figure 5

shows qualitatively similar results produced on surface meshes with

various polygonal discretizations. We also compare close-ups of

these direction fields sampled on a dense set of scattered points,

which were computed by parallel-transporting the vertex-based

A B C BA+C B

A B C

Fig. 9. Shape editing: From a neutral face B and two other embeddings of
this polygonal mesh A and C (top), Poisson editing based on our polygonal
discretization can blend parts of these faces following user-prescribed falloffs
(indicated in red) in order to create new shape embeddings (bottom).

vectors to their adjacent faces and interpolating them to the sample

points using generalized barycentric coordinates.

7.2 Applications
We now use our discrete differential operators on representative

geometry processing applications. Most of these tasks involve the

solve of linear systems, for which we use [Chen et al. 2008]. Timings

for these linear solves on polygonal meshes are nearly identical to

their simplicial counterparts due to the simplicity of our operators.

Shape Editing. In Figure 9, we show examples of partial blends of

3D facial poses using our polygonal version of the Poisson editing

technique described in §6.1. From a quad mesh with 5k vertices, we

first compute the deformation gradients for every polygonal face

from the rest embedding (indicated by the labelB) to the pose shapes
(A and C). We then generate target Jacobian matrices per polygon

by interpolating these deformation gradients weighted by user-

specified falloff functions (indicated in red). Lastly, we minimize the

quadratic energy in Eq.(21), resulting in a composite shape.

Parametrization. Our discrete operators are also well suited to ex-
tend most parameterizations methods to polygonal meshes. Similar

to [Alexa and Wardetzky 2011], we show in Figure 7(left) a spectral

conformal parametrization [Mullen et al. 2008], computed with our
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Fig. 10. Polygonal versus triangulated meshes: The spectral conformal
parametrization of [Mullen et al. 2008] computed on the blub model using
our discrete operators on polygonal faces (left) produces improved results
compared to two different triangulations of the input mesh (center and
right). Pseudo-colors indicate the quasi-conformal error computed per mesh
face, totalizing an area-weighted mean error of (1.0014, 1.0063, 1.0085) and
a max error of (1.14, 1.18, 1.47), respectively.

discrete Laplacian and the gradient of the polygonal areas on bound-

ary vertices, for a quadrangulated mesh with 5k vertices. Figure 10

compares the spectral conformal parametrization of a quad mesh

with 7k vertices obtained with our discrete operators versus the orig-

inal method of [Mullen et al. 2008] on two possible triangulations of

the quad mesh. In this example, we also display the quasi-conformal

error per face computed via the singular values of the deformation

gradient, demonstrating that our polygonal approach avoids having

to choose a triangulation while ensuring high quality results. As

mentioned in §6.1, we can also generate mesh parameterizations by

optimizing non-linear distortion energies via the efficient projected

Newton solver of Smith et al. [2019]. For instance, Figure 7(middle)

shows the result of a quadrangulated mesh with 3k vertices flat-

tened by minimizing the Symmetric Dirichlet energy [Smith and

Schaefer 2015], which took 26 iterations to converge. We point out

here that the flip-avoiding line search introduced in [Smith and

Schaefer 2015] can be used directly for polygonal faces by noticing

that the polygonal vector area in 2D is still a quadratic equation in

terms of the 2D vertex positions of the parameterization. Finally,

Figure 7(right) shows a mesh formed by 60k vertices with mostly

hexagon polygons, parametrized using the As-Rigid-As-Possible

(ARAP) energy [Liu et al. 2008], which took only two iterations to

converge (zoom in on the parameterization to visualize individual

polygons). Note that triangulating the polygons before computing

the mesh parameterization (either through adding diagonal edges

or inserting virtual nodes) renders the evaluation of the non-linear

distortion energy and its derivatives more costly as it now involves

many more mesh faces. For instance, the ARAP parametrization of

a triangulated version of the model in Figure 7(right) leads to an

increase in the number of iterations by a factor 5 and of the total

computational time by 60%. In all these tests, input meshes were

rescaled to have unit surface area, their initial parameterizations

were generated using a Tutte embedding onto a unit disk, and their

optimizations were terminated when the energy gradient L∞ norm

reached below 10
−4
.

Suggestive Contours. The availability of a shape operator for polyg-
onal meshes allows us to extend existing shape analysis techniques

such as suggestive contours [DeCarlo et al. 2004]. For each face

and vertex of an input mesh, we compute a 3D vector u from the

camera origin o to the element location (xv for vertices and cf for

faces), which are then projected onto their respective local tangent

plane and normalized. Next, we construct our adjoint shape op-

erator

∼
Sv (Eq. (26)) to estimate the radial curvature along uv via

κv =u
t

v
∼
Sv uv . Suggestive contours are then extracted by tracing

the zero iso-contours of κv . We further trim these contour curves by

removing segments whose directional gradient utf (Gf κv ) is smaller

than a user-specified threshold. We complement these suggestive

contours by tracing mesh silhouettes corresponding to the zero

level-sets of ntv (xv −o). Figure 11 shows an example of suggestive

contours generated by our method on a quadrangulated mesh with

32k vertices. For comparison purposes, we also include our result

for the triangulated cow model used in [DeCarlo et al. 2004].

Texture Synthesis. Vector field design is another common task in

geometry processing that can be extended to polygonal meshes. As

Figure 12 illustrates, given a few user-drawn strokes on a polygonal

mesh, we can compute the smoothest direction field aligned to these

strokes using the method of Knöppel et al. [2013] where the vector

Laplacian discretization is replaced by our polygonal operator. We

then use the resulting direction field to synthesize a texture pattern

from a given exemplar using the method of [Heitz and Neyret 2018],

which is rendered using a displacement shader. In this example, the

input mesh has 4k vertices and the direction field generation was

interactive, taking a few milliseconds per solve.

Mean Curvature Suggestive Contours

Fig. 11. Suggestive contours:With our shape operator, we can compute
any curvature (left, mean curvature produced by the trace of the shape
operator) and even extend the suggestive contour approach of DeCarlo
et al. [2004] (right) on polygonal meshes. In addition to the quad mesh with
32k vertices (top), we tested our discretization on a triangle mesh with 48k
vertices (bottom) provided by DeCarlo et al. [2004] for comparison purposes.

ACM Trans. Graph., Vol. 39, No. 4, Article 110. Publication date: July 2020.



Discrete Differential Operators on Polygonal Meshes • 110:13

Grooming. Our final application is shown in Figure 1 and tackles

grooming. Based on a quadrangulated input surface, a user selects

a few root locations to attach guiding polylines (displayed in blue,

offset from the surface for clarity) with the same number of seg-

ments each. For every point along these polylines, we compute the

vector connecting them to their respective roots and decompose

these vectors into a tangent component orthogonal to the surface

normal and a height scalar. A scalar Poisson equation using our

polygonal Laplacian is then solved to interpolate the heights from

the guiding polylines to all the mesh vertices. Similarly, a vector

Poisson equation is used to interpolate the tangent guiding vectors

throughout the surface. We then combine these tangent vectors

and heights back into 3D vectors and reconstruct a polyline per

mesh vertex to mimic hair growth. The same strategy can also be

employed to place and deform feathers on the wings, as illustrated

at the bottom of Figure 1. Since our discrete operators on polygo-

nal meshes are basically as computationally efficient as traditional

operators on triangle meshes, a grooming example like this can be

easily designed in real-time on meshes with 10k vertices.

Discussion. Although we have highlighted only a few applica-

tions in this paper, our polygon-based differential operators can

be applied seamlessly to a wide range of geometry processing

algorithms originally designed for simplicial meshes. They can

also help simplify computations on polygonal meshes agnostic to

any underlying triangulation and without the need for special nu-

merical treatment. For instance, the gradient normalization step

in the geodesics method of Crane et al. [2013b]

(see inset) can be trivially computed on polyg-

onal meshes as we still have one single gradi-

ent vector per face. Note that the short-time

diffusion used by the heat method requires a

time-step proportional to the maximum length

over all polygon diagonals, instead of the mean

edge length, so that any pair of vertices shar-

ing a face can be reached as already mentioned

in [de Goes et al. 2016b].

8 CONCLUSION
We have presented a family of discrete differential operators valid

on general polygonal meshes. Our approach provides polygonal

operators that are numerically stable and simple to implement, while

mimicking key structural properties of their smooth counterpart.

We have also showed theoretical developments that extend prior

2D polygonal discretizations to surface meshes, and adapt triangle-

based methods to arbitrary polygons with only minor modifications.

We demonstrated the numerical accuracy of our discrete operators

through convergence tests, and proved their practicality by putting

them to use in various geometry processing tasks.

We believe this work opens up different possibilities for future

work. First, we are interested in establishing a principled way to

select the parameter λ, or even the matrix Zf , required by our in-

ner product matrixMf per face f in order to further increase the

accuracy of our discrete operators. Since our projection operator ex-

tends the stabilization term found in VEM to non-planar polygons, it

would also be interesting to revisit the Virtual Element Method and,

in particular, its extensions to high-order approximations based on

our formulation. From a functional analysis standpoint, we would

like to derive precise convergence estimates for our construction

using, e.g., the geometric analysis for surface finite element meth-

ods proposed in [Holst and Stern 2012]. Finally, extending VEM to

arbitrary polyhedral meshes is an exciting direction, since current

VEM methods are limited to 3D cells with only planar polygonal

faces [Gain et al. 2014].
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