
RenderMan: An Advanced Path Tracing Architecture for Movie
Rendering

PER CHRISTENSEN, JULIAN FONG, JONATHAN SHADE, WAYNE WOOTEN, BRENDEN SCHUBERT,
ANDREW KENSLER, STEPHEN FRIEDMAN, CHARLIE KILPATRICK, CLIFF RAMSHAW, MARC BAN-
NISTER, BRENTON RAYNER, JONATHAN BROUILLAT, and MAX LIANI, Pixar Animation Studios

Fig. 1. Path-traced images rendered with RenderMan: Dory and Hank from Finding Dory (© 2016 Disney•Pixar). McQueen’s crash in Cars 3 (© 2017
Disney•Pixar). Shere Khan from Disney’s The Jungle Book (© 2016 Disney). A destroyer and the Death Star from Lucasfilm’s Rogue One: A Star Wars Story
(© & ™ 2016 Lucasfilm Ltd. All rights reserved. Used under authorization.)

Pixar’s RenderMan renderer is used to render all of Pixar’s films, and bymany
film studios to render visual effects for live-actionmovies. RenderMan started
as a scanline renderer based on the Reyes algorithm, and was extended over
the years with ray tracing and several global illumination algorithms.

This paper describes the modern version of RenderMan, a new architec-
ture for an extensible and programmable path tracer with many features
that are essential to handle the fiercely complex scenes in movie production.
Users can write their own materials using a bxdf interface, and their own
light transport algorithms using an integrator interface – or they can use the
materials and light transport algorithms provided with RenderMan. Complex
geometry and textures are handled with efficient multi-resolution represen-
tations, with resolution chosen using path differentials. We trace rays and
shade ray hit points in medium-sized groups, which provides the benefits of
SIMD execution without excessive memory overhead or data streaming. The
path-tracing architecture handles surface, subsurface, and volume scattering.
We show examples of the use of path tracing, bidirectional path tracing,
VCM, and UPBP light transport algorithms. We also describe our progressive
rendering for interactive use and our adaptation of denoising techniques.

CCS Concepts: • Computing methodologies → Rendering;

Additional Key Words and Phrases: Pixar, RenderMan, computer-generated
images, visual effects, production rendering, complex scenes, path tracing,
ray tracing, global illumination.

ACM Reference format:
Per Christensen, Julian Fong, Jonathan Shade,WayneWooten, Brenden Schu-
bert, Andrew Kensler, Stephen Friedman, Charlie Kilpatrick, Cliff Ramshaw,
Marc Bannister, Brenton Rayner, Jonathan Brouillat, and Max Liani. 2018.
RenderMan: An Advanced Path Tracing Architecture for Movie Rendering.
ACM Trans. Graph. 37, 3, Article 30 (July 2018), 21 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Author’s addresses: 506 Second Ave, Seattle, WA and 1200 Park Ave, Emeryville, CA.
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/nnnnnnn.nnnnnnn.

1 INTRODUCTION
Pixar’s movies and short films are all rendered with RenderMan.
The first computer-generated (CG) animated feature film, Toy Story,
was rendered with an early version of RenderMan in 1995. The most
recent Pixarmovies – Finding Dory,Cars 3, andCoco –were rendered
using RenderMan’s modern path tracing architecture. The two left
images in Figure 1 show high-quality rendering of two challenging
CG movie scenes with many bounces of specular reflections and
refractions, subsurface scattering, complex geometry, smoke, motion
blur, etc.
At the same time, RenderMan is also a commercial product sold

to other movie studios so they can render visual effects (VFX) for
their movies. To date nearly 400 movies have used RenderMan for
VFX; recent movies include The Jungle Book, Rogue One, Fantastic
Beasts, and Blade Runner 2049. The two right images in Figure 1
show examples of realistic fur and a spaceship with high geometric
complexity.
RenderMan has received several Academy Awards, and was the

first software package to receive an Oscar® statuette (to Ed Catmull,
Loren Carpenter, and Rob Cook in 2001 “for significant advance-
ments to the field of motion picture rendering as exemplified in
Pixar’s RenderMan”).
RenderMan was originally based on the Reyes scanline render-

ing algorithm [Cook et al. 1987], and was later augmented with
ray tracing, subsurface scattering, point-based global illumination,
distribution ray tracing with radiosity caching, and many other
improvements. But we have recently rewritten RenderMan as a path
tracer. This switch paved the way for better progressive and interac-
tive rendering, higher efficiency on many-core machines, and was
facilitated by the concurrent development of efficient denoising al-
gorithms. Our path tracer was designed from the beginning to allow
bidirectional path-tracing algorithms and efficient path tracing in
volumes.

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

30:2 • Christensen et al.

Path tracing was introduced to computer graphics [Kajiya 1986]
at around the same time as Reyes was developed. It is amusing
to note that, at the time, path tracing was considered to be an
elegant but hopelessly impractical rendering algorithm, producing
too noisy images (especially with motion blur and depth of field) and
requiring the geometry of the entire scene to fit in memory (which is
particularly problematic for displacement-mapped surfaces). Hence
it was rarely used, and if so mostly for reference images of relatively
simple static scenes. Fortunately these obstacles have been overcome
through improved algorithms, better data management, and more
powerful computers.

This paper first gives a brief overview of the history of RenderMan,
and then describes the modern path-tracing architecture.

2 HISTORICAL BACKGROUND: YE OLDE RENDERMAN
RenderMan has utilized many generations of rendering algorithms.
In this section we describe the original Reyes algorithm and the
hybrid algorithms that resulted from extending Reyes with ray
tracing, point-based approaches, and distribution ray tracing.

2.1 Reyes
Although ray tracing, distribution ray tracing, and path tracing were
well known rendering techniques at the time, Cook et al. [1987]
developed the Reyes algorithm to overcome some of their shortcom-
ings, with particular emphasis on data locality, displaced geometry,
and cheap noise-free edge antialiasing, motion blur, and depth-of-
field effects. Many of Reyes’ architectural decisions were made with
an eye toward a scalable pipelined hardware implementation: it is
a streaming feed-forward design motivated by compact memory
footprint, coherence of shading calculations and texture access, and
shading reuse.
The Reyes algorithm works as follows: The scene description is

read in and high-level object descriptions are stored along with their
bounding boxes. The image is rendered one image tile (“bucket”)
at a time. The surfaces of the objects visible in an image tile are
split into smaller patches and the patches are tessellated (“diced”)
into micropolygon grids, with each micropolygon typically roughly
the size of an image pixel. A displacement shader can be optionally
run to move the grid vertices for added geometric detail. Then a
surface shader is run on each grid vertex to calculate the color and
opacity at that point – this can involve looking up texture map
colors, computing illumination, looking up occlusion in shadow
maps, and more. Finally, the color of each pixel is computed by
stochastic point sampling (with a z-buffer) of the micropolygon
grids. This is very efficient since it is a 2.5-dimensional problem
with high data coherency.

Figure 2 shows images from the Luxo, Jr. short and the feature
film Toy Story. Both were rendered with Reyes RenderMan.
With this algorithm, motion blur and depth of field are very

cheap to compute: noise can be resolved by increasing the number
of pixel samples without incurring any additional shading cost. The
motion blurred images are not strictly correct since the shading
only occurs at specific shutter times and the resulting colors are
then interpolated for other sample times. However, these errors are
usually small, and the benefits of cheap motion blur and depth of
field outweigh the (usually) subtle artifacts.

Fig. 2. Luxo lamps from Luxo, Jr. (© 1986 Pixar) and Buzz and Woody from
Toy Story (© 1995 Disney•Pixar).

Reyes handles geometric complexity by rendering one image tile
(per CPU core) at a time, and only tessellating the surface patches
visible in that tile. This way, surface patches are only tessellated
when needed, and the micropolygon grids are deleted from memory
as soon as they are no longer needed. Displacement-mapped surfaces
do not incur any additional memory overhead. This particular aspect
was instrumental in rendering the realistic dinosaurs in Jurassic
Park: the skin scales and wrinkles (see Figure 3 (left)) could be
represented with actual displaced surface geometry instead of being
approximated with bump maps.

Fig. 3. T. Rex from Jurassic Park and the shiny metal Terminator from Ter-
minator 2 (© 1993 and 1991 ILM).

Likewise, huge amounts of texture data are dealt with by generat-
ing tiled MIP maps [Williams 1983] of all textures before rendering
starts, only reading texture tiles at the appropriate MIP map level,
and storing the texture tiles in a cache [Peachey 1990]. This makes
it possible to efficiently render scenes with 100 times more texture
data than main memory.
Another noteworthy aspect of Reyes RenderMan is the Render-

Man Shading Language (RSL) by Hanrahan and Lawson [1990]: it is
a simple but expressive C-like language that allows the user to pro-
gram displacement, illumination, and surface shading. It provides a
nice abstraction: a shader is written as if it computes displacement,
illumination, or color and opacity at a single point, but it is executed
in SIMD fashion over the vertices of an entire micropolygon grid.
This automatically gives coherent access to textures and shadow
maps.
Since Reyes has no facility to trace shadow rays, shadows must

be computed using shadow maps [Reeves et al. 1987; Williams 1978].
Using shadow maps can be great for data locality, but requires the
shadowmap for each shadow-casting light source to be generated in
a pre-pass. If there are hundreds of light sources with shadow maps
this is cumbersome and the data locality is lost. Also, special tricks

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

RenderMan: An Advanced Path Tracing Architecture for Movie Rendering • 30:3

are needed to get realistic shadows from area lights (sharp shadow
edges at contact points but increasingly smooth penumbra regions
further away). Likewise, with Reyes, reflections have to be rendered
using reflection maps – either a real image of some environment or a
360 degree image rendered in a separate pass. Figure 3 (right) shows
reflections in a liquid metal Terminator T-1000 robot rendered with
a reflection map.
Many more details on Reyes and its implementation in Render-

Man can be found in the excellent books by Upstill [1990] and
Apodaca and Gritz [2000].

2.2 Ray tracing
The motivation to add ray tracing [Whitted 1980] to RenderMan was
to enable more realistic reflections (including self-interreflections),
and to render detailed shadows in expansive scenes without shadow
map resolution limitations or having to keep track of shadow maps
for hundreds of lights in a scene. It also enabled us to render ambient
occlusion [Landis 2002; Zhukov et al. 1998].
Ray tracing was used early-on for specular reflections and re-

fractions in a glass bottle in A Bugs Life. This was done by having
RenderMan call the Whitted-style ray tracer BMRT as a “ray server”
[Apodaca and Gritz 2000; Gritz and Hahn 1996]. Only a subset of
the scene could be ray traced since it had to fit in memory. Another
issue was duplication of geometry since RenderMan and BMRT each
kept their own representation of the geometry. Clearly it would
be better to do ray tracing inside RenderMan itself, which led us
to our first major re-architecting of RenderMan, turning it into a
scanline-raytracer hybrid.

However, data access patterns for recursive ray tracing are more
challenging than for Reyes: while camera rays, reflection rays from
flat surfaces, and shadow rays to a small light are coherent, in general
reflection or shadow rays can be traced in any direction at any time
during rendering, so geometry and textures are accessed in rather
random and unpredictable patterns. With ray tracing, we cannot
discard a micropolygon grid when its image tile is done: it may be
needed again for reflection or shadow rays from other image tiles.

We did some initial experiments with ray tracing directly against
Bézier and NURBS patches (using iterative root finders), but found
that ray tracing against tessellated patches was faster. Displacement-
mapped surfaces also require tessellation. But too much memory
was required if all tessellated surface patches were kept in memory.
On the other hand, it would be too slow to tessellate and displace
the micropolygon grids on-the-fly for every ray intersection test. In
order to solve this problem we developed a multiresolution tessel-
lation cache [Christensen et al. 2006, 2003], where tessellated (and
displaced) surface patches were stored in the cache, and ray differen-
tials [Igehy 1999] were used to select the appropriate resolution. For
fast intersection tests we utilized SSE instructions to test one ray
against four triangles (two quadrilaterals) in parallel. This scheme
worked well even with incoherent rays, whereas testing four rays
against one triangle [Wald et al. 2001] would be efficient only for
coherent rays such as camera rays and mirror reflection rays from
flat surfaces.
A similar multiresolution approach was also used for textures

– although textures were simpler to implement since the already

existing texture cache also worked really well for ray tracing with
ray differentials.
This ray tracing functionality was used on the Cars movie for

specular reflections, shadows, and ambient occlusion. Figure 4 (left)
shows two bounces of ray-traced specular reflections in Doc Hud-
son’s chrome bumper. Figure 4 (right) shows ray-traced refractions
and reflections in wine glasses in a scene from Ratatouille. At that
time, switching entirely to ray tracing – i.e. replacing Reyes raster-
ization with camera rays – was not an option since shading cost
and noise in motion-blurred and depth-of-field images compared
unfavorably with Reyes.

Fig. 4. Chrome bumper with specular reflection from Cars and wine glasses
with refractions from Ratatouille (© 2006 and 2007 Disney•Pixar).

2.3 Distribution ray tracing
At the same time we added Whitted-style ray tracing, we also added
distribution ray tracing [Cook et al. 1984] to compute global illumi-
nation (indirect diffuse illumination). But this did not get used in
practice because it was too expensive to evaluate shaders at all the
distribution ray hit points.
At Dreamworks, Tabellion and Lamorlette [2004] introduced a

more efficient single-bounce global illumination method: In a pre-
pass, they rendered direct illumination on all object surfaces and
stored it in 2D texture maps. During rendering, they did a single
level of distribution ray tracing, and looked up the color at the ray
hit points in the 2D texture maps. They used irradiance gradients
[Křivánek et al. 2008; Ward and Heckbert 1992] to interpolate the
distribution ray tracing results, thereby reducing the number of rays
significantly.
At roughly the same time, we introduced a similar technique,

but stored the textures in 3D point clouds and brick maps – a tiled
3D texture format that does not require the surfaces to be param-
eterized [Christensen and Batali 2004]. This was convenient for
subdivision surfaces, implicit surfaces, and dense polygon meshes
that do not have an inherent parameterization and hence are cum-
bersome to assign 2D textures to. Irradiance gradients were extra
simple in our Reyes-based renderer: since all shading points on a
micropolygon grid were known to be on the same object surface,
interpolating irradiance gradients was trivial, and it was easy to
know when interpolation was safe.
This technique was only used for global illumination in a few

movies (none at Pixar). It was still slow since many rays needed
to be traced – typically 64 rays per shading point – to avoid noisy
results. It was, however, used for glossy reflections in metal pots
and pans in Ratatouille.

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

30:4 • Christensen et al.

2.4 Point-based approximations
Users had more success with our point-based methods. We first
developed a point-based method for subsurface scattering, and later
– inspired by Bunnell [2005] – point-based methods for ambient
occlusion and approximate global illumination in collaboration with
ILM and Sony [Christensen 2008].

Again, direct illumination was rendered in a pre-pass and stored
(“baked”) in point cloud file(s). Subsurface scattering, ambient oc-
clusion, or global illumination could be computed in a stand-alone
program (ptfilter, introduced in 2004) or by calling new point-based
variants of functions in the RenderMan Shading Language. The
computation organized the point clouds into a cluster hierarchy
and computed the desired quantity. For subsurface scattering, the
contributions from each point or cluster were simply multiplied
by the diffusion profile and added together. For ambient occlusion
and global illumination, a (very coarse) local hemisphere rasteriza-
tion was necessary to reject contributions from points behind other
points.

The advantages of the point-based methods over distribution ray
tracing were that they were much faster (no ray tracing) and the
results had no noise. The disadvantages were that they required a
pre-pass to generate the direct illumination point clouds, managing
the point cloud files was a hassle, and the results could have visible
aliasing artifacts if the point clouds were too sparse. More than
60 movies were made using RenderMan’s point-based techniques;
Figure 5 shows two examples.

Fig. 5. Point-based subsurface scattering and global illumination on Davy
Jones from Pirates of the Caribbean: Dead Man’s Chest (© 2006 Disney/Jerry
Bruckheimer) and in Carl’s living room in Up (© 2009 Disney•Pixar).

2.5 Distribution ray tracing, take two
After using the point-based approaches for a few years, users grew
tired of having pre-passes before rendering and having to store and
manage point cloud files. This lead us to revisit distribution ray
tracing, but this time with on-the-fly caching of view-independent
shading results.

For this to work, the shaders had to be split into view-independent
(diffuse) and view-dependent (specular) parts. We cached view-
independent results in a so-called radiosity cache [Christensen et al.
2012]. (We chose this term because the cached results represent radi-
ant exitance, a.k.a. radiosity.) This method reused expensive shading
results – expensive because of textures and direct and indirect illu-
mination calculations. The results were computed and cached for an
entire micropolygon grid at a time, thus preserving data coherence.

The view-dependent part of each shader was executed at every ray
hit point.

The Pixar movieMonsters University was rendered with this tech-
nique. This was part of a push within Pixar for physically based
rendering and a simplified lighting set-up with more global illu-
mination and fewer fill lights. Figure 6 (left) shows a scene from
Monsters University with global illumination computed this way.
This technique could also be used to generate somewhat fast

previews if the distribution branching factors are dialed down –
however, it is not as fast to first pixel as path tracing is, and it is
not progressive: a noisy preview image does not progress to a final
quality image. Nonetheless, many of the physically-based techniques
and optimizations developed in this setting served as inspiration
for our development of the modern path-traced RenderMan, and its
material and integrator plug-ins.

Fig. 6. Distribution ray tracing with radiosity caching: Monsters Univer-
sity scene with global illumination (© 2012 Disney•Pixar) and subsurface
scattering on a candle face (modeled by Chris Harvey).

To avoid point clouds entirely, we also developed a distribution
ray tracing version of subsurface scattering (in 2011). A spherical
distribution of rays was shot from a point below the object surface,
the illumination on the outside of the surface was computed or
looked up in the radiosity cache at those ray hit points, and each
outside illumination value was multiplied by the subsurface scat-
tering diffusion profile. (This was later improved with importance
sampling using the diffusion profile, multiple importance sampling,
etc.) Ray tracing was remarkably efficient in this application since
rays could have a fairly short maximum distance and only needed
to be intersection tested against the object they were shot from. The
candle in Figure 6 (right) was rendered with this method. A similar
method was described by King et al. [2013].

2.6 Volumes
The original Reyes algorithm did not consider volumes, thus re-
quiring RSL hackery – see Hanson’s chapter in Apodaca and Gritz
[2000]. But over the years, we extended RenderMan to incorporate
volumes by doing the 3D equivalent of the Reyes surface split, tes-
sellate (“dice”), and shade: subdivide the volume, voxelize it into
microcubes, compute color and transparency at the voxel grid ver-
tices, and render the microcubes. A similar approach was used in
the Houdini renderer [Clinton and Elendt 2009].

2.7 Re-evaluating Reyes
Even though the Reyes algorithm has been highly successful over
the years, and longer-lived than the original inventors imagined, in
retrospect it also has some weaknesses:

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

RenderMan: An Advanced Path Tracing Architecture for Movie Rendering • 30:5

1) The efficiency of the algorithm breaks down when the input ge-
ometry is extremely dense: if each input surface patch is a lot smaller
than a pixel then at most one pixel sample will hit its bounding box
(during scanline rendering). Once that hit has been found, the patch
is tessellated into a single quadrilateral (or triangle, depending on
the geometry type), the four (or three) vertices are shaded, and the
results interpolated. But it is wasteful to shade multiple vertices
just to obtain one pixel sample. (Note that this waste would have
been even worse with the original Reyes strategy of shading all
objects within the viewing frustum without determining whether
some surfaces are entirely hidden behind other surfaces.)

2) Reyes cannot exploit instancing: different instances (with shared
geometry and textures) can have different illumination, and hence
shaded colors cannot be shared between instances. In this respect,
it is as if the instances were separate objects.

3) Volumes, and particularly multiple bounces of light in volumes,
are challenging to render within reasonable memory and time. This
is because decoupling lighting frequency from microvoxel size is
hard, and volumes typically have low frequency (lighting) content.

4) We found it hard in practice to scale our Reyes-based architec-
ture to run at optimal efficiency beyond 16 threads. Even with an
advanced architecture where locks are associated with geometry,
it is hard to balance the needs of shared geometry being used by
multiple threads vs. out-of-order writes to the z-buffer.

3 MODERN RENDERMAN ARCHITECTURE
Over the last few years, we have rewritten RenderMan as a path
tracer. As mentioned earlier, the modern version of RenderMan has
been used to render the Pixar movies Finding Dory, Cars 3, and
Coco, as well as recent movies by other studios such as Ant-Man,
Terminator Genisys, The Jungle Book, Rogue One, Fantastic Beasts,
and Blade Runner 2049.

The reasons for the switch to path tracing are that it is a unified
and flexible algorithm, it is well suited for progressive rendering,
it is faster to first pixel, it is a single-pass algorithm (unlike the
point-based approaches that require pre-passes to generate point
clouds), and geometric complexity can often be handled through
object instancing. Also, the Achilles’ heels of path tracing – noisy
images and slow convergence – have been addressed by new and
effective denoisers and improved sampling. Path tracing requires
more memory than pure Reyes rendering, but with all the various
caches we had added to RenderMan over the years, the difference is
less dramatic.
Like the original Reyes RenderMan, we chose to make our new

renderer extensible and programmable. The plug-in architecture
allows users to write their own materials (“bxdfs”), rendering algo-
rithms (“integrators”), patterns, displacements, lights, light filters,
camera projections, sample filters, and display (pixel) filters. The
plug-in architecture makes it easy for users to express new material
types, experiment with new light transport algorithms, try different
strategies for volume integration, etc. On the other hand, we have
found it necessary to protect the renderer from garbage results (such
as NaNs and inf) being returned from plug-ins.
RSL surface shaders had a mixture of texture generation/look-

ups, ray generation, and color and opacity calculation. The new
interface has a more clear distinction between surface properties

and the rendering algorithm. This division was inspired by the PBRT
book by Pharr et al. [2017]. The new interface was designed from
the onset to support bi-directional path tracing and path-traced
volumes.

We trace groups of rays together, and shade groups of ray hit
points on surfaces with the same material (i.e. same bxdf and same
input connections – a “bxdf instance”) together. After a group of
rays have been traced, the ray hits are sorted into shade groups with
the same material. For each shade group, the integrator typically
calls a bxdf constructor which causes the bxdf’s inputs (usually
a pattern network) to be evaluated. Given these input values, the
bxdf can then be called to generate and evaluate sample directions,
calculate opacity, etc.

Our trace and shade groups typically consist of up to a few hun-
dred rays and ray hit points, respectively. We do not collect entire
wavefronts of rays and ray hits (millions of rays and ray hits) since
that would use huge amounts of memory or require streaming
the data to disk. Instead, we have found that keeping relatively
small groups often give the benefits of coherent tracing and shading
without a large memory overhead. (A recent paper by Áfra et al.
[2016] came to the same conclusion.) It should bementioned, though,
that in a typical production scene, the size of the trace and shade
groups degenerate to just a single ray or shade point beyond four
ray bounces. If we used larger groups of camera rays, that point of
degeneration could presumably be pushed further out.
We still use RIB (RenderMan Interface Bytestream) format to

describe scenes. RIB has survived because it is reasonable as an
archival format: for more than 25 years it has been able to describe
all the geometry formats we have needed for rendering. It has been
able to describe the linkages between lights and geometry as well
(although not the lights and shaders themselves). Unfortunately RIB
is also inherently a streaming representation, and is ill suited for
the needs of multithreaded geometry creation, as we will describe
in Section 9.

4 PLUG-INS
RenderMan allows plug-ins for materials, rendering algorithms,
patterns, and more.

4.1 Material interface: bxdfs
Surface materials are specified by physically-based bxdfs and by
texture patterns to control the parameters of the bxdfs. “Bxdf” in
our context also encompasses phase functions for volumes.
The two main API functions specifying a bxdf are Evaluate-

Sample() and GenerateSample(). Both functions operate on arrays
of data to reduce call overhead and increase data locality. Evaluate-
Sample() takes as input arrays of incident and exitant directions,
and returns an array of rgb bxdf values (each value being the ratio
of reflected radiance in the exitant direction over differential irra-
diance from the incident direction) and two arrays of probability
density function (pdf) values – one for forward scattering and one
for backward scattering. GenerateSample() takes as input an array
of incident directions and generates an array of “random” exitant
directions along with arrays of rgb bxdf and pdf values for those
directions. There is also a GetOpacity() function that returns opacity
values for shadows.

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

30:6 • Christensen et al.

Since we keep groups of ray hits on the same material together
in shade groups, the material’s generate, evaluate, and opacity func-
tions can be called for entire groups in a single function call. This
enables C++ compiler optimizations such as vectorization, loop
unrolling, etc. in these functions.
Sadly, gone are the days where a novice TD could quickly learn

to write an RSL surface shader. These days, specifying a material is
much more complicated: writing a bxdf requires knowledge of C++,
optics, probability theory, sampling, pdfs, etc. Luckily, many good
resources and publications are available today for shading TDs to
become more proficient in the face of this new challenge.

Users can write their own materials (bxdfs) or simply use one of
the materials provided with RenderMan. We provide simple specific
materials such as Lambertian diffuse, perfect mirror, and skin with
subsurface scattering. We also provide a material based on Disney’s
bxdf model [Burley 2015], and a general-purpose “über”-material
developed by Pixar’s studio tools illumination group [Hery et al.
2017b]. (The idea is to provide the material used in Pixar movie
productions to external RenderMan customers.) There is also a bxdf
specifically for hair and fur [Marschner et al. 2003; Pekelis et al.
2015].

4.2 Light transport interface: integrators
Integrators are light transport plug-ins. They get a group of camera
rays as input, and can call bxdf and light source API functions to gen-
erate and evaluate samples. Integrators also call API functions called
GetNearestHits() and GetTransmission() – provided by the renderer
– to do the actual ray tracing. There are two GetNearestHits() func-
tions: one that returns shade groups for the ray hit points, and one
that traces ray probes that only return geometric information about
the ray hits (useful for e.g. subsurface scattering). GetTransmission()
returns the transmittance between two points, and is used to query
visibility for direct illumination computations and to connect eye
and light paths in bidirectional path tracing. Examples of integrators
are described in Sections 10 and 11.

Volumes and subsurface scattering require special handling. If an
object has an associated interior integrator (for volumes, subsurface
scattering, or both), the GetNearestHits() function for that interior
integrator is called. The interior integrator can be as simple as
tracing rays and reducing their transmission weights by Beer’s law,
or can trace many bounces of scattering in the volume. In the end,
no matter how complex the interior integrator is, it returns ray hit
points (shade groups) and associated weights to the main integrator.
The renderer provides generate and evaluate functions to help

sampling of light sources for direct illumination calculation (next
event estimation). This part of the renderer also handles shadow
calculation, i.e. it traces transmission rays to determine whether
the selected light source position is (fully or partially) blocked by a
solid or semitransparent object or volume.

4.3 Pattern networks
Pattern networks can compute varying material parameters for
scattering or transmission. Patterns can access texture maps or
compute results procedurally, and can be combined in networks
of compute nodes. Evaluating pattern networks for entire shading

groups at a time reduces overhead and gives improved data locality
for texture map look-ups.

RenderMan supports C++ pattern plug-ins as well as two proce-
dural languages to generate patterns: SeExpr from Disney [Berlin
et al. 2011] and Open Shading Language (OSL) from Sony [Gritz
et al. 2010]. Both are open source. As opposed to RSL, which was
designed to implement entire shaders, these new shading languages
are based on the concept of networks of shading patterns. We found
that these shading languages are not quite as performant as our C++
pattern plug-ins, mainly due to execution vectorization of C++, but
they are more modular and easily transferrable between renderers
and between studios working on the same project. Some very de-
sirable properties of OSL are that parameters are only evaluated
on demand, as well as a variety of run-time optimizations that OSL
performs on the shader code, including static branch elimination,
constant folding, caching and reuse of shared expressions, and more.
There is also work in progress to vectorize OSL for more efficient
execution.

4.4 Other plug-ins
RenderMan also supports plug-ins for surface displacement (to add
geometric detail to objects), light sources (rectangular, disk, sphere,
distant, environment, sky, mesh), light filters (barn door, blocker,
cookie, gobo, color ramp, portals, etc), camera projections (for e.g.
IMAX projections, virtual reality, or extreme U-shaped screens at
amusement park rides), pixel sample filtering (for e.g. firefly re-
duction), and display filtering (to modify pixel colors for e.g. tone
mapping).

5 HANDLING COMPLEX SCENES
A production-strength renderer such as RenderMan is a complex
data management system that must be able to handle massive
amounts of geometry, textures, and light sources, and utilize parallel
compute resources. The geometry and texture input can be many
times larger than the main memory of the computer, and there-
fore requires careful management: read on demand, caching, etc.
We sometimes say tongue-in-cheek that rendering a movie image
is simply extreme data compression, and that the output image is
almost just a by-product of all this complex data management.

Scene complexity grows every year; for Pixar’s most recent movie,
Coco, the average memory use was 35 GB per frame, with 10% of
the frames using more than 64 GB, and a few using up to 120 GB.
Rendering a typical frame required shading of hundreds of millions
of ray hit points.

5.1 Complex geometry
Movies have huge amounts of geometry in each image, and the
surfaces are often displacement-mapped to add evenmore geometric
complexity. For Coco, there were often on the order of 10 to 100
million (instanced and un-instanced) objects in each scene. Figure 7
shows a scene with about 20 million objects.

We split polygon meshes consisting of hundreds (or millions) of
polygons into smaller meshes in order to create a BVH with smaller
leaf nodes. The individual faces of polygon meshes are not diced

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

RenderMan: An Advanced Path Tracing Architecture for Movie Rendering • 30:7

Fig. 7. Complex geometry in Coco: 20 million objects (© 2017 Disney•Pixar).

(unless the polygon faces are large on screen and displacement-
mapped). As is common, we store the polygon meshes internally as
strips with shared vertex positions and compact indices.

Other than polygon meshes, the most popular surface representa-
tions are subdivision surfaces [Catmull and Clark 1978; Loop 1987]
and NURBS patches [Martin et al. 2000; Piegl and Tiller 1997]. (The
subdivision surfaces can have sharp and semi-sharp creases, and
NURBS patches can have trim curves.) For those types of geometry,
we distinguish between surfaces that are large on screen and those
that are small on screen.

Large surfaces are split into patches and then diced (and displaced)
on demand and stored in a multi-resolution cache. Based on path
differentials we may choose fine, medium, or coarse tessellations
in the tessellation cache for intersection tests. We automatically
determine the finest tessellation – roughly one micropolygon per
pixel by default (but this is adjustable, of course). This gives seamless
tessellation changes when zooming in or out without over- or under-
tessellation. If the subdivision level for subdivision surfaces was
determined manually it would often be too coarse (giving visibly
facetted edges) or too fine (consuming too much memory).
Surfaces that are small on screen (for example over-modeled

objects) do not get split into smaller patches, and the tessellation
of each surface is very coarse. For subdivision surfaces, the limit
surface can be evaluated at the vertices of the subdivision base mesh
and the surface converted to a compressed polygon mesh. Then the
original base mesh can be deleted since no subdivision is required
anymore. The same applies to NURBS patches: the control mesh
can be converted to a compressed polygon mesh.
Surfaces outside the viewing frustum only require a tessellation

accuracy needed for reflections in visible surfaces or for casting
shadows onto visible surfaces. So the further away from the viewing
frustum the surface is, the coarser the geometry tessellation can be.

In the future, it would be convenient for users if RenderMan could
simplify over-modeled geometry (for the given camera position) on
read. Such simplification must maintain the overall shape reason-
ably well. However, feature-preserving geometric simplification is
a difficult problem – usually done in specialized stand-alone pro-
grams – so this would likely be a challenge to implement properly
and efficiently.

5.2 Complex textures
Textures are either computed procedurally or read from texture
maps.

Procedural textures have the advantage that they require very
little memory. They must be written such that they are efficient to
evaluate andmust take sample frequencies and the Nyquist limit into
account in order to produce a texture with the right amount of detail:
too little detail and the rendered image will look too smooth; too
much detail and there will be more sampling noise than necessary.
The texture tile cache of Peachey [1990] is still alive and well.

Since Peachey’s original version, two major improvements have
been implemented: multithreaded look-ups, and use of ray differen-
tials to make the same approach work for ray tracing. It is aston-
ishing that the same caching scheme – with only a few updates –
is still viable nearly 30 years later! Typical scenes from Coco had
tens of thousands of texture maps, with several gigabytes of texture
reads.
We also offer a similar approach for 3D textures: a tiled, MIP

mapped format called brick map [Christensen and Batali 2004].
A brick map is an octree of bricks where each brick contains 8×8×8
voxels of texture data; bricks are cached just like 2D texture tiles.
(Brick maps can also be used as geometric primitives with built-in
level of detail since the voxels have implicit or explicit geometry
information in addition to the stored texture data.)

Another popular texture format supported by RenderMan is Ptex
[Burley and Lacewell 2008]. It is a single texture file per surface
mesh, with a MIP mapped texture map for each face of the mesh.
One limitation of the Ptex format is that the coarsest representation
is 1 texel per mesh face, collected in a table in the file header. This
varying-size representation is not ideal for caching. For texture
look-ups on heavily over-modeled subdivision surfaces, it would
be beneficial to have even coarser texels – each covering several
faces – since that would access less data and also reduce noise due
to the prefiltered sample values. We believe it would be interesting
to extend Ptex along the lines suggested by Cook [2007] in his Htex
proposal which includes coarser averages.

5.3 Complex illumination
Figure 8 shows a scene from Coco with 8 million point light sources.
For efficient illumination calculations in scenes with many light
sources, we can only afford to sample a subset of the lights at each
shading point. It can be challenging to efficiently select which light
sources to sample and/or trace shadow rays to. (For distribution ray
tracing, many rays were traced from each shading point, so complex
light selection strategies could be better amortized. But for path
tracing we usually only trace a few rays per shading point, so the
light selection has to be very fast.)

Fig. 8. Complex illumination in Coco: 8 million lights (© 2017 Disney•Pixar).

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

30:8 • Christensen et al.

There are a couple of classic approaches to light selection. Ward
[1991] sorted lights according to their potential contribution at
each shading point. He only traced shadow rays to lights above a
threshold and used coarse averages for the rest. Shirley et al. [1996]
developed a strategy where for each region of space the light sources
were divided into bright and dim. At a given shading point, all the
bright lights were sampled, but only a few of the dim lights.

One improvement is to cluster the lights for improved efficiency.
A second improvement is multiple importance sampling [Veach and
Guibas 1995]: take some samples in directions that are important
for the bxdf, and some samples at important light source positions,
and combine the results of these samples. An even better approach
(unless the material is purely diffuse) is joint importance sampling:
take the bxdf into account when selecting light sources. We create a
cone of directions toward the light (or cluster of lights) and sample
the bxdf for directions within that cone to get an estimate. These
samples are multiplied by estimates of the light illumination. This
is then combined, via multiple importance sampling, with samples
that are based purely on the bxdf.
Light filters (which are plug-ins) can modify the illumination

from a light; examples are cookies, barn doors, and ramps (non-
physical fade-in and fade-out with distance). Most of these light filter
types can be taken into account when selecting the light sources
(although the position on the light hasn’t been chosen yet so we
cannot evaluate the filter precisely).

Another complication in practice is light linking – a non-physical
feature where some lights only illuminate certain objects. (Light
linking is only applied to direct illumination, not indirect.) In this
case we have to avoid selecting lights that do not illuminate the
object we’re trying to calculate direct illumination on. One could
perhaps use rejection sampling for this, but we have chosen to
build a separate cluster hierarchy for every combination of light
linking, thus incurring a memory increase but very little increase
in run-time.
We have experimented with learning algorithms [Dahm and

Keller 2017; Lafortune and Willems 1995; Müller et al. 2017] to
learn which light sources are occluded at which parts of the scene
during rendering. This is still work in progress.

5.4 Many-core execution
A key to efficient rendering of complex scenes is parallel execution.
The oft-repeated claim that ray tracing (and path tracing) are “em-
barrasingly parallel” algorithms is a myth. Certainly, each pixel can
be rendered independently in parallel, and if all data (geometry, tex-
tures, shaders, etc.) fit in memory and is already loaded and divided
into appropriately-sized tasks with even load balancing, then close
to ideal speed-ups can be gained with minimal effort. However, in
practice, it takes a lot of thought and design considerations to obtain
good speed-ups for complex scenes.
We aim to always develop and test our renderer on computers

that are one generation ahead of the computers our customers have
in their render farms. When 4 CPU cores were the norm, we would
ensure nearly ideal speed-ups on 8 cores, etc. This has been a suc-
cessful strategy thanks to early access to Intel prototype computers
which has ensured that we could reorganize computations, optimize
code, and eliminate bottlenecks before they could get in the way of

full efficiency for our customers. Currently we optimize for configu-
rations with 44–72 cores. We usually see an additional 1.2–1.5 times
speed-up when running two hardware threads (hyperthreads) on
each core. We have recently switched from a home-grown thread
scheduler to using Intel’s TBB (thread building blocks) library.

6 RAY TRAVERSAL AND INTERSECTION TESTS
This section describes our implementation choices for surface tes-
sellation, ray acceleration data structures, ray intersection tests,
floating-point accuracy, motion blur, and path differentials.

6.1 Tessellation
Surface tessellation depends on the screen size of the surface: the
default target is that a micropolygon should be roughly the size of
a pixel. We support two types of tessellation: full tessellation of the
entire surface as soon as a ray hits its initial bounding box, and indi-
vidual tessellation of surface patches as needed. Our full tessellation
algorithms ensure watertight tessellation: adjacent surface patches
are tessellated with matching vertices along the shared edges (even
for displaced surfaces). However, for some types of surfaces, we use
individual tessellations which only consider one surface patch at a
time. Those tessellations do not necessarily match along edges. (We
could easily match tessellation rates along edges, but that would
be futile unless post-displacement vertex positions could be forced
to be consistent for neighbor grids.) Mismatched edges can give
pinholes (ray misses) and false self-intersections unless handled
carefully.

For object instances, the tessellation’s target micropolygon sizes
can be specified in world space, determined by the screen size of
the master object, or determined by the screen size of the instance
that is closest to the camera.

6.2 Bounding volume hierarchies
The surface patches of the scene are organized into a bounding
volume hierarchy (BVH) [Kay and Kajiya 1986] which is a tree with
bounding boxes at all nodes and actual geometry at the leaves. The
BVH is built asynchronously on-the-fly as rays descend through
it, causing large surface patches to be split into smaller patches (if
needed) when a ray hits the bounding box of a patch. Procedural
on-demand loading of geometry causes asynchronous rebuilds of
parts of the BVH tree. Groups of objects with different visibility
flags and trace subsets are stored in separate trees. For polygon
meshes, a BVH leaf node currently consists of 4 or 8 triangles or
quadrilaterals (depending on the geometry type). For other surface
types, a BVH leaf node contains a tessellated surface patch in the
multi-resolution geometry cache.

6.3 Rays and intersection tests
We trace ray bundles of up to 64 rays through the BVHwhen the rays
are coherent, and mask off rays or split the bundle when they are not
coherent. When the traversal reaches a leaf node, we intersection
test one ray at a time with 4 or 8 triangles or quadrilaterals. In the
spirit of Intel’s Embree library [Wald et al. 2014], our implemen-
tation has an abstraction layer that keeps low-level vectorization

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

RenderMan: An Advanced Path Tracing Architecture for Movie Rendering • 30:9

details and instruction intrinsics (and changes) hidden from most
developers.

6.3.1 Instances. Instances of objects are represented with just a
transformation matrix, a material ID, and a pointer to the master
object. Instances can have different material than the master, but
must have the same displacement. Figure 9 shows examples of
instancing from the short movie Piper ; each sand grain instance has
a different color and amount of refraction.

Fig. 9. Object instancing: a grain of sand consisting of 5,000 polygons, 50,000
instances of 20 sand grains, and millions of instanced sand grains (© 2016
Disney•Pixar).

6.3.2 Curves. Curves are used to represent hair and fur – see
the tiger in Figure 1. Hair and fur geometry is usually very dense,
so efficiently representing and ray tracing against curves is impor-
tant. There are two main types of curves: flat “ribbons” with an
orientation determined by a normal (for e.g. blades of grass), and
cylindrical “round” curves (for hair and fur). The basis of the curves
can be linear, Bézier, B-spline, or Catmull-Rom – allowing the user or
modeling package to define curves in a way that is most convenient
for them.
Groups of curves with a shared material are defined as a sin-

gle object. The groups of curves can be split into smaller groups
(“curvelets”) and also split length-wise. The latter is important for
efficient BVHs for very long hair – in extreme cases hair strands
can stretch across the entire screen (what we affectionately call “the
Rapunzel problem”).

Groups of curves are organized in a bounding volume hierarchy
with a mix of axis-aligned and curve-aligned bounding boxes. Our
ray-curvelet intersection test splits curvelets on-the-fly depending
on the ray radius. Then each curvelet segment is intersection tested
using vectorized instructions to test one ray against 4 or 8 segments
simultaneously. Related curve intersection methods have been de-
scribed by Nakamaru and Ohno [2002] and Woop et al. [2014].

6.4 Trace bias and numerical accuracy
To avoid false self-intersections we offset the ray origins by a small
amount – this is a standard ray-tracing trick [Woo et al. 1996]. The
offset amount is called “trace bias” and is automatically computed
by RenderMan. In our setting, two types of trace bias are needed
internally:
1) For individually tessellated patches, the bias has to be large

enough to overcome mismatched tessellations and displacements
along patch edges. The size of this bias is proportional to the size of
the micropolygons.

2) Bias to overcome numerical precision. On geometry very far
from the coordinate system origin, we want the bias to be large
enough that when the ray origin is offset by the bias, the bias doesn’t
get “drowned out” by the floating-point magnitude of the pre-bias
ray origin.
When an entire surface is tessellated (and optionally displaced)

at the same time, we can easily “weld” the grid vertices back to-
gether along patch edges (even after displacement). This eliminates
the need for the first type of bias. However, enforcing matching
tessellation along shared patch edges for individually tessellated
patches would require e.g. the irregular tessellations described by
Fisher et al. [2009] and some creative thinking for surfaces with
displacement shaders.

As future work, we would like to implement individual watertight
tessellations with post-displacement welding; that would allow us to
reduce trace bias to an absolute minimum as determined by floating-
point accuracy [Ize 2013; Pharr et al. 2017].

6.5 Motion blur and depth of field
To render motion blur, each camera ray is assigned a time within
the shutter interval. The times for camera rays for each pixel are
stratified to reduce noise: the ray times are stratified in 1D, and the
combined pixel positions and times are stratified in 3D. Non-camera
rays inherit the time of their parent ray.

Each node of the bounding volume hierarchy contains a bounding
box for shutter open time and one for shutter close time. (Or, more
generally, s + 1 bounding boxes for s shutter intervals.) The leaf
nodes contain tessellated micropolygon grid positions for each (s+1)
shutter interval boundary. For ray intersection tests, the bounding
boxes are interpolated according to the ray’s time. For deforming
geometry, the tessellated micropolygon grid positions in the leaf
nodes are also interpolated before intersection testing.
For depth of field effects, the pixel positions are stratified in 2D,

the lens positions for a pixel are stratified in 2D, and the combined
pixel position and lens position samples are stratified in 4D (using
precomputed sample tables as described in Section 7.1).

6.6 Path differentials
Igehy [1999] expressed ray differentials as four vectors: for a ray
r = o + td the vectors are do

du and do
dv for the origin and dd

du and dd
dv

for change in direction per unit travelled.
For path tracing, rather than the full generality of Igehy’s ray

differentials, we have chosen much simpler quantities: one float
for the ray radius at the ray origin, and one float for ray spread
(expressing the change in radius per unit travelled). This is sufficient
because each pixel is sampled many times. (A similar argument has
been made by Pharr et al. [2017].)
For camera rays from a pin-hole camera we set the ray radius

to zero at the origin and the ray spread to correspond to a quarter
pixel by default. We have empirically found that there is no need to
use a smaller spread (except for high-frequency bump mapping).

The radius r and spread s after a ray has travelled distance t are:

rt = r0 + t s0; st = s0.

For reflection and refraction, the new ray’s radius at its origin is
the same as the incident ray’s radius at the hit point. For specular

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

30:10 • Christensen et al.

reflection, the change in ray spread is determined by the ray radius
and surface curvature:

r ′0 = rt ; s ′0 = st + 2κ rt
– where κ is the local mean surface curvature. The factor of 2
comes from differentiating the formula for mirror reflection direc-
tion [Igehy 1999]. For specular refraction the change in ray spread
is determined by the ray radius, surface curvature, and the relative
index of refraction. (We calculate curvature on non-displaced sur-
faces from analytical surface derivatives, and on displaced surfaces
from the normals of neighboring micropolygons.)
For glossy and diffuse reflection (and transmission) we use an

empirically determined heuristic based on the pdf of the chosen
scattering direction, where lower pdf gives higher spread.

7 PROGRESSIVE AND ADAPTIVE RENDERING
Progressive and adaptive path tracing requires progressive sample
sequences, good error measures, and the ability to store and resume
in-progress images.

7.1 Sample sequences
Sample patterns can be divided into two categories: finite, unordered
sample sets and infinite, ordered sample sequences. Every prefix of a
progressive (a.k.a. hierarchical) sample sequence is well distributed.

For non-progressive, non-adaptive rendering, we only care about
the final image, and could use finite sample sets such as jittered sam-
ples [Cook et al. 1984; Mitchell 1996], correlated multi-jittered sam-
ples [Kensler 2013], randomized versions of quasi-random sets such
as the Hammersley [1960] or Larcher-Pillichshammer [2001] sets,
or special sets with desirable spectral properties [Ostromoukhov
et al. 2004]. But for progressive rendering the intermediate samples
are also important. Figure 10 shows area light sampling with 100
samples from a set with 400 jittered samples vs. the first 100 samples
from a progressive sample sequence. The advantage from using a
sequence is evident. Likewise for adaptive sampling: we don’t know
how many samples we’ll end up taking in each pixel, so we’d like
the quality of the first samples to be as good as possible.

Fig. 10. Penumbra region with 100 samples per pixel: 100 samples from
a stratified sample set with 400 samples vs. the first 100 samples from a
progressive sample sequence.

Comparing the quality of sample sequences is a complex and
multi-faceted task. Ranking according to star discrepancy is highly
misleading [Dobkin et al. 1996; Mitchell 1992; Shirley 1991]. Instead,

we have performed many tests by sampling functions and images.
In the following we describe a few simple but representative tests
of 2D and high-dimensional sample sequences.

7.1.1 2D sample sequences. Best candidates (“blue noise”) se-
quences [Mitchell 1991; Reinert et al. 2015] have desirable spectral
properties, but the same slow convergence rate as random samples.
Ahmed et al. [2017] recently introduced an elegant way of gener-
ating blue noise sequences on a tiled lattice, thereby enforcing a
regular jitter structure (stratification). These sequences have faster
convergence rate than best candidates.
Randomized versions of quasi-random sequences such as the

Halton [Fauré and Lemieux 2009; Halton 1964] or Sobol’ [Joe and
Kuo 2008; Sobol’ 1967] sequences have fast convergence, are simple
to use, and their samples can be generated very efficiently during
rendering.
For an informative comparison of these 2D sequences, we use

them to estimate the integral of a disk function,

f (x ,y) =

{
1 if x2 + y2 < 2/π ,
0 otherwise,

by sampling the function over the unit square. The disk radius was
chosen such that the correct value of the integral is 0.5.
The plot in Figure 11 shows sampling error as function of the

number of samples; each curve is the average of 10000 trials. The
plot shows the error for sampling with uniform random, best candi-
dates, Ahmed, Halton, and Sobol’ sequences. The Halton sequence is
randomized with rotations (toroidal shifts a.k.a. Cranley-Patterson
rotations [Cranley and Patterson 1976]) and random digit scram-
bling; the Sobol’ sequence is randomized with rotations, bit-wise
xor [Kollig and Keller 2002], and Owen scrambling [Owen 1997]. For
this discontinuous function, the error for uniform random and best
candidates converges as O(N−0.5), while the error for the Ahmed,
Halton and Sobol’ sequences converges roughly as O(N−0.75).

 0.001

 0.01

 0.1

 100 1000

er
ro

r

samples

Sampling error: disk function
random

best cand

Ahmed

Halton rot

Halton scr

Sobol rot

Sobol xor

Sobol owen

N-0.5

N-0.75

Fig. 11. Error for sampling the disk function with different sample se-
quences.

For sampling of smooth functions (for example a 2D Gaussian
or a bilinear function f (x ,y) = xy), the random and best candi-
dates sequences still converge as O(N−0.5). Ahmed sequences and

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

RenderMan: An Advanced Path Tracing Architecture for Movie Rendering • 30:11

nearly all combinations of quasi-random sequence and randomiza-
tion converge as roughlyO(N−1). However, the 2D Sobol’ sequence
with Owen scrambling has a remarkably fast convergence: roughly
O(N−1.5) for power-of-two numbers of samples [Owen 1997]. So
for sampling of two-dimensional functions, an Owen-scrambled
Sobol’ sequence is a really good choice.

7.1.2 High-dimensional sample sequences. For higher dimen-
sions, it is tempting to just use high-dimensional quasi-random
sequences. Unfortunately, the Halton and Sobol’ sample sequences
have increasingly poor distributions in pairs of higher dimensions –
even with good randomization.
The plot in Figure 12 again shows sampling error for the 2D

disk function. This time the error curves are for pairs of higher
dimensions of the best quasi-random sample sequence we know of:
Joe and Kuo’s version of the Sobol’ sequence, with Owen scram-
bling, as discussed above. The bottom (magenta) curve shows good
convergence – roughly O(N−0.75) as before – for the lowest two
dimensions of the samples. But for higher pairs of dimensions, the
error quickly gets worse. For some of the dimensions, the error is
very erratic and the convergence is sporadic and unpredictable –
sometimes the error is even as high as for random samples! This
is not a particularly contrived example: it could be sampling of the
shadow of a sphere from a square area light after a few bounces of
narrow glossy reflection (with pixel positions, lens positions, time,
and each glossy bounce “consuming” sample dimensions). We see
similar errors for randomization using bit-wise xor, and even worse
errors with rotations. There are similar problems with the Halton
sequence, with other variations of the Sobol’ sequence, and with
sampling of other functions than a disk.

 0.001

 0.01

 0.1

 100 1000

er
ro

r

samples

Sampling error: disk function (Sobol high-dim)
random

Sobol owen dim 14,15

Sobol owen dim 8,9

Sobol owen dim 6,7

Sobol owen dim 4,5

Sobol owen dim 2,3

Sobol owen dim 0,1

Fig. 12. Error for sampling the disk function with different pairs of dimen-
sions from a Sobol’ sequence. (Error for uniform random shown in red for
reference.)

7.1.3 Progressive multi-jittered sample sequences. To avoid the
convergence problems described above, we use carefully crafted
stochastic samples. We start with 2D progressive multi-jittered (0,2)
sample sequences (“pmj02”) inspired by the progressive jittered sam-
ple sequence construction of Dippé and Wold [1985] and Kensler’s
correlated multi-jittered (cmj) sample sets [Kensler 2013]. Our pmj02
sequences are stratified in 1D and all 2D elementary intervals for
power-of-two sample counts, i.e. they are (0,2)-sequences in base 2.

Their error matches the best quasi-random sequence:O(N−0.75) for
discontinuous functions and the extraordinarily low O(N−1.5) for
smooth functions. The sequences are theoretically infinite, but in
practice we truncate them at 4K samples in pre-generated tables
(and resort to other means if more than 4K samples per pixel are
needed in each dimension).
We then combine (“pad”) the 2D pmj02 sequences by locally

shuffling the order of sample values in all but the lowest pair of
dimensions such that the samples are stratified in higher dimen-
sions (as well as in the original 1 and 2 dimensions) – this gives
lower sampling errors in 3D, 4D, etc. than randomly padding the
2D sequences together as in e.g. Cook et al. [1984] and Kolb et al.
[1995]. Sampling a 2D function such as the disk with higher pairs
of dimensions from one of these high-dimensional sequences will
– by construction – have the same low error as with the first two
dimensions since only the sample order was changed.
Nonetheless, the main point here is that none of the sample se-

quences we know of have a great distribution simultaneously in
all pairs of dimensions and in all higher dimensions. Developing
better high-dimensional sample sequences for progressive path trac-
ing is an open area of research with many conflicting goals and
constraints. See also the interesting “wish list” by Hickernell [2003].

7.1.4 Initial samples. For interactive rendering it is desirable that
the first samples are as visually pleasing as possible. This can be
accomplished by placing the initial samples using a best-candidates
(blue-noise) distribution [Georgiev and Fajardo 2016] or using a
single quasi-random sequence for the entire image [Grünschloß
et al. 2010]. (However, the latter approach is prone to visual aliasing
for some numbers of samples.)
We use a different method to obtain the same goal. The initial

pixel sample positions are coordinated within groups of 4 × 4 pixels
such that they are stratified in all elementary intervals: [4, 0.25],
[2, 0.5], ..., [0.25, 4]. Same for lens samples for depth-of-field, etc.
Given a desired initial sample position, we could select the sequence
among our tables with the first sample closest to the desired position.
Instead we pick a sequence at random and apply a bit-wise xor to
move the initial sample to the desired position in the pixel, and then
use the same xor bit pattern for all the following samples in that
pixel.

7.2 Adaptive pixel sampling
Different areas of an image may converge at different speeds when
rendering. For example, areas where the rays miss the geometry
completely will trivially converge to the background color, and flat,
well-lit parts also tend to converge quickly. On the other hand, phe-
nomena such as penumbras, caustics, glossy surfaces, and moving
objects may take much longer to converge. For this reason, it is use-
ful for the renderer to be able to detect pixels that have converged
and focus all its effort on the unconverged pixels. This is the job of
the adaptive sampler.
In practice, this involves a tricky balance. If the adaptive sam-

pler is too conservative and shoots mostly the same camera rays
that a uniform, fixed sampler would have, then it provides little
benefit; to be worth the effort it must save more in rendering time
than its own computational overhead. On the other hand, if it is

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

30:12 • Christensen et al.

too aggressive then it may make the render quick but it could miss
rare-but-important samples which will lead to flickering under ani-
mation.
One other concern that we had – specific to production film

rendering – was memory use in the face of many additional outputs
(arbitrary output variables, also known as AOVs, such as depth,
motion, surface normal, etc.). Given that productions often render
out dozens of AOVs for compositors to use, any implementation
that required keeping detailed statistics for each pixel of each AOV
could prove quite costly in framebuffer memory.
To avoid this, our initial implementation operated on a tile at

a time and used a contrast-based approach inspired by Mitchell
[1987]. Though the tile level proved too coarse, using contrast had
some nice benefits – particularly its insensitivity to the absolute
light exposure level. For production use, this means compositors
can adjust the exposure on a rendered image at will and the noise
level will remain relatively constant. It also avoids oversampling of
blown-out pixels.
Subsequently, we changed the adaptive sampler to operate on

individual pixels, keeping a counter of samples remaining to render
for that pixel. If a sample outside the convergence criteria is detected
for any channel, we reset the counter for that pixel and each of
its neighbors. Resetting the neighbors as well greatly helps with
relatively rare but important samples such as from bokeh.

As pointed out by Rousselle et al. [2013], standard statistical vari-
ance does not capture the improved convergence of high-quality
sample sequences. Our default convergence criteria effectively asks
what the relative difference between a pixel before and after adding
the sample to it would be, and compares that difference with a
user-specified threshold. This relative measure preserves the inde-
pendence from the absolute exposure while also not incurring any
memory costs beyond what we already needed for pixel filtering.
Over time, we have extended this algorithm. The convergence

threshold can be adjusted per-object, allowing more samples on
hero or problematic objects and fewer on backgrounds. Different
channels may also have different convergence thresholds. User-
created AOVs that track the estimated variance of a primary AOV
can be used directly; this allows for a more traditional variance-
based metric where the user explicitly opts-in to the extra memory
cost. We also added a control to limit oversampling in very dark
regions.

Note that the adaptive sampler is intentionally affected by sample
filter plug-ins. This way it can be made to operate in other (e.g.,
perceptual or filmic) color spaces or to consider tonemapping. Savvy
users can also programatically drive the adaptive sampler via special
AOVs.

7.3 Progressive rendering and checkpointing
One of the primary reasons for choosing path tracing over distribu-
tion ray tracing as a light transport algorithm is that complete paths
can be easily sampled and added to pixels in any order. Rather than
sampling all of the paths through a pixel at once, RenderMan can
visit each pixel many times, progressively refining it with additional
samples. For interactive use, this allows artists to quickly see an
initial noisy rendering which then refines over time.

For batch use, the renderer can periodically generate what we call
checkpoint images. These are complete, standard images, viewable
in any OpenEXR reader, that carry additional metadata that the
renderer can use to resume where it left off if it is stopped and
restarted. Checkpoint images can be written after some number of
passes over an image, or after a set amount of time. The renderer
can also write a checkpoint image and exit gracefully when a time
limit is reached.
This has become an extremely valuable tool in production. A

sequence of frames can be sent to the render farmwith the constraint
that each frame take nomore than a given time between checkpoints.
Within minutes, an artists can view the checkpoint images and be
confident that they have no broken renders. After further refinement,
the resulting partially converged image sequence is often good
enough for approval in a daily review. If it passes, the renders can
be resumed and allowed to fully finish. Time-slicing the renders
using checkpoints ensures that no one goes to a daily review empty-
handed.

On the downside, it should be mentioned that this strategy (one
sample per pixel in each iteration) for progressive path tracing in-
creases the total render time for the final image by 10-30% compared
to non-progressive rendering. The problem is the scattered data
accesses: most data (geometry, textures, etc.) is accessed in each
iteration. In contrast, for non-progressive rendering, each thread
keeps iterating over an image tile until it is finished, and only then
moves to the next available tile, giving excellent data locality. In
the future we want to implement power-of-two progressions, i.e.
progressive rendering where the number of samples per pixel dou-
bles in each iteration. We believe this would give the best of both:
quick iterations initially for fast feedback, but more coherency in
later iterations.

8 PATH SELECTION AND MANIPULATION
Light path expressions [Gritz et al. 2010] are used to distinguish
between the different paths that light can take from the light sources
to the eye. This is useful for noise reduction, compositing, and
debugging: it can be utilized to change the intensity of certain light
paths, or even delete some paths entirely. For example, caustic paths
might contribute a lot of noise to path-traced images without any
desirable visible contribution, so they can be explicitly omitted from
the final images.

Light path expressions can be written concisely using Heckbert’s
regular expression notation [Heckbert 1990]: E denotes the eye
(camera), L denotes a light source, D is diffuse reflection, and S is
specular reflection. ‘|’ is a choice between two paths, ‘*’ means zero
or more repeats, ‘+’ means one or more repeats, and ‘[x]’ means x
is optional. For example, light directly from the light source to the
eye is LE, and light reflected any number of times is L(D |S)∗E. Our
extensions of this notation allow distinction between reflection and
transmission, and between light sources and emissive geometry. We
also allow expressions with individual light source names.

Light path expressions can bewritten to arbitrary output variables
in the rendered image. For example, it can be useful to write not
only the complete (“beauty”) image but also the direct lighting,
surface albedo, specular and diffuse reflections separately. Such

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

RenderMan: An Advanced Path Tracing Architecture for Movie Rendering • 30:13

separate channels are required as input to the denoiser described in
Section 13.

Even though path tracing is based on physical simulation, it is pos-
sible to take many of the same liberties as with Reyes [Barzel 1997]:
some lights might only illuminate certain objects, some objects may
only cast shadows on certain other objects, some ray paths can
be explicitly omitted, reflection ray directions can be “bent”, some
light paths can be enhanced or reduced, color bleeding from one
particular object to another can be increased or decreased, caustics
and secondary specular reflections can be deleted, brightened, or
blurred, etc. Our path tracer provides support for such non-physical
manipulation; this is implemented using light filters. The survey by
Schmidt et al. [2016] and course notes by Hery et al. [2017a] provide
more details of such light path expression editing tools.

9 INTERACTIVE RENDERING
Traditionally RenderMan has been used for “off-line” rendering of
final-quality images. But we are currently pushing for more inter-
active use, for example during modeling, texturing, lighting, and
animation.

One of the advantages of being a pure path tracer is that anything
can be edited at any time: all shading and light transport is re-
evaluated on every render. During interactive rendering, RenderMan
is put into a progressive rendering mode that iterates over camera
samples, showing a progressively refined (less noisy) image as each
round of camera rays is traced. Updates to the renderer are typically
driven by a scene translator embedded in an application such as
Maya or Katana. When the user updates something in the scene,
the renderer is paused, an edit sent, and the rendering restarted
at the first iteration of the progressive integration. Light transport
algorithms (integrators) and their parameters, materials (bxdfs),
pattern networks, lights, light filters, display filters, and projection
plug-ins may be edited or replaced. The camera and lights can be
moved.

Conspicuously missing from the list above is the ability to move
scene geometry. While RenderMan is no longer a hybrid renderer,
the current version has retained an optimization put in place for the
scanline renderer: geometry, including all per-vertex data, is stored
in camera space. This was done to accelerate z-buffer hiding (since a
camera-to-raster space transformation is trivial) and shading (which
was also performed in camera space). In addition, the bounding
volume hierarchies were built with the geometry from separate
but overlapping objects intermingled. Given this design, moving
geometry would be cumbersome and was thus not implemented. We
are currently lifting this restriction by no longer storing geometry
in camera space and by segregating the BVHs so that it is trivial to
move, add, or delete objects or groups of objects. Figure 13 shows
an example: a screen grab of an interactive scene editing session in
Maya with RenderMan in the viewport. A similar interface exists
for Katana.
The RenderMan Interface (RI) is a streaming API that provides

a hierarchical scene description. This is well-suited to an efficient
serialized representation of a static scene. However, it is not a natural
fit for interactive scene editing for several reasons: naming scene
components unambiguously is a challenge; bindings between objects
(for example material to geometry) are implicit in the stream while

Fig. 13. Interactive session with RenderMan in the Maya viewport. The
chrome torus (highlighted in green) is selected for geometric editing. (Maya
integration by Katrin Bratland.)

an application that is editing a scene would prefer the binding to be
explicit; not all applications that make use of interactive rendering
need a hierarchical representation of a scene, but all would benefit
from a direct, easy to modify representation.

To satisfy these goals we have introduced two new APIs: a light-
weight scene graph, and a low-level interface to the renderer that we
call Riley. The scene graph provides the core representation upon
which we build translators from modeling and scene management
applications. This is a natural fit for these applications. The scene
graph can serialize a scene to RIB, or it can drive an interactive
rendering through Riley. Riley maintains no hierarchical state, ex-
pecting all attributes and transforms to be flattened. Handles are
associated with objects (e.g. geometry, materials, lights, cameras) in
the API and bindings are explicit. The scene graph maintains han-
dles associated with all of the scene objects it creates. Any change in
the scene graph results in an edit to Riley that is direct and straight-
forward to express. Both the scene graph and Riley are thread-safe,
providing high-performance multi-threaded export from modeling
applications to the renderer.

Riley is a natural fit for a scene graph, but it is also well suited as
the renderer interface for a hierarchical streaming scene description.
We have ported our implementation of RI to Riley – both of our
higher-level scene descriptions use Riley.
It should be mentioned that there has also been prior work on

interactive renderers based on deep frame-buffers generated by
RenderMan, for example Lpics [Pellacini et al. 2005], Lightspeed
[Ragan-Kelley et al. 2007], and a product called Lumiere. Lpics ran
on a GPU and used simplified versions of RSL shaders. It recomputed
the illumination and shadows from each light individually if there
was a change in that light. Lumiere supported shading and lighting
edits, but relied on a deep buffer that used huge amounts of memory.
Lpics and Lumiere were limited to static scenes – no change in
geometry or viewpoint were possible – whereas Lightspeed allowed
limited moving geometry. Another early push in the direction of
interactive rendering was a very nice hack (what we call a “Stupid”
RenderMan Trick) that turned the distribution ray tracing version
of RenderMan into a progressive path tracer [Grabli et al. 2012].

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

30:14 • Christensen et al.

10 INTEGRATORS FOR SIMPLE RENDERING
We provide several integrators that implement simple rendering
algorithms that are useful during interactive modeling, scene layout,
surface material and texture development, and other uses where
realistic rendering is not desired or necessary.
The visualizer integrator can show the surface patch parame-

terization, surface normals, diffuse shading “illuminated” from the
camera position (without shadows), material IDs, etc. This can op-
tionally be combined with a grid overlay showing the patch bound-
aries. Figure 14 shows a few examples. This integrator is extremely
quick since it only does direct shading: no rays are traced from the
camera ray hit points. It can be used in Maya’s viewport, and can
be faster than a GPU rasterizer for complex scenes.

Fig. 14. Visualization of a car showing (s, t) parameters across surface
patches, color representation of surface normals, diffuse reflection with grid
overlay, and material IDs. (Images courtesy of Philippe Leprince.)

Figure 15 shows an example of ambient occlusion [Landis 2002;
Zhukov et al. 1998]. This integrator shoots rays over the hemisphere
above each camera ray hit point, but there is no shading at secondary
hit points, no tertiary rays, and no direct illumination. Ambient
occlusion rendering is very fast, shows surface details, and provides
a good indication of where objects are located relative to each other.

Fig. 15. Ambient occlusion in a kitchen scene. (Scene courtesy of Christina
Faraj, Mike Altman, and Rosie Cole.)

LollipopShaders is developing an integrator for non-photorealistic
cartoon, painterly, watercolor, and crosshatching looks [Lollipop-
Shaders 2018].

11 PATH TRACED RENDERING
The uni-directional path tracer is the integrator that is used most
for movie rendering with RenderMan. Figure 16 shows a complex
scene from The Jungle Book rendered with this integrator.

Fig. 16. Path traced scene from The Jungle Book movie. The left half shows
a break-down of the procedurally generated geometry; the right half shows
the final image. (© 2016 Disney/MPC. Image courtesy of MPC.)

11.1 Path tracing of surfaces
The path-tracing integrator calls pattern plug-ins to evaluate surface
parameters at camera ray hit points, calls the renderer to compute
direct illumination at those points (including tracing of shadow rays),
calls the bxdf plug-ins to generate new rays, calls GetNearestHits()
to trace those rays, receives new groups of ray hit points, and iterates
again until no new rays remain or the maximum ray depth has been
reached.
Although path tracing can be described elegantly as a recursive

algorithm, our implementation is iterative and uses double-buffering
(i.e. writing to one memory buffer while reading from an other, and
swapping the buffers between iterations). This makes the working
set of rays and shading data smaller, and independent of the trace
depth. It does, however, mean that path splitting has to be limited;
we only allow more than one indirect ray at camera ray hit points,
not at deeper levels. (This restriction is in line with the classic path
tracing techniques.)
As mentioned previously, we shade groups of shading points

with the same material together, thus amortizing pattern evaluation
overhead and maximizing texture lookup coherency. These shade
groups often have up to a few hundred shading points for the first
bounce, but less than that for deeper bounces.

Our path tracer uses standard techniques such as Russian roulette
[Arvo and Kirk 1990] and explicit sampling of light sources (next-
event estimation). In addition, it also has some fairly unique features:
It is possible to set the visibility for each object – is it visible to
camera, indirect, and/or transmission rays? Caustics can be turned
off (to eliminate noise from undesired caustic light paths). At the
first bounce, the number of bxdf samples and the number of direct
illumination samples can be set higher than 1 (and at different values)
– thus allowing fine-tuning of noise reduction. The maximum ray
depth can be set separately for diffuse and specular. A typical use of
this flexibility is a scene with several layers of glass: high maximum
specular depth is needed, but low diffuse depth might be sufficient.

Figure 17 shows a path-traced image of a collection of RenderMan
walking teapots with a Coco-themed paint scheme.

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

RenderMan: An Advanced Path Tracing Architecture for Movie Rendering • 30:15

Fig. 17. Coco-themed teapots. (Image courtesy of Dylan Sisson.)

11.2 Subsurface scattering
Subsurface scattering in skin and other translucent materials is
rendered with efficient local ray tracing. Subsurface scattering can
use the dipole diffusion [Jensen and Buhler 2002; Jensen et al. 2001]
or Burley normalized diffusion [Burley 2015; Christensen and Burley
2015] models. The dipole diffusion model has a very soft “waxy”
or “cartoony” look, while normalized diffusion has a more correct
sharper look suitable for realistic rendering of e.g. human skin.
For these diffusion models, we compute subsurface scattering in a
manner similar to that previously used for distribution ray tracing;
mainly the ray branching factor is different.
When a ray hits a surface with subsurface scattering, we first

trace “surface probe rays” using two sampling strategies: spherical
and planar. The planar sampling strategy uses importance sampling
based on the cumulative distribution function (cdf) of the diffu-
sion profile – this is particularly simple for Burley’s profile which
has an analytic cdf that is easy to invert numerically. Figure 18
shows two examples of realistic VFX movie characters rendered
with RenderMan’s ray-traced diffusion subsurface scattering.

Fig. 18. Subsurface scattering: a young Arnold Schwarzenegger from Ter-
minator Genisys (© 2015 MPC) and Grand Moff Tarkin from Rogue One:
A Star Wars Story (©&™ 2016 Lucasfilm Ltd. All rights reserved. Used under
authorization.)

Recently, Pixar’s in-house tools illumination team implemented
a brute-force path-traced random-walk Monte Carlo approach that
simulates subsurface scattering as scattering in a dense homogeneous

volume [Chiang et al. 2016; Křivánek and d’Eon 2014; Meng et al.
2016; Wrenninge et al. 2017]. It was fairly simple to integrate this
new method with RenderMan using our API for interior integra-
tors. Figure 19 (left) shows an ant; the thin legs and antennae are
prime examples of cases where the infinite slab assumption built
into the diffusion methods fails but this brute-force technique shines.
Figure 19 (right) shows an example with realistic skin.

Fig. 19. Path-traced subsurface scattering: ant (original model by Sunny
Chopra; additional modeling and rendering by Chu Tang) and Rachael
from Blade Runner 2049 (© 2017 Alcon Entertainment, LLC., Warner Bros.
Entertainment Inc., andColumbia Pictures Industries, Inc. All rights reserved.
Image courtesy of MPC.)

11.3 Path tracing of volumes
Rendering of volumes is more challenging than surfaces: direct and
indirect illumination has to be computed at many points within the
3D volume to obtain a correct and noise-free color for each pixel.

Volumes are specified by volume density (extinction coefficients),
albedo, and scattering phase function. Volumes can have homo-
geneous or heterogeneous density; for heterogeneous volumes the
density data can be procedurally generated, or read from OpenVDB
[Museth 2013] or Field3D files. These files are typically generated
from simulations, for example cloud simulations. Since the volumes
often come from separate simulations they can overlap or be nested
within each other. The phase function can be isotropic or anisotro-
pic. Volumes can have zero scattering (just attenuation with Beer’s
law), single scattering, or multiple scattering.
Path tracing of multiple scattering in homogeneous volumes is

quite simple: repeatedly choose a random scattering distance (with
exponentially decreasing probability), and at that distance choose be-
tween absorption or scattering. If scattering is chosen, the (isotropic
or anisotropic) phase function generates a new scattering direction.

However, path tracing of heterogeneous volumes is unfortunately
more complicated. Our emphasis is on performance for multiple
bounces – which is important for e.g. clouds. Figure 20 shows a
cloud rendered with single and multiple scattering. The simplest
method to render heterogeneous volumes is using ray marching,
but ray marching is too inefficient for multiple bounces using path
tracing.
Delta tracking (also known as Woodcock tracking) [Raab et al.

2006; Woodcock et al. 1965] is an optimization that introduces a
fictional medium that homogenizes the total collision density. With
delta tracking there are three collision types: absorption, scattering,

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

30:16 • Christensen et al.

Fig. 20. Cloud with single-scattering (top) and multi-scattering (bottom).
The cloud has anisotropic scattering: Henyey-Greenstein phase function.

and null collision; if null collision is chosen, we simply choose a
new random distance in the same direction. Delta tracking requires
an upper limit on the density of the volume. Residual ratio tracking
[Novák et al. 2014] is a further optimization that uses a coarse
transmittance as a control variate to reduce the number of look-ups
of the volume density.

When volumes overlap – for example a bank of clouds that each
has been simulated individually – the density of the combined vol-
ume is simply the sum of the densities of the overlapping volumes.
For scattering, we probabilistically choose one of the volumes (based
on the relative densities) and use the albedo and phase function
of that volume. RenderMan keeps track of the volumes that a ray
enters and exits, and integrates over all volumes covering a region.
Figure 21 (left) shows two overlapping homogeneous volumes.

Fig. 21. Left: two overlapping volumes with different density and albedo.
Right: volume with motion blur.

For volumes with deformation motion blur, we represent the
density in each voxel as an approximate function over time within
the shutter interval [Wrenninge 2016]. Figure 21 (right) shows a
billowing smoke volume. Path tracing of volumes is covered in much
more detail in the course notes by Fong et al. [2017].

12 OTHER PATH TRACING METHODS
As mentioned previously, the modern RenderMan architecture was
designed from the outset with bidirectional path tracing and VCM
in mind.

12.1 Bidirectional path tracing
With bidirectional path tracing [Lafortune and Willems 1993; Veach
and Guibas 1994], paths are traced both from the camera and from
the light sources, and then connected. Bidirectional path tracing is
advantageous for scenes dominated by indirect illumination or with
strong caustics.
In each iteration, we trace one light path and one eye path per

pixel, and connect the vertices of the two paths with transmission
rays (giving either full, partial, or no light contribution for each
connection).

Figure 22 shows a scene where the illumination is provided by a
sconce light directed upwards. Nearly all illumination in this scene
is indirect, and unidirectional path tracing has a hard time finding
the light source – hence Figure 22 (left) is very noisy even though
it has 2048 samples per pixel. With bidirectional path tracing the
light paths automatically originate at the light source, so there
is no problem finding the light source: Figure 22 (right) is very
clean. Each iteration of bidirectional path tracing takes longer than
unidirectional; the right image has 700 samples per pixel and took
the same time to render as the left image.

Fig. 22. Car scene rendered with unidirectional and bidirectional path trac-
ing in the same amount of time.

There is an extra bonus when using bidirectional path tracing:
surface shader results (which are often very expensive to compute
due to many texture map look-ups, procedural texture evaluations,
complex pattern networks, etc.) are reused for several light transport
paths when light paths and camera paths are combined.

A practical problem with bidirectional path tracing is that bxdfs
have to be written such that they are reciprocal; this requires careful
consideration and debugging. Another problem we have seen in
complex production scenes is that incoherent texture access patterns
for the light paths can cause texture cache thrashing. Unfortunately
path differentials are not as useful as for unidirectional path tracing:
even when a light path undergoes diffuse reflection (or specular
reflection from a highly curved surface) we can not necessarily
assign a large differential to it – the light path could subsequently
hit a surface point right in front of the eye. Even the work on

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

RenderMan: An Advanced Path Tracing Architecture for Movie Rendering • 30:17

covariance tracing [Belcour et al. 2015] for bidirectional path tracing
only specifies the optimal texture filter sizes after a light path has
been traced and connected to an eye path; it does not solve the
question of optimal filter sizes during light path tracing. We believe
this is an important area to improve in the future.

12.2 VCM and UPBP
We also have an integrator implementing vertex connection and
merging (VCM) – also known as unified path sampling (UPS) –
[Georgiev et al. 2012; Hachisuka et al. 2012]. This rendering algo-
rithm is a combination of bidirectional path tracing and progressive
photon mapping. It is particularly advantageous for rendering of
caustics and reflections of caustics.

We believe that a future “grand unified rendering algorithm” will
contain some elements of (progressive) photon mapping, so we
made sure to design the plug-in interface such that it can handle
this.
As for bidirectional path tracing, we trace one light path and

one camera path per pixel in each iteration. In addition, we store
the vertices of the light paths in a photon map. We also look up
photons within a radius – this is the merge part of the algorithm.
The initial photon look-up radius at a point is proportional to the
path differential for a (hypothetical) camera ray hitting that point,
and shrinks by a constant factor in each iteration. The light paths for
direct illumination, bidirectional path connections, and photon map
lookups (“path merges”) are combined with multiple importance
sampling.

Incremental rendering and only tracing one light path per image
pixel in each iteration keeps photon map memory usage reasonable.
We use two photon maps: one is being written asynchronously by
multiple threads (multiple image tiles being rendered simultane-
ously), while the other is being read for merges. This avoids any
read-write conflicts. The two photon maps are swapped between
iterations.
Figure 23 shows a tricky caustic image. On the left is an area

light source emitting light based on a texture. A Fresnel lens in the
middle focuses the emitted light. The right wall is diffuse and shows
a caustic which is a refocused version of the light source texture.
The crispness of the caustic is mostly due to the progressive photon
mapping part of VCM.

Fig. 23. Fresnel lens focusing effect rendered with VCM.

VCM was used in a separate rendering pass for underwater caus-
tics on Finding Dory. VCM has also been used to render realistic
caustics in human eyes. But it is probably fair to say that VCM is
not widely used in production yet.

Křivánek et al. [2014] extended the VCM idea to volumes with a
rendering algorithm called ‘unified points, beams, and paths’ (UPBP).
Most light paths through volumes are stored as photon points (as
before), but some are stored as photon beams. Light in the volumes
is rendered with a combination of the photon points and beams –
points are best in dense volumes while beams are best in sparse.
Figure 24 shows an updated version of a classic Luxo Jr. scene,
with added homogeneous volume and glass sphere, rendered with
our experimental UPBP integrator. (The UPBP integrator is fully
featured, but currently does not handle heterogeneous volumes as
efficiently as our VCM integrator.)

Fig. 24. Luxo lamp with volume and glass sphere rendered with UPBP. Note
the volume caustic under the glass sphere and the reflection of the volume
caustic in the varnished table top. (Image credit: Brian Savery and Martin
Šik.)

12.3 Metropolis
Metropolis rendering algorithms [Kelemen et al. 2002; Veach and
Guibas 1997] excel at finding difficult paths from light sources to
the eye, for example illumination through a slightly-ajar door or a
caustic path involving narrow glossy materials. When an important
light path has been found, mutations of it are explored to discover
similar light paths.

Unfortunately, the Metropolis algorithm has some practical short-
comings: 1) Because it focuses on important paths there are struc-
tured artifacts in the images. 2) Temporal instability – sudden “pops”
when important paths are discovered during progressive render-
ing. 3) Metropolis rendering needs a “training phase” before actual
rendering starts, which is not ideal for interactive use.

We are hopeful that the latest (and future) Metropolis rendering
research papers – see for example Manzi et al. [2014], Pantaleoni
[2017], and Bitterli et al. [2018] will address some of these short-
comings and make Metropolis a useful rendering algorithm for
movie production. When this happens, RenderMan will support a
Metropolis integrator.

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

30:18 • Christensen et al.

13 DENOISING
Reducing noise in an image by increasing the number of samples
per pixel has diminishing returns [Mitchell 1996], even with good
variance reduction techniques. For this reason, RenderMan ships
with a denoising filter to try to eliminate remaining image noise.
To our knowledge, it was the first commercial renderer to do so.
Figure 25 shows denoising on a frame from Finding Dory.

Fig. 25. A frame from Finding Dory before (top) and after (bottom) denoising.
The right column shows a close-up of each version. (© 2016 Disney•Pixar.)

The denoising filter has been a subject of intense collaboration
between Fabrice Rousselle (now at Disney Research), the Hyperion
team at Walt Disney Animation Studios, Pixar’s research group, our
team, and Intel’s Technical Computing Engineering team.
One of the simplest approaches to denoising is the bilateral fil-

ter [Tomasi and Manduchi 1998]. Like Gaussian blurring, this re-
places each pixel with a weighted blend of its neighbors with the
weights based on spatial similarity. However, it also adjusts the
weights by color similarity in order to preserve edges. The cross
bilateral filter [Eisemann and Durand 2004; Petschnigg et al. 2004]
extends this to smooth one image based on the color similarities in
a second image; this can also be thought of as a bilateral filter on
a multi-channel image. The non-local means (NLM) filter [Buades
et al. 2005] replaces the pixel-to-pixel color similarity of the bilateral
filter with a patch-to-patch neighborhood similarity measurement.
Rousselle’s approach [Rousselle et al. 2013], on which our de-

noiser is based, uses NLM with additional “features” produced by
the renderer such as the normal, depth, and texture albedo to help
preserve edges. This NLM filtering is done at multiple scales and
the best filters for each pixel are chosen via Stein’s unbiased risk es-
timator (SURE) using estimates from the renderer of the variance in
each pixel. These are smoothly blended to produce the final image.
The denoiser has several improvements on Rousselle’s original

approach. For one, it normally divides out the texture albedo and
alpha before filtering and then remultiplies them after. Most of the
noise in the renders comes from direct and indirect illumination,
and removing the texture like this provides more opportunities for
denoising the illumination. However, it does require the albedo
channel to be effectively noise free since any noise there will be
kept.

The denoising filter also filters the diffuse and specular illumi-
nation separately. One of our extensions was to allow it to work
on even finer subdivisions of the illumination – for example, sepa-
rate primary specular and clearcoat specular. In RenderMan these
subdivisions can be produced using light path expressions (LPEs).
Filtering these components of the illumination separately and then
combining them produces better results than simply filtering the
final beauty pass.
The integration into RenderMan involved several additions to

the renderer. For one, the denoiser requires that each pixel be sta-
tistically independent of its neighboring pixels. Otherwise, it may
interpret noise splatted across several pixels as signal andmistakenly
enhance it. Consequently, we implemented pixel filter importance
sampling [Ernst et al. 2006] as an option in RenderMan. We also
added the ability to compute variance estimates (both directly and
from the difference of two half-buffers) and to estimate 2D motion
vectors.

These motion vectors are used for cross-frame denoising. Given
a sequence of frames, the denoiser will use the motion vectors to
warp the frames immediately before and after the current one that
it is filtering to try to align them. Then the NLM filters compare
patches in the neighborhood from all three frames to blend them
together. In animation this helps to reduce distracting flickering.
Denoising remains an area of ongoing research both at Disney

and Pixar. Small speckles and glints from e.g. car paint or water
waves can be difficult to distinguish from noise. The algorithm has
been extended to thick volumes, but wispy, thin volumes remain
challenging. More details about modern denoising techniques can be
found in the papers and course notes of Rousselle et al. [2013], Zim-
mer et al. [2015], and Zwicker et al. [2015]. Recently, there have also
been experiments in applying machine learning to denoising [Bako
et al. 2017; Chaitanya et al. 2017].
Currently denoising is done separately after rendering, but it

would be better to denoise images during rendering; this would pro-
vide images with less noise for faster decisions during progressive
rendering.

14 CURRENT AND FUTURE WORK
In addition to the future work discussed throughout this article
(for example geometric simplification inside the renderer, texture
formats that better handle overmodeled surfaces, improved trace
bias, better sample sequences, and on-the-fly denoising), there are
several more topics of current and future work:

- Fully utilizing vectorized instructions is a big challenge, more so
than traditional scaling and multi-threading. Thanks to our batched
shading architecture, we have many opportunities to efficiently
execute some of the costly parts of our code. Vectorization of scene
data ingestion and parts of the raytracer are more challenging, in
particular when targeting modern instruction-set architectures like
16-wide vectorized instructions (AVX512). Consideration must also
be given to users with older hardware: we have to support the lowest
common denominator of the hardware in use by our customers.
- We are currently implementing a large subset of RenderMan

on GPUs using Cuda. The goal is to provide a super fast rendering
solution that utilizes both CPUs and GPUs; hence we call this project
“RenderMan XPU”.

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

RenderMan: An Advanced Path Tracing Architecture for Movie Rendering • 30:19

- Rendering in color spaces beyond RGB would be interesting –
see for example the work by Wilkie et al. [2014]. The RenderMan
specification has always allowed more than 3 color bands, but the
RenderMan renderer has not. Implementing more color bands would
allow rendering realistic images of dispersion effects such as prisms
and colored sparkles in gemstones. We have not had much demand
for this feature from movie production, but have received requests
for it from customers in product visualization (gems, crystals, etc.).
- Learning algorithms for both direct and indirect illumination

are promising areas of investigation. For indirect illumination, the
dominant directions of incident light can be counted in fixed bins
[Jensen 1995], represented with adaptive accuracy with Gaussian
functions [Vorba et al. 2014], or with adaptive bins in space and
directions [Dahm and Keller 2017; Lafortune and Willems 1995;
Müller et al. 2017]. With this knowledge, the indirect illumination
can be sampled better. For direct illumination, one could adaptively
learn which light sources are blocked from certain parts of the scene
(and hence can be sampled more sparsely).

- Larger shade groups may be beneficial for even better data lo-
cality. However, memory traffic and sorting of the shade groups
become bottlenecks if the groups are too large. It would be interest-
ing to determine the optimal size of shade groups and trace groups.
See Áfra et al. [2016] for examples of such tests in a slightly different
setting.

15 CONCLUSION
RenderMan has been substantially reinvented to support physically-
based shading and light transport. RenderMan is now a pure path
tracer with an extensible plug-in architecture. There are plug-ins for
light transport algorithms, materials, patterns, displacements, lights,
light filters, camera projections, and sample and pixel filtering.

RenderMan development is guided by amission that has two parts:
to be a production-ready renderer that handles immense complexity,
and to be an extensible platform for studios to develop their own
rendering solutions.

We are currently in a push towardmore interactive uses of Render-
Man. Whereas RenderMan traditionally has been targeting only
final-frame movie-quality rendering, we are now also targeting in-
teractive rendering during object modeling and texturing, scene
layout, lighting, animation, etc. This has required us to focus more
on start-up time and optimizations of time to first pixel and time to
first frame (with one sample per pixel).
We encourage any interested reader to download a free non-

commercial version of RenderMan at renderman.pixar.com.

ACKNOWLEDGMENTS
In addition to the authors of this paper, many other people have
contributed to the development of RenderMan.
The Reyes algorithm that was the foundation for the original

RenderMan renderer was developed by Rob Cook, Loren Carpen-
ter, and Ed Catmull. The path tracing architecture of the modern
RenderMan renderer was designed by Dana Batali and Brian Smits
(plus some of the authors of this paper) with inspiration from the
PBRT book.
RenderMan development over the past 30 years has been lead

in turn by Rob Cook, Jeff Mock, Mickey Mantle, Tony Apodaca,

Dana Batali, and Allan Poore. We thank them for their vision and
guidance. Other significant RenderMan contributors through the
years include Tom Porter, Pat Hanrahan, Darwyn Peachey, Dan
McCoy, Mark VandeWettering, Bill Reeves, Tom Duff, Steve Upstill,
Jim Lawson, Sam Leffler, David Salesin, Eric Veach, Tom Lokovic,
Larry Gritz, Craig Kolb, Matt Pharr, Tien Truong, Reid Gershbein,
David Laur, Brad West, Jamie Hecker, Mark Leone, Susan Fisher
Fong, Luca Fascione, George Harker, Danielle An, Aaron Lefohn,
Kayvon Fatahalian, Martin Šik, and many others.

Thanks to our RenderMan tools, infrastructure, and support team:
Katrin Bratland, James Burgess, Ian Hsieh, Trina Roy, Philippe Le-
prince, Jeff Varga, Sarah Hutchinson, and Adrian Bell, and to our
marketing and documentation team: David Laur, Wendy Wirthlin,
Dylan Sisson, David Hackett, Mark Manca, Leif Pedersen, and Carly
Riley.

Also huge thanks to Pixar’s studio tools illumination group: Chris-
tophe Hery, Ryusuke Villemin, Magnus Wrenninge, Florian Hecht,
and others. They have contributed production-strength plug-ins
(materials and integrators), as well as many suggestions and discus-
sions along the way.

Many thanks to the directors of Pixar’s movies for always pushing
RenderMan, in particular, to John Lasseter for insisting on ray-traced
reflections in the first Cars movie. Likewise, Jean-Claude Kalache,
Bill Reeves, and Christophe Hery made a concerted effort toward
more physical realism and global illumination on The Blue Umbrella
andMonsters University. Alsomany thanks to Pixar’s tech leadership,
including Ed Catmull, Steve May, and Guido Quaroni.

Thanks to Matt Pharr for organizing this special issue of TOG and
providing excellent feedback on early drafts of our paper. Thanks to
Stéphane Grabli, Tony Apodaca, and Dan McCoy for suggestions to
improve the accuracy and readability of our writing, and to Renee
Tam for Coco statistics. Thanks to Disney, Lucasfilm, MPC, and
others for allowing us to use their beautiful images.

And finally: our greatest thanks to our brilliant, dedicated, and tal-
ented users, who have suggested, tested, and pushed our rendering
algorithms to their limits in pursuit of the perfect image.

REFERENCES
Attila Áfra, Carsten Benthin, Ingo Wald, and Jacob Munkberg. 2016. Local shading

coherence extraction for SIMD-efficient path tracing on CPUs. In Proceedings of
High Performance Graphics. 119–128.

Abdalla Ahmed, Till Niese, Hui Huang, and Oliver Deussen. 2017. An adaptive point
sampler on a regular lattice. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH) 36, 4, Article 138 (2017).

Anthony Apodaca and Larry Gritz. 2000. Advanced RenderMan: Creating CGI for Motion
Pictures. Morgan Kaufmann.

James Arvo and David Kirk. 1990. Particle transport and image synthesis. Computer
Graphics (Proceedings of SIGGRAPH) 24, 4 (1990), 63–66.

Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill,
Pradeep Sen, Tony DeRose, and Fabrice Rousselle. 2017. Kernel-predicting con-
volutional networks for denoising Monte Carlo renderings. ACM Transactions on
Graphics (Proceedings of SIGGRAPH) 36, 4, Article 97 (2017).

Ronen Barzel. 1997. Lighting controls for computer cinematography. Journal of Graphics
Tools 2, 1 (1997), 1–20.

Laurent Belcour, Ling-Qi Yan, Ravi Ramamoorthi, and Derek Nowrouzezahrai. 2015.
Antialiasing complex global illumination effects in path-space. Technical Report 1375.
University of Montreal.

Janet Berlin, Brent Burley, Lawrence Chai, Andrew Selle, Dan Teese, and TomThompson.
2011. SeExpr. (2011). www.disneyanimation.com/technology/seexpr.html.

Benedikt Bitterli, Wenzel Jakob, Jan Novák, and Wojciech Jarosz. 2018. Reversible jump
Metropolis light transport using inverse mappings. ACM Transactions on Graphics
37, 1 (2018).

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

30:20 • Christensen et al.

Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. 2005. A review of image
denoising algorithms, with a new one. Multiscale Modeling & Simulation 4, 2 (2005),
490–530.

Michael Bunnell. 2005. Dynamic ambient occlusion and indirect lighting. In GPU
Gems 2, Matt Pharr (Ed.). Addison-Wesley, 223–233.

Brent Burley. 2015. Extending the Disney BRDF to a BSDF with integrated subsurface
scattering. In ‘Physically Based Shading in Theory and Practice’ SIGGRAPH Course.

Brent Burley and Dylan Lacewell. 2008. Ptex: per-face texture mapping for production
rendering. Computer Graphics Forum (Proceedings of the Eurographics Symposium
on Rendering) 27, 4 (2008), 1155–1164.

Edwin Catmull and James Clark. 1978. Recursively generated B-spline surfaces on
arbitrary topological meshes. Computer Aided Design 10, 6 (1978), 350–355.

Chakravarty Chaitanya, Anton Kaplanyan, Christoph Schied, Marco Salvi, Aaron
Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive reconstruction
of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM
Transactions on Graphics (Proceedings of SIGGRAPH) 36, 4, Article 98 (2017).

Matt Jen-Yuan Chiang, Peter Kutz, and Brent Burley. 2016. Practical and controllable
subsurface scattering for production path tracing. In SIGGRAPH Tech Talks.

Per Christensen. 2008. Point-based approximate color bleeding. Technical Report 08-01.
Pixar Animation Studios.

Per Christensen and Dana Batali. 2004. An irradiance atlas for global illumination in
complex production scenes. Rendering Techniques (Proceedings of the Eurographics
Symposium on Rendering) (2004), 133–141.

Per Christensen and Brent Burley. 2015. Approximate reflectance profiles for efficient
subsurface scattering. Technical Report 15-04. Pixar Animation Studios.

Per Christensen, Julian Fong, David Laur, and Dana Batali. 2006. Ray tracing for the
movie ‘Cars’. In Proceedings of IEEE Symposium on Interactive Ray Tracing. 1–6.

Per Christensen, George Harker, Jonathan Shade, Brenden Schubert, and Dana Batali.
2012. Multiresolution radiosity caching for global illumination in movies. In SIG-
GRAPH Tech Talks.

Per Christensen, David Laur, Julian Fong, Wayne Wooten, and Dana Batali. 2003. Ray
differentials and multiresolution geometry caching for distribution ray tracing in
complex scenes. Computer Graphics Forum (Proceedings of Eurographics) 22, 3 (2003),
543–552.

Andrew Clinton and Mark Elendt. 2009. Rendering volumes with microvoxels. In
SIGGRAPH Tech Talks.

Robert Cook. 2007. 3D paint baking proposal. Technical Report 07-16. Pixar Animation
Studios.

Robert Cook, Loren Carpenter, and Edwin Catmull. 1987. The Reyes image rendering
architecture. Computer Graphics (Proceedings of SIGGRAPH) 21, 4 (1987), 95–102.

Robert Cook, Thomas Porter, and Loren Carpenter. 1984. Distributed ray tracing.
Computer Graphics (Proceedings of SIGGRAPH) 18, 3 (1984), 137–145.

R. Cranley and T. Patterson. 1976. Randomization of number theoretic methods for
multiple integration. SIAM Journal on Numerical Analysis 13, 6 (1976), 904–914.

Ken Dahm and Alexander Keller. 2017. Learning light transport the reinforced way. In
SIGGRAPH Tech Talks.

Mark Dippé and ErlingWold. 1985. Antialiasing through stochastic sampling. Computer
Graphics (Proceedings of SIGGRAPH) 19, 3 (1985), 69–78.

David Dobkin, David Eppstein, and Don Mitchell. 1996. Computing the discrepancy
with applications to supersampling patterns. ACM Transactions on Graphics 15, 4
(1996), 354–376.

Elmar Eisemann and Frédo Durand. 2004. Flash photography enhancement via intrinsic
relighting. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 23, 3 (2004),
673–678.

Manfred Ernst, Marc Stamminger, and Günther Greiner. 2006. Filter importance sam-
pling. In Proceedings of IEEE Symposium on Interactive Ray Tracing. 125–132.

Henri Fauré and Christiane Lemieux. 2009. Generalized Halton sequences in 2008:
a comparative study. ACM Transactions on Modeling and Computer Simulation 19, 4,
Article 15 (2009).

Matthew Fisher, Kayvon Fatahalian, Solomon Boulos, Kurt Akeley, William Mark,
and Pat Hanrahan. 2009. DiagSplit: parallel, crack-free, adaptive tessellation for
micropolygon rendering. ACM Transactions on Graphics (Proceedings of SIGGRAPH
Asia) 28, 5, Article 150 (2009).

Julian Fong, Ralf Habel, Magnus Wrenninge, and Christopher Kulla. 2017. Production
Volume Rendering. In SIGGRAPH Courses.

Iliyan Georgiev and Marcos Fajardo. 2016. Blue-noise dithered sampling. In SIGGRAPH
Tech Talks.

Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012. Light
transport simulation with vertex connection and merging. ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia) 31, 6, Article 192 (2012).

Stéphane Grabli, Stephan Steinbach, and Mike King. 2012. Ratgather: how to turn
RenderMan into a progressive path tracer. (2012). (Presented at the RenderMan
User Group meeting).

Larry Gritz and James Hahn. 1996. BMRT: A global illumination implementation of the
RenderMan standard. Journal of Graphics Tools 1, 3 (1996), 29–47.

Larry Gritz, Clifford Stein, Chris Kulla, and Alejandro Conty. 2010. Open shading
language. In SIGGRAPH Tech Talks.

Leonhard Grünschloß, Matthias Raab, and Alexander Keller. 2010. Enumerating quasi-
Monte Carlo point sequences in elementary intervals. In Proceedings of Monte Carlo
and Quasi-Monte Carlo Methods. 399–408.

Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A path space
extension for robust light transport simulation. ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia) 31, 6, Article 191 (2012).

John Halton. 1964. Algorithm 247: Radical-inverse quasi-random point sequence.
Communications of the ACM 7, 12 (1964), 701–702.

John Hammersley. 1960. Monte Carlo methods for solving multivariable problems.
Annals of the New York Academy of Sciences 86 (1960), 844–874.

Pat Hanrahan and Jim Lawson. 1990. A language for shading and lighting calculations.
Computer Graphics (Proceedings of SIGGRAPH) 24, 4 (1990), 289–298.

Paul Heckbert. 1990. Adaptive radiosity textures for bidirectional ray tracing. Computer
Graphics (Proceedings of SIGGRAPH) 24, 4 (1990), 145–154.

Christophe Hery, Ryusuke Villemin, and Anton Kaplanyan. 2017a. Emeryville: where
all the fun light transports happen. In ‘Path Tracing in Production: Part 2’ SIGGRAPH
Course.

Christophe Hery, Ryusuke Villemin, and Junyi Ling. 2017b. Pixar’s foundation for
materials. In ‘Physically Based Shading’ SIGGRAPH Course.

Fred Hickernell. 2003. My dream quadrature rule. Journal of Complexity (Oberwolfach
special issue) 19, 3 (2003), 420–427.

Homan Igehy. 1999. Tracing ray differentials. Proceedings of SIGGRAPH (1999), 179–186.
Thiago Ize. 2013. Robust BVH ray traversal. Journal of Computer Graphics Techniques

2, 2 (2013), 12–27.
Henrik Wann Jensen. 1995. Importance driven path tracing using the photon map.

In Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering).
326–335.

Henrik Wann Jensen and Juan Buhler. 2002. A rapid hierarchical rendering technique
for translucent materials. ACM Transactions on Graphics (Proceedings of SIGGRAPH)
21, 3 (2002), 576–581.

HenrikWann Jensen, SteveMarschner, Marc Levoy, and Pat Hanrahan. 2001. A practical
model for subsurface light transport. Proceedings of SIGGRAPH (2001), 511–518.

Stephen Joe and Frances Kuo. 2008. Constructing Sobol’ sequences with better two-
dimensional projections. SIAM Journal on Scientific Computation 30, 5 (2008), 2635–
2654.

Jim Kajiya. 1986. The rendering equation. Computer Graphics (Proceedings of SIGGRAPH)
20, 4 (1986), 143–150.

Timothy Kay and James Kajiya. 1986. Ray tracing complex scenes. Computer Graphics
(Proceedings of SIGGRAPH) 20, 4 (1986), 269–278.

Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A simple
and robust mutation strategy for the Metropolis light transport algorithm. Computer
Graphics Forum (Proceedings of Eurographics) 21, 3 (2002), 531–540.

Andrew Kensler. 2013. Correlated multi-jittered sampling. Technical Report 13-01. Pixar
Animation Studios.

Alan King, Christopher Kulla, Alejandro Conty, and Marcos Fajardo. 2013. BSSRDF
importance sampling. In SIGGRAPH Tech Talks.

Craig Kolb, Don Mitchell, and Pat Hanrahan. 1995. A realistic camera model for
computer graphics. Proceedings of SIGGRAPH (1995), 317–324.

Thomas Kollig and Alexander Keller. 2002. Efficient multidimensional sampling. Com-
puter Graphics Forum (Proceedings of Eurographics) 21, 3 (2002), 557–563.

Jaroslav Křivánek and Eugene d’Eon. 2014. A zero-variance-based sampling scheme
for Monte Carlo subsurface scattering. In SIGGRAPH Tech Talks.

Jaroslav Křivánek, Pascal Gautron, Greg Ward, Henrik Wann Jensen, Eric Tabellion,
and Per Christensen. 2008. Practical Global Illumination with Irradiance Caching.
In SIGGRAPH Courses.

Jaroslav Křivánek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda, Martin Šik, Derek
Nowrouzezahrai, and Wojciech Jarosz. 2014. Unifying points, beams, and paths in
volumetric light transport simulation. ACM Transactions on Graphics (Proceedings
of SIGGRAPH) 33, 4, Article 103 (2014).

Eric Lafortune and Yves Willems. 1993. Bi-directional path tracing. In Proceedings of
Compugraphics. 145–153.

Eric Lafortune and Yves Willems. 1995. A 5D tree to reduce the variance of Monte
Carlo ray tracing. Rendering Techniques (Proceedings of the Eurographics Workshop
on Rendering) (1995), 11–20.

Hayden Landis. 2002. Production-ready global illumination. In ‘RenderMan in Produc-
tion’ SIGGRAPH Course. 87–102.

Gerhard Larcher and Friedrich Pillichshammer. 2001. Walsh series analysis of the
L2-discrepancy of symmetrisized point sets. Monatshefte für Mathematik 132 (April
2001), 1–18.

LollipopShaders. 2018. (2018). www.lollipopshaders.com.
Charles Loop. 1987. Smooth Subdivision Surfaces Based on Triangles. Master’s thesis.

University of Utah.
Marco Manzi, Fabrice Rousselle, Markus Kettunen, Jaakko Lehtinen, and Matthias

Zwicker. 2014. Improved sampling for gradient-domain Metropolis light transport.

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

RenderMan: An Advanced Path Tracing Architecture for Movie Rendering • 30:21

ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 33, 6, Article 178
(2014).

Stephen Marschner, Henrik Wann Jensen, Mike Cammarano, Steve Worley, and Pat
Hanrahan. 2003. Light scattering from human hair fibers. ACM Transactions on
Graphics (Proceedings of SIGGRAPH) 22, 3 (2003), 780–791.

William Martin, Elaine Cohen, Russel Fish, and Peter Shirley. 2000. Practical ray tracing
of trimmed NURBS surfaces. Journal of Graphics Tools 5, 1 (2000), 27–52.

Johannes Meng, Johannes Hanika, and Carsten Dachsbacher. 2016. Improving the
Dwivedi sampling scheme. Computer Graphics Forum (Proceedings of the Eurograph-
ics Symposium on Rendering) 35, 4 (2016), 37–44.

Don Mitchell. 1987. Generating antialiased images at low sampling densities. Computer
Graphics (Proceedings of SIGGRAPH) 21, 4 (1987), 65–72.

Don Mitchell. 1991. Spectrally optimal sampling for distribution ray tracing. Computer
Graphics (Proceedings of SIGGRAPH) 25, 4 (1991), 157–164.

Don Mitchell. 1992. Ray tracing and irregularities in distribution. Proceedings of the
Eurographics Workshop on Rendering (1992), 61–69.

Don Mitchell. 1996. Consequences of stratified sampling in graphics. Proceedings of
SIGGRAPH (1996), 277–280.

Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical path guiding for ef-
ficient light-transport simulation. Computer Graphics Forum (Proceedings of the
Eurographics Symposium on Rendering) 36, 4 (2017), 91–100.

Ken Museth. 2013. VDB: high-resolution sparse volumes with dynamic topology. ACM
Transactions on Graphics 32, 3, Article 27 (2013).

Koji Nakamaru and Yoshio Ohno. 2002. Ray tracing for curves primitive. Journal of
WSCG 10 (2002), 311–316.

Jan Novák, Andrew Selle, and Wojciech Jarosz. 2014. Residual ratio tracking for estimat-
ing attenuation in participating media. ACM Transactions on Graphics (Proceedings
of SIGGRAPH Asia) 33, 6, Article 179 (2014).

Victor Ostromoukhov, Charles Donohue, and Pierre-Marc Jodoin. 2004. Fast hierarchical
importance sampling with blue noise properties. ACM Transactions on Graphics
(Proceedings of SIGGRAPH) 23, 3 (2004), 488–495.

Art Owen. 1997. Monte Carlo variance of scrambled net quadrature. SIAM Journal on
Numerical Analysis 34 (1997), 1884–1910.

Jacopo Pantaleoni. 2017. Charted Metropolis light transport. ACM Transactions on
Graphics (Proceedings of SIGGRAPH) 36, 4, Article 75 (2017).

Darwyn Peachey. 1990. Texture on demand. Technical Report 217. Pixar Animation
Studios.

Leonid Pekelis, Christophe Hery, Ryusuke Villemin, and Junyi Ling. 2015. A data-driven
light scattering model for hair. Technical Report 15-02. Pixar Animation Studios.

Fabio Pellacini, Kiril Vidimče, Aaron Lefohn, Alex Mohr, Mark Leone, and John Warren.
2005. Lpics: a hybrid hardware-accelerated relighting engine for computer cine-
matography. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 24, 3 (2005),
464–470.

Georg Petschnigg, Richard Szeliski, Maneesh Agrawala, Michael Cohen, Hugues Hoppe,
and Kentaro Toyama. 2004. Flash photography enhancement via intrinsic relighting.
ACM Transactions on Graphics (Proceedings of SIGGRAPH) 23, 3 (2004), 664–672.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2017. Physically Based Rendering:
From Theory to Implementation (3rd ed.). Morgan Kaufmann.

Les Piegl and Wayne Tiller. 1997. The NURBS Book. Springer-Verlag.
Matthias Raab, Daniel Seibert, and Alexander Keller. 2006. Unbiased global illumination

with participating media. In Proceedings of Monte Carlo and Quasi-Monte Carlo
Methods. 591–606.

Jonathan Ragan-Kelley, Charlie Kilpatrick, Brian Smith, Doug Epps, Paul Green, Chris-
tophe Hery, and Frédo Durand. 2007. The Lightspeed automatic interactive lighting
preview system. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 26, 3,
Article 25 (2007).

William Reeves, David Salesin, and Robert Cook. 1987. Rendering antialiased shadows
with depth maps. Computer Graphics (Proceedings of SIGGRAPH) 21, 4 (1987), 283–
291.

Bernhard Reinert, Tobias Ritschel, Hans-Peter Seidel, and Iliyan Georgiev. 2015. Projec-
tive blue-noise sampling. Computer Graphics Forum 35, 1 (2015), 285–295.

Fabrice Rousselle, Marco Manzi, and Matthias Zwicker. 2013. Robust denoising using
feature and color information. Computer Graphics Forum (Proceedings of Pacific
Graphics) 32, 7 (2013), 121–130.

Thorsten-Walther Schmidt, Fabio Pellacini, Derek Nowrouzezahrai, Wojciech Jarosz,
and Carsten Dachsbacher. 2016. State of the art in artistic editing of appearance,
lighting, and material. Computer Graphics Forum (Proceedings of Eurographics) 35, 1
(2016), 216–233.

Peter Shirley. 1991. Discrepancy as a quality measure for sample distributions. Proceed-
ings of Eurographics (1991), 183–193.

Peter Shirley, Changyaw Wang, and Kurt Zimmerman. 1996. Monte Carlo techniques
for direct lighting calculations. ACM Transactions on Graphics 15, 1 (1996), 1–36.

Ilya Sobol’. 1967. On the distribution of points in a cube and the approximate evaluation
of integrals. USSR Computational Mathematics and Mathematical Physics 7, 4 (1967),
86–112.

Eric Tabellion and Arnauld Lamorlette. 2004. An approximate global illumination
system for computer generated films. ACM Transactions on Graphics (Proceedings of
SIGGRAPH) 23, 3 (2004), 469–476.

Carlo Tomasi and Roberto Manduchi. 1998. Bilateral filtering for gray and color images.
In Proceedings of the International Conference on Computer Vision. 839–846.

Steve Upstill. 1990. The RenderMan Companion. Addison Wesley.
Eric Veach and Leonidas Guibas. 1994. Bidirectional estimators for light transport. In

Proceedings of the Eurographics Workshop on Rendering. 147–162.
Eric Veach and Leonidas Guibas. 1995. Optimally combining sampling techniques for

Monte Carlo rendering. Proceedings of SIGGRAPH (1995), 419–428.
Eric Veach and Leonidas Guibas. 1997. Metropolis light transport. Proceedings of

SIGGRAPH (1997), 65–76.
Jiři Vorba, Ondřej Karlik, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014.

On-line learning of parameteric mixture models for light transport simulation. ACM
Transactions on Graphics (Proceedings of SIGGRAPH) 33, 4, Article 101 (2014).

Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. 2001. Interactive
rendering with coherent ray tracing. Computer Graphics Forum (Proceedings of
Eurographics) 20, 3 (2001), 153–164.

Ingo Wald, Sven Woop, Carsten Benthin, Gregory Johnson, and Manfred Ernst. 2014.
Embree: a kernel framework for efficient CPU ray tracing. ACM Transactions on
Graphics (Proceedings of SIGGRAPH) 33, 4, Article 143 (2014).

Gregory Ward. 1991. Adaptive shadow testing for ray tracing. In Proceedings of the
Eurographics Workshop on Rendering. 11–20.

Gregory Ward and Paul Heckbert. 1992. Irradiance gradients. In Proceedings of the
Eurographics Workshop on Rendering. 85–98.

Turner Whitted. 1980. An improved illumination model for shaded display. Communi-
cations of the ACM 23, 6 (1980), 343–349.

Alexander Wilkie, Sehera Nawaz, Marc Droske, Andrea Weidlich, and Johannes Hanika.
2014. Hero wavelength spectral sampling. Computer Graphics Forum (Proceedings
of the Eurographics Symposium on Rendering) 33, 4 (2014), 123–131.

Lance Williams. 1978. Casting curved shadows on curved surfaces. Computer Graphics
(Proceedings of SIGGRAPH) 12, 3 (1978), 270–274.

Lance Williams. 1983. Pyramidal parametrics. Computer Graphics (Proceedings of
SIGGRAPH) 17, 3 (1983), 1–11.

Andrew Woo, Andrew Pearce, and Marc Ouellette. 1996. It’s not really a rendering bug,
you see ... IEEE Computer Graphics and Applications 16, 5 (1996), 21–25.

E.R. Woodcock, T. Murphy, P. Hemmings, and T. Longworth. 1965. Techniques used
in the GEM code for Monte Carlo neutronics calculations in reactors and other
systems of complex geometry. In Proceedings of Applications of Computing Methods
to Reactor Problems. Argonne National Laboratory, 557–579.

Sven Woop, Carsten Benthin, Ingo Wald, Gregory Johnson, and Eric Tabellion. 2014.
Exploiting local orientation similarity for efficient ray traversal of hair and fur. In
Proceedings of High Performance Graphics. 41–49.

Magnus Wrenninge. 2016. Efficient rendering of volumetric motion blur using tempo-
rally unstructured volumes. Journal of Computer Graphics Techniques 5, 1 (2016),
1–34.

Magnus Wrenninge, Ryusuke Villemin, and Christophe Hery. 2017. Path traced sub-
surface scattering using anisotropic phase functions and non-exponential free flights.
Technical Report 17-07. Pixar Animation Studios.

Sergei Zhukov, Andrei Iones, and Gregorij Kronin. 1998. An ambient light illumina-
tion model. In Rendering Techniques (Proceedings of the Eurographics Workshop on
Rendering). 45–55.

Henning Zimmer, Fabrice Rousselle, Wenzel Jakob, Oliver Wang, David Adler, Wojciech
Jarosz, Olga Sorkine-Hornung, and Alexander Sorkine-Hornung. 2015. Path-space
motion estimation and decomposition for robust animation filtering. Computer
Graphics Forum (Proceedings of the Eurographics Symposium on Rendering) 34, 4
(2015), 131–142.

Matthias Zwicker, Wojciech Jarosz, Jaakko Lehtinen, Bochang Moon, Ravi Ramamoor-
thi, Fabrice Rousselle, Pradeep Sen, Cyril Soler, and Sung-Eui Yoon. 2015. Recent
advances in adaptive sampling and reconstruction for Monte Carlo rendering. Com-
puter Graphics Forum (Proceedings of Eurographics) 34, 2 (2015), 667–681.

ACM Transactions on Graphics, Vol. 37, No. 3, Article 30. Publication date: July 2018.

	Abstract
	1 Introduction
	2 Historical background: Ye olde RenderMan
	2.1 Reyes
	2.2 Ray tracing
	2.3 Distribution ray tracing
	2.4 Point-based approximations
	2.5 Distribution ray tracing, take two
	2.6 Volumes
	2.7 Re-evaluating Reyes

	3 Modern RenderMan architecture
	4 Plug-ins
	4.1 Material interface: bxdfs
	4.2 Light transport interface: integrators
	4.3 Pattern networks
	4.4 Other plug-ins

	5 Handling complex scenes
	5.1 Complex geometry
	5.2 Complex textures
	5.3 Complex illumination
	5.4 Many-core execution

	6 Ray traversal and intersection tests
	6.1 Tessellation
	6.2 Bounding volume hierarchies
	6.3 Rays and intersection tests
	6.4 Trace bias and numerical accuracy
	6.5 Motion blur and depth of field
	6.6 Path differentials

	7 Progressive and adaptive rendering
	7.1 Sample sequences
	7.2 Adaptive pixel sampling
	7.3 Progressive rendering and checkpointing

	8 Path selection and manipulation
	9 Interactive rendering
	10 Integrators for simple rendering
	11 Path traced rendering
	11.1 Path tracing of surfaces
	11.2 Subsurface scattering
	11.3 Path tracing of volumes

	12 Other path tracing methods
	12.1 Bidirectional path tracing
	12.2 VCM and UPBP
	12.3 Metropolis

	13 Denoising
	14 Current and future work
	15 Conclusion
	Acknowledgments
	References

