
(~ ~ ' Computer Graphics, Volume 21, Number 4, July 1987

The Reyes Image Render ing Archi tec ture

Robert L. Cook
Loren Carpenter
Edwin Catmull

Pixar
P. O. Box 13719

San Rafael, CA 94913

An architecture is presented f o r fas t high-quality rendering o f
complex images. All objects are reduced to common world-
space geometric entities called micropolygons, and all o f the
shading and visibility calculations operate on these micropo-
lygons. Each type o f calculation is performed in a coordinate
system that is natural f o r that type o f calculation. Micropo-
lygons are created and textured in the local coordinate system o f
the object, with the result that texture filtering is simplified and
improved. Visibility is calculated in screen space using stochas-
tic point sampling with a z buffer. There are no clipping or
inverse perspective calculations. Geometric and texture locality
are exploited to minimize paging and to support models that
contain arbitrarily many primitives.

CR CATEGORIES AND SUBJECT DESCRIPTORS: 1.3.7
[Compute r Graphics] : Three-Dimensional Graphics and
Realism;

ADDITIONAL KEY WORDS AND PHRASES: image render-
ing, computer image synthesis, texturing, hidden surface
algorithms, z buffer, stochastic sampling

1. Introduction
Reyes is an image rendering system developed at Lucasfilm Ltd.
and currently in use at Pixar. In designing Reyes, our goal was
an architecture optimized for fast high-quality rendering of com-
plex animated scenes. By fast we mean being able to compute a
feature-length film in approximately a year; high-quality means
virtually indistinguishable from live action motion picture pho-
tography; and complex means as visually rich as real scenes.

This goal was intended to be ambitious enough to force us to
completely rethink the entire rendering process. We actively
looked for new approaches to image synthesis and consciously
tried to avoid limiting ourselves to thinking in terms of tradi-
tional solutions or particular computing environments. In the
process, we combined some old methods with some new ideas.

Some of the algorithms that were developed for the Reyes archi-
tecture have already been discussed elsewhere; these include sto-
chastic sampling [12], distributed ray tracing [10, 13], shade
trees [11], and an antialiased depth map shadow algorithm [32].

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

1987 ACM-0-89791-227-6/87/007/0095 $00.75

This paper includes short descriptions of these algorithms as
necessary, but the emphasis in this paper is on the overall archi-
tecture.

Many of our design decisions are based on some specific
assumptions about the types of complex scenes that we want to
render and what makes those scenes complex. Since this archi-
tecture is optimized for these types of scenes, we begin by exa-
mining our assumptions and goals.

• Model complexity. We are interested in making images
that are visually rich, far more complex than any pictures
rendered to date. This goal comes from noticing that even
the most complex rendered images look simple when com-
pared to real scenes and that most of the complexity in real
scenes comes from rich shapes and textures. We expect
that reaching this level of richness will require scenes with
hundreds of thousands of geometric primitives, each one of
which can be complex.

• Model diversity. We want to support a large variety of
geometric primitives, especially data amplification primi-
tives such as procedural models, fractals [18], graftals [35],
and particle systems [30, 31].

• Shading complexity. Because surface reflection charac-
teristics are extremely varied and complex, we consider a
programmable shader a necessity. Our experience with
such a shader [t l] is that realistic surfaces frequently
require complex shading and a large number of textures.
Textures can store many different types of data, including
surface color [8], reflections (environment maps) [3], nor-
mal perturbation (bump maps) [4], geometry perturbation
(displacement maps) [111, shadows [32], and refraction
[25].

• Min imal ray t racing. Many non-local lighting effects can
be approximated with texture maps. Few objects in natural
scenes would seem to require ray tracing. Accordingly, we
consider it more important to optimize the architecture for
complex geometries and large models than for the non-
local lighting effects accounted for by ray tracing or radios-
ity.

• Speed. We are interested in making animated images, and
animation introduces severe demands on rendering speed.
Assuming 24 frames per second, rendering a 2 hour movie
in a year would require a rendering speed of about 3
minutes per frame. Achieving this speed is especially chal-
lenging for complex images.

• Image Quali ty. We eschew aliasing and faceting artifacts,
such as jagged edges, Moir6 patterns in textures, temporal
strobing, and highlight aliasing.

• Flexibility. Many new image rendering techniques will
undoubtedly be discovered in the coming years. The archi-
tecture should be flexible enough to incorporate many of
these new techniques.

95

~ SIGGRAPH '87, Anaheim, July 27-31, 1987

2. Design Principles

These assumptions led us to a set of architectural design princi-
ples. Some of these principles are illustrated in the overview in
Figure 1.

1. Na tu ra l coordinates . Each calculation should be done in
a coordinate system that is natural for that calculation. For
example, texturing is most naturally done in the coordinate
system of the local surface geometry (e.g., uv space for
patches), while the visible surface calculations are most
naturally done in pixel coordinates (screen space).

2. Vector izat ion. The architecture should be able to exploit
vectorization, parallelism and pipelining. Calculations that
are similar should be done together. For example, since
the shading calculations are usually similar at all points on
a surface, an entire surface should be shaded at the same
time.

3. C o m m o n representa t ion . Most of the algorithm should
work with a single type of basic geometric object. We turn
every geometric primitive i n to micropolygons, which are
flat-shaded subpixel-sized quadrilaterals. All of the shad-
ing and visibility calculations are performed exclusively on
micropolygons.

4. Locality. Paging and data thrashing should be minimized.

a. Geometr ic locality. Calculations for a geometric
primitive should be performed without reference to
other geometric primitives. Procedural models
should be computed only once and should not be kept
in their expanded form any longer than necessary.

b. Tex ture locality. Only the textures currently needed
should be in memory, and textures should be read off
the disk only once.

5. Linear i ty . The rendering time should grow linearly with
the size of the model.

6. Large models. There should be no limit to the number of
geometric primitives in a model.

7. Back door. There should be a back door in the architec-
ture so that other programs can be used to render some of
the objects. This give us a very general way to incorporate
any new technique (though not necessarily efficiently).

8. Texture maps. Texture map access should be efficient, as
we expect to use several textures on every surface. Tex-
tures are a powerful tool for defining complex shading
characteristics, and displacement maps [11] can be used for
model complexity.

We now discuss some of these principles in detail.

2.1. Geomet r ic Locality.

When ray tracing arbitrary surfaces that reflect or refract, a ray in
any pixel on the screen might generate a secondary ray to any
object in the model. The object hit by the secondary ray can be
determined quickly [20,21,34], but that object must then be
accessed from the database. As models become more complex,
the ability to access any part of the model at any time becomes
more expensive; model and texture paging can dominate the
rendering time. For this reason, we consider ray tracing algo-
rithms poorly suited for rendering extremely complex environ-
ments.

In many instances, though, texture maps can be used to approxi-
mate non-local calculations. A common example of this is the
use of environment maps [3] for reflection, a good approxima-
tion in many cases. Textures have also been used for refractions
[25] and shadows [32, 36]. Each of these uses of texture maps
represents some non-local calculations that we can avoid (princi-
ples 4a and g).

MODEL

read model

bound
N

on s c r e e n ? - ~ cull

sp l i t 4-- d iceab le?

dice

TEXTURES --~ shade

sample

BACK DOOR --~ visib~il i ty

f i l t e r

PICTURE

Figure 1. Overview of the algorithm.

2.2. Point sampling.
Point sampling algorithms have many advantages; they are sim-
ple, powerful, and work easily with many different types of
primitives. But unfortunately, they have been plagued by atias-
ing artifacts that would make them incompatible with our image
quality requirements. Our solution to this problem is a Monte
Carlo method called stochastic sampling, which is described in
detail elsewhere [12]. With stochastic sampling, aliasing is
replaced with noise, a less objectionable artifact.

We use a type of stochastic sampling called tittering [12]. Pixeis
are divided into a number of subpixels (typically 16). Each sub-
pixel has exactly one sample point, and the exact location of that
sample point within the subpixel is determined by jittering, or
adding a random displacement to the location of the center of the
subpixel. This jittered location is used to sample micropolygons
that overlap the subpixel. The current visibility information for
each sample point on the screen is kept in a z buffer [8].

The z buffer is important for two reasons. First, it permits
objects to be sent through the rest of the system one at a time
(principles 2, 4, 5 and 6). Second, it provides a back door (prin-
ciple 7); the z buffer can combine point samples from this algo-
rithm with point samples from other algorithms that have capa*
bilities such as ray tracing and radiosity. This is a form of 3-D
eompositing; it differs from Duff 's method [15] in that the corn-
positing is done before filtering the visible samples.

96

(~ ~ Computer Graphics, Volume 21, Number 4, July 1987

Glossary

CAT

CSG

depth complexity

dicing

displacement maps

plane

eye space

,,rid

eometrle locality

hither plane

ltter

nlcropolygon

RAT

s and t

screen space

shade tree

splitting

stochastic sampling

texture locality

u and v

wor ld space

yon plane

a coherent access texture, in which s is a Linear function
of u and t is a linear function of v.

constructive solid geometry. Defines objects as the un-
ion, intersection, or difference of other objects.

the average number of surfaces (visible or noO at each
sample point

the process of taming geometric primitives into grids ol
micropolygons.

texture maps used to change the location of points in
grid.

a plane parallel to the hither plane that is slightly in fro~
of the eye. The perspective calculation may be unreli-
able for points not beyond this plane.

the world space coordinate system rotated and translated
so that the eye is at the origin looking down the +z axis.
+x is to the right, +y is down,

a two<limensional array of micropolygons.

the principle that all of the calculations for a geometric
primitive should be performed without reference to oth-
er geometric primitives.

the z=min plane that is the front of the viewing frustum.

the random perturbation of regularly spaced points for
stochastic sampling

the basic geometric object for most of the algorithm,
flat-shaded quadrilateral with an area of about IA pixel.

a random access texture. Any texture that is not a CAT

parameters used to index a texture map.

the perspective space in which the x and y values
correspond to pixel locations.

a method for describing shading calculations [11].

the process of turning a geometric primitive into one or
more new geometric primitives.

a Monte Carin point-sampling method used for antialias-
ing [12].

the principle that each texture should be read off the disk
only once.

coordinates of a parametric representation of a surface.

the global right-handed nonperspective coordinate sys-
tem.

the z=max plane that is the back of the viewing frustum.

2 . 3 . M i c r o p o l y g o n s .

Micropolygons are the common basic geometric unit o f the algo-
rithm (principle 3). They are flat-shaded quadrilaterals that a r e
approximately 1/2 pixel on a side. Since half a pixel is the
Nyquist limit for an image [6, 26], surface shading can be ade-
quately represented with a single color per micropolygon.

Turning a geometric primitive into micropolygons is called dic-
ing. Every primitive is diced along boundaries that are in the
natural coordinate system o f the primitive (principle 1). For

example, in the case o f patches, micropolygon boundaries are
parallel to u and v. The result o f dicing is a two-dimensional
array o f micropolygons called a grid (principle 2). Micropo-
lygons require less storage in grid form because vertices shared
by adjacent micropolygons are represented only once.

Dicing is done in eye space, with no knowledge o f screen space
except for an estimate o f the primit ive 's size on the screen. This
estimate is used to determine how finely to dice, i.e., how many
micropolygons to create. Primitives are diced so that micropo-
lygons are approximately half a pixel on a side in screen space.
This adaptive approach is similar to the Lane-Carpenter patch
algorithm [22].

The details o f dicing depend on the type o f primitive. For the
example o f bicubic patches, screen-space parametric derivatives
can be used to determine how finely to dice, and forward dif-
ferencing techniques can be used for the actual dicing.

All o f the micropolygons in a grid are shaded together. Because
this shading occurs before the visible surface calculation, at a
minimum every piece o f every forward-facing on-screen object
must be shaded. Thus many shading calculations are performed
that are never used. The extra work we do is related to the depth
complexity of the scene, which is the average number o f surfaces
at each sample point. We expect pathological cases to be
unusual, however, because o f the effort required to model a
scene. Computer graphics models are like movie sets in that
usually only the parts that will be seen are actually built.

There are advantages that offset the cost o f this extra shading;
the t radeoff depends on the particular scene being rendered.
These are some o f the advantages to using micropolygons and to
shading them before determining visibility:

• Vec to r i zab le shading . If an entire surface is shaded at
once, and the shading calculations for each point on the
surface are similar, the shading operations can be vector-
ized (principle 2).

• Tex tu re locality. Texture requests can be made for large,
contiguous blocks o f texture that are accessed sequentially.
Because shading can be done in object order, the texture
map thrashing that occurs in many other algorithms is
avoided (principle 4b). This thrashing occurs when texture
requests come in small pieces and alternate between
several different texture maps. For extremely complex
models with lots o f textures, this can quickly make a
renderer unusable.

• Tex tu re f i l ter ing. Many o f the texture requests are for
rectilinear regions o f the texture map (principle 1). This is
discussed in detail in the next section.

• S u b d i v i s i o n c o h e r e n c e . Since an entire surface can be
subdivided at once, we can take advantage o f efficient
techniques such as forward differencing for patch subdivi-
sion (principles 1 and 2).

• Cl ipping . Objects never need to be clipped along pixel
boundaries, as required by some algorithms.

• D i sp l acemen t m a p s [11]. Displacement maps are like
bump maps [4] except that the location o f a surface can be
changed as well as its normal, making texture maps a
means o f modeling surfaces or storing the results o f model-
ing programs. Because displacement maps can change the
surface location, they must be computed before the hidden
surface calculation. We have no experience with the
effects o f large displacements on dicing.

• No perspec t ive . Because micropolygons are small, there
is no need to correct for the perspective distortion o f inter-
polation [24]. Because shading occurs before the perspec-
tive transformation, no inverse perspective transformations
are required.

97

16 ~ ® ® ~ ~ SIGGRAPH '87, Anaheim, July 27-31, 1987

2.4. Texture Locality.

For rich, comp lex images , textures are an impor tan t source o f
in format ion for shad ing calcula t ions [3, g]. Tex tu res are usua l ly
indexed u s ing two parameters cal led u and v. Because u and v
are also u sed for pa tch parameters , we will call the texture
parameters s and t to avoid confus ion. Surfaces o ther than
pa tches m a y also have a natural coordinate sys tem; we will u se u
and v for those sur face coordinates too.

For m a n y textures, s and t depend only on the u and v o f the
pa tch and can be de te rmined wi thout knowing the details o f the
shad ing calculat ions. Other textures are accessed wi th an s and t
that are de te rmined by s o m e more compl ex calculat ion. For
example , the s and t for an e n v i r o n m e n t m a p depend o n the nor-
ma l to the surface (though that normal m i gh t in turn depend on a
b u m p m a p that is indexed by u and v).

W e accordingly divide textures into two classes: coherent access
textures (CATs) and random access textures (RATs) . C A T s are
textures for w h i c h s = a u + b and t=ev+d, where a, b, c, and d are
constants . All o ther textures are R AT s . M a n y C A T s have s=u
and t=v, bu t we have genera l ized this re la t ionship to al low for
s ingle tex tures that s t retch over more than one patch or repeat
mul t ip le t imes ove r one patch.

W e make this dis t inct ion because C A T s can be hand led m u c h
more easi ly and of ten s ignif icant ly faster than R AT s . Because st
order is the s ame as uv order for C AT s , we can access the texture
m a p sequent ia l ly i f we do our shad ing calculat ions in uv order
(principles 1 and 4b). Fur thermore , i f m ic ropo lygons are created
so that their vert ices have s and t va lues that are integer mul t ip les
o f powers o f l/z, and if the tex tures are prefi l tered and prescaled
and stored as resolut ion py ramids [36], t hen no fi l tering calcula-
t ions are required at r un t ime, s ince the pixels in the texture line
up exac t ly wi th the mic ropo lygons in the grid (principle 1). Fig-
ure 2 s h o w s a pr imi t ive diced into a 4x4 grid and the correspond-
ing texture map; notice how the marked mic ropo lygon
cor responds exact ly to the marked texture region because we are
d ic ing a long u and v, the t ex tu re ' s natural coordinate sys tem.

o , 0oy0 ooo

diced .primit ive ~ t e x t u r e map
in

screen space

Figure 2. With CATs, micropolygons map exactly to texture map
pixels. With the inverse pixel method, pixels map to quadrila-
teral areas of texture that require.filtering.

By contrast , in the more traditional pixel texture access , the pixel
boundary is mapped to texture space, where f i h e d n g is required.
Fil tering wi thout a resolu t ion pyramid gives good resul ts bu t can
be expens ive [17]. U s i n g a resolut ion py ramid requires interpo-
la t ing be tween two levels o f the pyramid , and the fi l tering is
poor [19]. S u m m e d area tables [14] give s o m e w h a t bet ter filter-
ing but can have pag ing problems.

R A T s are m o r e general than C A T s , but R A T access is slower.
R A T s can s igni f icant ly reduce the need for ray tracing. For
example , ref lect ions and refract ions can f requent ly be textured
onto a surface wi th e n v i r o n m e n t maps . Env i ronmen t m a p s are
R A T s because they are indexed according to the ref lect ion direc-
tion. Ano the r e x a m p l e o f a R A T is a decal [2], wh ich is a
wor ld-space parallel project ion o f a texture onto a surface, so
that s and t depend on x, y and z ins tead o f on u and v.

Initialize the z buffer.
For each geometric primitive in the model,

Read the primitive from the model file
I f the primitive can be bounded,

Bound the primitive in eye space.
If the primitive is completely outside of the hither-you 2 range, cull it.
If the primitive spans the e plane and can be split,

Mark the primitive undieeable.
Else

Convert the bounds to screen space.
If the bounds are completely outside the viewing frustum, cull the primitive.

I f the primitive can be diced,
Dicethe primitive into a grid of micropolygons.
Compute normais and tangent vectors for the micropolygons in the grid.
Shade the micropolygons in the grid.
Break the grid into micropolygons.
For each mleropolygon,

Bound the micropolygon in eye space.
If the micropolygon is outside the hither-yon range, cull it.
Convert the mieropolygon to screen space.
Bound the micropolygon in screen space.
For each sample point inside the screen space bound,

If the sample point is inside the mlcropolygon,
Calculate the z of the micropolygon at the sample point by interpolation.
If the z at the sample point is less than the z in the buffer,

Replace the sample in the buffer with this sample.
Else

Split the primitive into other geometric primitives.
Put the n e w primitives at the head of the unread portion of the model file.

Filter the visible sample hits to p r o d u c e ptxels.
Output the pixels.

Figure 3. Summary o f the algorithm.

98

(~ ~ Computer Graphics, Volume 21, Number 4, July 1987

pixels

micropolygon

Figure 4a. A sphere is split into patches, and one of the patches
is diced into a 8×8 grid of micropolygons.

grid
litte
samples

Figure 4b. The micropolygons in the grid are transformed to
screen space, where they are stochastically sampled.

3. Description of the Algorithm
The algorithm is summarized in Figure 3. In order to emphasize
the basic structure, this description does not include tran-
sparency, constructive solid geometry, motion blur, or depth of
field. These topics are discussed later.

Each object is turned into micropolygons as it is read in. These
mietopolygons are shaded, sampled, and compared against the
values currently in the z buffer. Since only one object is pro-
cessed at a time, the amount of data needed at any one time is
limited and the model can contain arbitrarily many objects.

Primitives are subdivided only in uv space, never in screen
space. The first part of the algorithm is done in uv space and
world space, and the second half is done in screen space. After
the transformation to screen space, there is never any need to go
back to world space or uv space, so there are no inverse transfor-
mations.

Each type of geometric primitive has the following routines:

• Bound. The primitive computes its eye-space bound; its
screen-space bound is computed from the eye-space bound.
A primitive must be guaranteed to lie inside its bound, and
any primitives it is split into must have bounds that also lie
inside its bound. The bound does not have to be tight,
however. For example, a fractal surface can be bounded if
the maximum value of its random number table is known
[7, 18]. The fraetal will be guaranteed to lie within this
bound, but the bound probably will not be v e ~ tight. The
effect of displacement maps must be considered in the cal-
culation of the bound.

• Dice. Not all types of primitives need to be dieeable. The
only requirement is that each primitive be able to split
itself into other primitives, and that this splitting eventually
leads to primitives that can all be diced.

• Split. A primitive may split itself into one or more primi-
rives of the same type or of different types.

• Diceable test. This test determines whether the primitive
should be diced or split and returns "d iceable" or "no t
dieeable" accordingly. Primitives should be considered
not diceable if dicing them would produce a grid with too
many micropolygons or a large range of micropolygon
sizes.

The bound, split, and dice routines are optional. If the diceable
routine ever returns "d iceab le" , the dice routine must exist; if
the diceable routine ever returns "no t diceable", the split routine
must exist. I f the bound routine exists, it is used for culling and
for determining how finely a primitive should be diced in order
to produce micropolygons of the correct size on the screen.

For example, consider one possible set of routines for a sphere.
The sphere diceable routine returns "d iceable" for small spheres
and "no t diceable" for large spheres. The sphere dice routine
turns a sphere directly into mieropolygons. The sphere split rou-
tine turns the sphere into 32 patches [16]. The patch dice routine
creates a rectangular grid of micropolygons so that the vertices
differ in u and v by integer multiples of powers of 1/2. This is
done to obviate CAT filtering, but in this case it is also necessary
for the prevention of patch cracks [9]. Figure 4a shows a sphere
being split into patches and one of those patches being diced into
an 8x8 grid of mieropolygons. Figure 413 shows tiffs grid in
screen space with jittered sample locations in one of the pixels.

99

~ ,~ SIGGRAPH '87, Anaheim, July 27-31, 1987

I

eye i
I I I

I I I

I I I

I I I

I

I

O'
epsilon hither yon

Figure 5. A geometric primitive that spans the C and hither planes is split
until its pieces can be culled or processed. The culled pieces are marked.

This algorithm does not require clipping. The viewing frustum
consists o f a screen space xy range and an eye space hither-yon z
range. Objects that are known to be completely outside of this
region are culled. Objects that are partly inside the frustum and
partly outside are kept, shaded and sampled. Regions of these
objects that are outside of the viewing frustum in the x o ry direc-
tions are never sampled. Regions that are in front of or behind
the viewing frustum may be sampled, but their hits are rejected if
the sampled surface point lies outside the hither-yon z range.
Note that if the filter that is used to sample the z buffer to pro-
duce pixels is wider than a pixel, the viewing frustum must be
expanded accordingly because objects that are just off screen can
affect pixels on the screen.

Sometimes an object extends from behind the eye to inside the
viewing frustum, so that part of the object has an invalid per-
spective calculation and another pax is visible. This situation is
traditionally handled by clipping to the hither plane. To avoid
clipping, we introduce the e plane, a plane of constant z that lies
slightly in front of the eye as shown in Figure 5. Points on the
z<e side of this plane can have an invalid perspective calculation
or an unmanageably large screen space x and y because of the
perspective divide. If a primitive spans both the c plane and the
hither plane, it is considered "no t diceable" and is split. The
resulting pieces are culled if they are entirely outside of the
viewing frustum, diced if they lie completely on the z>c side of
the e plane, and split again if they span both the e plane and the
hither ~lane. As long as every primitive can be split, and the
splits eventually result in primitives with smaller bounds, then
this procedure is guaranteed to terminate successfully. This
split-until-cullable procedure obviates clipping. Objects that
cannot be bounded can still be protected against bad perspective
situations, since micropolygons are created in eye space. Their
micropolygons can be culled or be run through a split-until-
cullable procedure.

4. Extensions
Since this algorithm was first developed, we have found it easy
to add a number of features that were not specifically considered
in the original design. These features include motion blur, depth
of field, CSG (constructive solid geometry) [1, 33], shadows [32]
and a variety of new types of models. The main modification for
transparency and CSG'calculations is that each sample location
in the z buffer stores multiple hits. The hits at each sample point
are sorted in z for the transparency and CSG calculations.
Motion blur and depth of field are discussed elsewhere in detail
[10, 12, 13]. In the case of motion blur, micropolygons are
moved for each sample point to a jittered time associated with

that sample. For depth of field, they are moved in x and y
according to a jittered lens location. Both motion blur and depth
of field affect the bound calculations; the details are described
elsewhere [13].

5. Implementation
We had to make some compromises to implement this algorithm
on a general purpose computer, since the algorithm as described
so far can require a considerable amount of z buffer memory.
The screen is divided into rectangular buckets, which may be
kept in memory or on disk. In an initial pass, each primitive is
bounded and put into the bucket corresponding to the upper left
corner of its screen space bound. For the rest of the calculations,
the buckets are processed in order, left-to-right and top-to-
bottom. First all of the primitives in the bucket are either split or
diced; as primitives are diced, their micropolygons are shaded
and put into every bucket they overlap. After all of the primi-
fives in a bucket have been split or diced, the micropolygons in
that bucket are sampled. Once a bucket is empty, it remains
empty, so we only need enough z buffer memory for one bucket.
The number of micropolygons in memory at any one time can be
kept manageable by setting a maximum grid size and forcing
primitives to be considered "not diceable" if dicing them would
produce too large a grid.

We have implemented this revised version of the algorithm in C
and have used it to make a number of animated films, including
The Adventures o f Andre and Wally B. [27], the stained glass
man sequence in Young Sherlock Holmes [25], Luxo Jr. [28], and
Red's Dream [29]. The implementation performs reasonably
well, considering that the algorithm was designed as a testbed,
without any requirement that it would run efficiently in C. For a
given shading complexity, the rendering time is proportional to
the number of micropolygons (and thus to screen size and to the
number of objects).

An example of a image rendered with this program is shown in
Figure 6. It is motion blurred, with environment maps for the
reflections and shadow depth maps for the shadows [32]. The
picture is by John Lasseter and Eben Ostby. It was rendered at
1024x614 pixels, contains 6.8 million micropolygons, has 4 light
sources, uses 15 channels of texture, and took about 8 hours of
CPU time to compute. Frames in Andre were 512x488 pixels
and took less than ½ hour per frame. Sherlock frames were
1024x614" and took an hour per frame; Luxo frames were
724x434 and took 1½ hours per frame. Statistics on Red's
Dream frames are not available yet. All of these CPU times are
for a CCI 6/32, which is 4-6 times faster than a VAX 11/780.

100

(~) ~ Computer Graphics, Volume 21, Number 4, July 1987

Figure 6. 1986 Pixar Christmas Card by John Lasseter and Eben Ostby.

6. Discussion
This approach has certain disadvantages. Because shading
occurs before sampling, the shading cannot be calculated for the
specific time of each sample and thus cannot be motion blurred
correctly. Shading after sampling would have advantages if the
coherency features could be retained; this is an area of future
research. Although any primitive that can be scan-converted can
be turned into micropolygons, this process is more difficult for
some primitives, such as blobs [5]. The bucket-sort version
requires bounds on the primitives to perform well, and some
primitives such as particle systems are difficult to bound. No
attempt is made to take advantage of coherence for large
simply-shaded surfaces; every object is turned into micropo-
lygons. Polygons in general do not have a natural coordinate
system for dicing. This is fine in our case, because bicubic
patches are our most common primitive, and we hardly ever use
polygons.

On the other hand, our approach also has a number of advan-
tages. Much of the calculation in traditional approaches goes
away completely. There are no inversion calculations, such as
projecting pixel comers onto a patch to find normals and texture
values. There are no clipping calculations. Many of the calcula-
tions can be vectorized, such as the the shading and surface nor-
mal calculations. Texture thrashing is avoided, and in many
instances textures require no run time filtering. Most of the cal-
culations are done on a simple common representation (micropo-
lygons).

• This architecture is designed for rendering exceedingly complex
models, and the disadvantages and advantages listed above
reflect the tradeoffs made with this goal in mind.

Acknowledgements
Thanks to Bill Reeves, Eben Ostby, David Salesin, and Sam
Leffler, all of whom contributed to the C implementation of this
algorithm. Conversations with Mark Leather, Adam Levinthal,
Jeff Mock, and Lane Molpus were very productive. Charlie
Gunn implemented a version of this algorithm in chas, the
assembly language for the Pixar Chap SIMD processor [23].
Paul Heckbert helped analyze the texture quality, and Ricki Blau
studied the performance of the C implementation.

References

1. ATHERTON, PETER R., "A Scanline Hidden Surface
Removal Procedure for Constructive Solid Geometry,"
Computer Graphics (SIGGRAPH '83 Proceedings) 17(3),
pp. 73-82 (July 1983).

2. BARR, ALAN H., "Decal Projections," in S1GGRAPH '84
Developments in Ray Tracing course notes (July 1984).

3. BLINN, JAMES F. AND MARTIN E. NEWELL, "Texture and
Reflection in Computer Generated Images," Communica-
tions of the ACM 19(10), pp. 542-547 (October 1976).

4. BLINN, JAMES F., "Simulation of Wrinkled Surfaces,"
Computer Graphics (SIGGRAPH '78 Proceedings) 12(3),
pp. 286-292 (August 1978).

5. BLINN, JAMES F., " A Generalization of Algebraic Surface
Drawing," ACM Transactions on Graphics 1(3), pp. 235-
256 (July 1982).

6. BRACEWELL, RONALD N., The Fourier Transform and Its
Applications, McGraw-Hill, New York (1978).

7. CARPENTER, LOREN, "Computer Rendering of Fractal
Curves and Surfaces," Computer Graphics (SIGGRAPH
'80 Proceedings) 14(3), pp. 9-15, Special Issue (July
1980).

8. CATMULL, EDWIN E., "A Subdivision Algorithm for
Computer Display of Curved Surfaces," Phd dissertation,
University of Utah, Salt Lake City (December 1974).

9. CLARK, JAMES H., "A Fast Algorithm for Rendering
Parametric Surfaces," Computer Graphics (SIGGRAPH
'79 Proceedings) 13(2), pp. 7-12, Special Issue (August
1979).

10. COOK, ROBERT L., THOMAS PORTER, AND LOREN CAR-
PENTER, "Distributed Ray Tracing," Computer Graphics
(SIGGRAPH "84 Proceedings) 18(3), pp. 137-145 (July
1984).

11. COOK, ROBERT L., "Shade Trees," Computer Graphics
(SIGGRAPH '84 Proceedings) 18(3), pp. 223-231 (July
1984).

12. COOK, ROBERT L., "Stochastic Sampling in Computer
Graphics," ACM Transactions on Graphics 5(1), pp. 51-
72 (January 1986).

101

~ SIGGRAPH '87, Anaheim, July 27-31, 1987

13. COOK, ROBERT L., "Practical Aspects of Distributed Ray
Tracing," in SIGGRAPH "86 Developments in Ray Trac-
ing course notes (August 1986).

14. CROW, FRANKLIN C., "Summed-Area Tables for Texture
Mapping," Computer Graphics (SIGGRAPH "84 Proceed-
ings) 18(3), pp. 207-212 (July 1984).

15. DUFF, TOM, "Compositing 3-D Rendered Images," Com-
puter Graphics (SIGGRAPH '85 Proceedings) 19(3),
pp. 41-44 (July 1985).

16. FAUX, I. D. AND M. J. PRATT, Computational Geometry
for Design and Manufacture, Ellis Horwood Ltd., Chi-
chester, England (1979).

17. FEIBUSH, ELIOT, MARC LEVOY, AND ROBERT L. COOK,
"Synthetic Texturing Using Digital Filtering," Computer
Graphics 14(3), pp. 294-301 (July 1980).

18. FOURNIER, ALAIN, DON FUSSELL, AND LOREN CAR-
PENTER, "Computer Rendering of Stochastic Models,"
Communications of the ACM 25(6), pp. 371-384 (June
1982).

19. HECKBERT, PAUL S., "Survey of Texture Mapping,"
IEEE Computer Graphics and Applications (November
1986).

20. KAPLAN, MICHAEL R., "Space-Tracing, A Constant Time
Ray-Tracer," in SIGGRAPH '85 State of the Art in Image
Synthesis seminar notes (July 1985).

21. KAY, TIMOTHY L. AND JAMES T. KAIIYA, "Ray Tracing
Complex Scenes," Computer Graphics (SIGGRAPH '86
Proceedings) 20(4), pp. 269-278 (Aug. 1986).

22. LANE, JEFFREY M., LOREN C. CARPENTER, TURNER
WHIFFED, AND JAMES F. BLINN, "Scan Line Methods for
Displaying Parametrically Defined Surfaces," Communi-
cations of the ACM 23(1), pp. 23-34 (January 1980).

23. LEVINTHAL, ADAM AND THOMAS PORTER, "Chap - A
SIMD Graphics Processor," Computer Graphics (SIG-
GRAPH "84 Proceedings) 18(3), pp. 77-82 (July 1984).

24. NEWMAN, WILLIAM M. AND ROBERT F. SPROULL, Princi-
ples of Interactive Computer Graphics (2nd ed.),
McGraw-Hill, New York (1979). pp. 361-363

25. PARAMOUNT PICTURES CORPORATION, Young Sherlock
Holmes, Stained glass man sequence by Pixar and Lucas-
film Ltd. 1985.

26. PEARSON, D. E., Transmission and Display of Pictorial
Information, Penteeh Press, London (1975).

27. PIXAR, The Adventures of AndrE and WaUy B., July 1984.
28. PIXAR, Luxo Jr., July 1986.
29. PIXAR, Red' s Dream, July 1987.

30. REEVES, WILLIAM T., "Particle Systems - A Technique
for Modeling a Class of Fuzzy Objects," ACM Transac-
tions on Graphics 2(2), pp. 91-108 (April 1983).

31. REEVES, WILLIAM T. AND RICKI BLAU, "Approximate
and Pmbabilistic Algorithms for Shading and Rendering
Structured Particle Systems," Computer Graphics (S1G-
GRAPH "85 Proceedings) 19(3), pp. 313-322 (July 1985).

32. REEVES, WILLIAM T., DAVID H. SALESIN, AND ROBERT
L. COOK, "Shadowing with Texture Maps," Computer
Graphics (SIGGRAPH '87 Proceedings) 21 (July 1987).

33. ROTH, S. D., "Ray Casting for Modeling Solids," Com-
puter Graphics and Image Processing(18), pp. 109-144
(1982).

34. RUBIN, STEVEN M. AND TURNER WHITTED, "A 3-
Dimensional Representation for Fast Rendering of Com-
plex Scenes," Computer Graphics (SIGGRAPH '80
Proceedings) 14(3), pp. 110-116 (July 1980).

35. SMITH, ALVY RAY, "Plants, Fractals, and Formal
Languages," Computer Graphics (SIGGRAPH '84
Proceedings) 18(3), pp. 1-10 (July 1984).

36. WILLIAMS, LANCE, "Pyramidal Parametrics," Computer
Graphics (SIGGRAPH "83 Proceedings) 17(3), pp. 1-11
(July 1983).

102

