
Robust Skin Simulation in Incredibles 2
Ryan Kautzman

Pixar Animation Studios
Gordon Cameron

Pixar Animation Studios
Theodore Kim

Pixar Animation Studios

Figure 1: A skin simulation was performed on this fast-moving raccoon during a key fight scene. The kinematic mesh, par-
ticularly the hind legs and the torso, contains frequent self-intersections that cause problems with previous approaches.
©Disney/Pixar

ABSTRACT
Robustly simulating the dynamics of skin sliding over a character’s
body is an ongoing challenge. Skin can become non-physically
“snagged” in curved or creased regions, such as armpits, and create
unusable results. These problems usually arise when it becomes
ambiguous which kinematic surface the skin should be sliding
along. We have found that many of these problems can be addressed
by performing 2D ray-tracing over the surface of the mesh. The
approach is fast and robust, and has been used successfully in
Incredibles 2.

ACM Reference Format:
Ryan Kautzman, Gordon Cameron, and Theodore Kim. 2018. Robust Skin
Simulation in Incredibles 2 . In Proceedings of SIGGRAPH ’18 Talks. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3214745.3214793

1 THE PROBLEM
The dynamics of a thin layer of skin sliding along the surface of
a character is an important feature of realistic anatomical motion.
Many approaches model the skin as cloth, and use existing methods
to constrain the cloth to the character’s kinematically evolving
surface [Kautzman et al. 2012; Milne et al. 2016; Saito and Yuen
2017]. Alternative parameterization-based techniques also exist [Li
et al. 2013], but we chose not to take this approach because, among
other considerations, it involves non-trivial pipeline changes.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’18 Talks, August 12-16, 2018, Vancouver, BC, Canada
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5820-0/18/08.
https://doi.org/10.1145/3214745.3214793

One of the key ways in which skin simulation differs from cloth
simulation is that the character’s skin must somehow be physically
constrained to the underlying character mesh (i.e. the “kinematic
mesh”). While existing collision processing techniques are phys-
ically correct when simulating tight-fitting cloth [Tamstorf et al.
2015], skin is attached to the underlying muscle by an adipose layer
that must be taken into account.

Inserting a zero-length penalty spring between each vertex on
the skin mesh and a corresponding anchor position on the kinematic
mesh is a natural approach, as it models the actual springiness of
the adipose tissue. The main challenge comes when updating the
positions of these anchors so that the skin is not over-constrained
and can slide in the tangent direction. The most straightforward
approach is to apply all the skin forces to the anchor positions,
integrate forward in time in the fullℜ3 space, and then project the
result to the closest point on the kinematic mesh.

We call this the “projection springs” approach. While it has been
used successfully in production, for example for the character Hank
in Finding Dory [Kautzman et al. 2016], it can still create snags that
are difficult to diagnose and resolve. The core problem lies on the
definition of “closest point” when projecting the anchors back to the
flesh mesh. When an anchor can be projected to multiple candidate
points on the kinematic mesh, the one that has the smallest geodesic
distance to the previous anchor position should usually be selected.
However, computing the geodesic distance for each candidate point,
for every anchor, for every timestep, is computationally prohibitive.

The Euclidean distance can be used as an inexpensive proxy, or
in very complex situations, the geodesic distance can be computed
in a limited N -ring around the original anchor position (Saito and
Yuen [2017] propose something similar). However, if the kinematic
mesh is sufficiently pinched, or the overall motion is sufficiently
large, both of these approaches can still fail.

https://doi.org/10.1145/3214745.3214793
https://doi.org/10.1145/3214745.3214793


SIGGRAPH ’18 Talks, August 12-16, 2018, Vancouver, BC, Canada Kautzman, Cameron and Kim

2 OUR RAY-TRACING APPROACH
We instead use 2D ray tracing to “walk” each anchor over the
kinematic mesh. The anchors are not allowed to leave the mesh
surface at any time, so it is impossible for them to be incorrectly
projected onto a face with a misleadingly small Euclidean distance
that masks a large geodesic distance. The walk uses ray-tracing,
which may seem expensive at first glance, but the 2D geometry
involved is extremely simple, so the approach is fast in practice.

Specifically, the force integration loop hands each anchor a0 a
candidate position, a∗, which is usually not on the surface of the
kinematic mesh. The goal is to compute a final, updated anchor
position a1 that is close to a0 in terms of geodesic distance. The
orthogonal projection of a∗ onto the triangle containing a1 should
also yield a1.

We denote the vector between a0and a∗ as d (i.e. d = a∗ − a0).
In order to walk along the mesh, we project d into the plane of the
triangle that contains a0, and then record which edge that the ray
hits. In other words, we perform a 2D ray-triangle intersection test.
This intersection test can be made extremely simple and robust
by transforming both d and a0 into a 2D canonical space. The
necessary transform takes the vertices of the triangle, (v0, v1, v2),
and arranges them in a matrix Dm ∈ ℜ3×2:

Dm =

 v1 − v0 v2 − v0

 . (1)

We then compute the QR decomposition Dm = QR where Q ∈

ℜ3×2 and R ∈ ℜ2×2. The anchor and direction can now be trans-
formed into a canonical coordinate system using d̂ = R−1Q⊤d and
â = R−1Q⊤(a − v0). Since R is only 2 × 2, computing the inverse is
fast. The ray tracing problem is now simple. Determine if the ray
(â, d̂) intersects the one of three edges: {(0, 0), (0, 1)}, {(0, 0), (1, 0)}
or {(1, 0), (0, 1)}. Once the hit position ĥ has been determined, it
can be transformed back to world space using h = Dm ĥ + v0.

If no edge was hit, it is because the ray terminated at point â1 on
the interior of the triangle, and a1 = Dm â1 + v0 is the new anchor
position. Otherwise, we walk across the edge to the opposing face,
and perform the ray trace again. If there is no opposing face, we
are at the edge of the mesh, so we set a1 = h. Care must be taken to
ensure that the transformed point â is always inside the canonical
triangle, but we found that a simple clamp suffices. Finally, we keep
track of the triangle faces we have already during the current time
step. If we encounter the same face twice, the trace is terminated. In
this case, it means a sharp crease was encountered, and the optimal
anchor position lies along an edge instead of a face.

3 IMPLEMENTATION AND RESULTS
We found that it is not sufficient to insert an anchor at every vertex
in the skin mesh, because a face can then unnaturally straddle a
sharp crease in the kinematic mesh. Inserting an additional anchor
at the barycenter of each face alleviated this problem.

We added the 2D formulation of the Stable Neo-Hookean consti-
tutive model [Smith et al. 2018] as the membrane energy in all our
simulations. Its area preservation term is smooth under inversion,
and also helped to automatically untangle snagged configurations.

(a) Without bending energy (b) With bending energy

Figure 2: When a bending energy term is added, plau-
sible skin wrinkling appears below the Dante’s neck.
©Disney/Pixar

By default, bending energies are not included in the simulation,
because they can cause the character’s silhouette to deviate sig-
nificantly from the underlying animation. Interestingly, we found
during the course of experimenting that when bending energies
are activated, it does in fact produce plausible skin wrinkling over
character’s body (Figure 2).

The raccoon in Figure 1 contained 18929 triangles, and took an
average of 78.63 seconds per frame to simulate over 181 frames. The
majority of the simulation time was spent in collision processing
and linear system solution, because the raccoon mesh contained
several badly-conditioned triangles. As can be seen in the supple-
mental video, without the new algorithm, the simulation collapses
entirely. In all of our experiments, the ray-tracing the skin anchors
never exceeded 1% of the running time, so its computation time
was negligible.

REFERENCES
Ryan Kautzman, Jiayi Chong, and Patrick Coleman. 2012. Stable, Art-Directable Skin

and Flesh Using Biphasic Materials. In ACM SIGGRAPH Talks.
Ryan Kautzman, Bill Wise, Meng Yu, Per Karlsson, Mark Hessler, and Audrey Wong.

2016. Finding Hank: Or How to Sim an Octopus. In ACM SIGGRAPH Talks.
Duo Li, Shinjiro Sueda, Debanga R. Neog, and Dinesh K. Pai. 2013. Thin Skin Elasto-

dynamics. ACM Trans. Graph. 32, 4, Article 49 (July 2013), 10 pages.
Andy Milne, Mark McLaughlin, Rasmus Tamstorf, Alexey Stomakhin, Nicholas

Burkard, Mitch Counsell, Jesus Canal, David Komorowski, and Evan Goldberg.
2016. Flesh, Flab, and Fascia Simulation on Zootopia. In ACM SIGGRAPH Talks.
Article 34, 2 pages.

Jun Saito and Simon Yuen. 2017. Efficient and Robust Skin Slide Simulation. In Pro-
ceedings of the ACM SIGGRAPH Digital Production Symposium. Article 10, 6 pages.

Breannan Smith, Fernando de Goes, and Theodore Kim. 2018. Stable Neo-Hookean
Flesh Simulation. ACM Trans. Graph. in press (2018).

Rasmus Tamstorf, Toby Jones, and Stephen F. McCormick. 2015. Smoothed Aggregation
Multigrid for Cloth Simulation. ACM Trans. Graph. 34, 6, Article 245 (Oct. 2015),
245:1–245:13 pages.


	Abstract
	1 The Problem
	2 Our Ray-Tracing Approach
	3 Implementation and Results
	References

