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Figure 1: From left to right: Pinwheel image, Photoshop Median Filter, Isotropic Equal Weight Median, Our Median Filter.

Abstract

Local image histograms contain a great deal of information useful
for applications in computer graphics, computer vision and com-
putational photography. Making use of that information has been
challenging because of the expense of computing histogram prop-
erties over large neighborhoods. Ef�cient algorithms exist for some
speci�c computations like the bilateral �lter, but not others. Here,
we present an ef�cient and practical method for computing accu-
rate derivatives and integrals of locally-weighted histograms over
large neighborhoods. The method allows us to compute the loca-
tion, height, width and integral of all local histogram modes at in-
teractive rates. Among other things, it enables the �rst constant-
time isotropic median �lter, robust isotropic image morphology
operators, an ef�cient “dominant mode” �lter and a non-iterative
alternative to the mean shift. In addition, we present a method
to combat the over-sharpening that is typical of histogram-based
edge-preserving smoothing. This post-processing step should make
histogram-based �lters not only fast and ef�cient, but also suitable
for a variety of new applications.

CR Categories: I.3.3 [Computer Graphics]—Picture/Image
Generation; I.4.3 [Image Processing and Computer Vision]—
enhancement, �ltering

Keywords: Mode �lter, Bilateral �lter, Histogram

1 Introduction

A variety of popular image �lters can be expressed as functions of
the local histogram. The median �lter, for example, is the 50%

point of the histogram. The gray-scale mathematical morphology
operations of dilation and erosion are the 100% point (max) and 0%
point (min) of the histogram. The bilateral �lter can be expressed
as a simple ratio of linear functions of the histogram. Mean-shift,
histogram equalization and a collection of other valuable �lters also
have simple expressions in terms of local histograms.

All histogram-based computations face a computational challenge
when dealing with large neighborhoods. In a na�̈ve implementation,
every pixel in a neighborhood has to be examined and sorted in
order to compute a single output value. For sizeable neighborhoods,
this is an expensive proposition.

A collection of acceleration techniques have been developed for
speci�c �lters, but all of them have important limitations either on
the types of �lters to which they apply or the shape and weighting
of the local histogram neighborhood. Here we introduce a gen-
eral method for accelerating a wide range of local histogram-based
computations using center-weighted isotropic histogram neighbor-
hoods. The method allows us to compute values of the smoothed
local histogram, its derivatives and its integrals with computational
expense independent of the neighborhood size. In addition to allow-
ing simple, ef�cient and improved implementations of well-known
�lters, it also enables some interesting new histogram-based com-
putations.

An important application of histogram-based �lters is in edge-
preserving smoothing. Often, such �lters are used to decompose
images into the sum of a base layer and a detail layer for fur-
ther processing. For this purpose, an important limitation is that
histogram-based �lters often increase the sharpness of the edges
they preserve. When trying to decompose an image into a series of
layers for purposes like tone mapping or contrast enhancement, the
over-sharpening of edges leads to halos, gradient reversals or other
artifacts in the output. Here we show how to mitigate this effect and
thereby increase the range of applicability for the histogram-based
�lters our method accelerates.

2 Previous Work

Probably the �rst histogram-related image �lter to receive atten-
tion in image processing was the median �lter, a �lter that at each
point outputs the median intensity of a local neighborhood of pixels.



For n� n regions, the straightforward algorithm takesO(n2log(n))
operations per pixel if a full sort is done, orO(n2) if the sort is
binned. Huang [1975] showed that this �lter can be accelerated for
rectangular neighborhoods. Given a histogram for ann� n region
centered on one pixel, the histogram for ann� n region centered
on an adjacent pixel can be calculated incrementally in justO(n)
operations by taking advantage of the overlap. Weiss [2006] later
improved this computation toO(log(n)) , and Porikli [2005] and
Perreault and Hebert [2007] showed how to do the computation in
constant time.

Unfortunately, none of these fast median algorithms is isotropic,
and none of them provides weights that drop off smoothly from
the center of the neighborhood. Figure 1 illustrates why this is im-
portant. The rectangular equally-weighted neighborhood used by
Adobe Photoshop's median �lter causes severe artifacts on this test
input. Perreault and Hebert [2007] recognize this problem and give
other examples of the artifacts that arise from rectangular neigh-
borhoods. They suggest improving their algorithm with a modi�-
cation that allows it to produce equally-weighted octagonal neigh-
borhoods. Yet Figure 1(c) shows that this is insuf�cient. Even go-
ing all the way to a circular equally-weighted neighborhood leaves
unacceptable artifacts. The smooth center-weighted neighborhood
computation we present here avoids the problem.

Van Herk [1992] developed a constant-time algorithm for comput-
ing the minimum or maximum of rectangular or octagonal regions.
This method of implementing the image morphology operators of
dilation and erosion is attractive for its speed, but the algorithm
suffers from the same limitations as the rectangular or square algo-
rithms for the median �lter. The result will not be isotropic, and
the uniform weighting means that the effect of a single noise pixel
will extend to the edge of a neighborhood and then fall off abruptly.
In our approach, the minimum and maximum can be replaced with
low and high percentiles of the center-weighted histogram, allow-
ing an isotropic, robust and smooth result.

Felsberg et al. [2006] and Paris and Durand [2006] both present ac-
celeration methods for particular histogram-based image smoothing
�lters using look-up tables followed by fast linear low-pass �lters.
Felsberg et al. use B-spline look-up tables for a robust �lter they
call channel smoothing. Paris and Durand use Gaussian look-up
tables to compute the bilateral �lter. Their method was further re-
�ned by Chen et al. [2007] and accelerated by Porikli [2008]. Our
technique generalizes all these approaches to enable acceleration of
a wider collection of histogram-based �lters including the median
�lter and morphology operators as well as some new �lters we in-
troduce here. In addition to low-pass look-up tables, we also use
look-up tables that are integrals and derivatives of low-pass �lters.
As a result, we can quickly and accurately compute integrals and
derivatives of the local histogram, identify all its peaks and valleys,
and evaluate the size of the corresponding populations.

Comaniciu and Meer [2002] argue for the importance of �nding
modes in the local histogram. They present an iterative algo-
rithm called themean shiftbased on the work of Fukunaga and
Hostetler [1975], which converges at each point to the histogram
mode closest to the input pixel value. Paris and Durand [2007]
have shown how to use fast Gaussian �ltering to accelerate this it-
eration. With our approach, we can go further and remove the need
for iteration. Since we have information about the derivative of the
smoothed histogram, we directly locate the nearest mode by eval-
uating the point at which the derivative of the smoothed histogram
vanishes.

In the presence of noise, the mode closest to a given pixel may
not be the best choice. Felsberg et al. [2006], in formulating their
channel smoothing �lter, advocate using the mode with the highest

histogram density to achieve robustness. This approach has a severe
weakness. Under ordinary circumstances, the mode corresponding
to the desired signal will have a much larger histogram population
than the mode corresponding to the noise. The relative histogram
amplitudes, however, depend on the respective variances. Low vari-
ance noise can have a higher histogram amplitude than the signal,
even when the corresponding population is much smaller. This is
illustrated in Figure 5(d) where channel smoothing actually makes
the noise worse, while our dominant mode �lter (Figure 5(f)) makes
the noise disappear.

Some of the methods discussed above generalize well to his-
tograms of multi-dimensional quantities such as RGB color vec-
tors. For example, the mean shift and the integral histogram method
of Porikli [2005] have straightforward generalizations to arbitrary
numbers of dimensions. The method of Adams et al. [2009] is par-
ticularly noteworthy for high numbers of dimensions. Here, how-
ever, we will restrict ourselves to problems involving histograms
of one-dimensional quantities. There are a variety of ways to use
one-dimensional �lters to process color images. Paris et al. [2007]
discuss the issues and possible approaches. For illustration, in all
the examples of this paper we process color images by converting
RGB to HSV space, �ltering the V channel while leaving H and
S unchanged, and then converting back to RGB. Depending on the
application, other color spaces, such as CIELAB space may be su-
perior.

3 Histogram Properties

The traditional histogram sorts data into a collection of bins, indi-
cating the frequency with which the data falls into each bin. While
this is convenient for exploratory data analysis, the discrete quanti-
zation of data into bins is arti�cial. From a signal processing point
of view, we are better off examining a smoothed histogram. IfIp is
the image intensity at a pointp, then the smoothed histogram of a
neighborhood around the point can be written

fp(s) =
1
n

n

å
i= 1

K(Iqi � s) (1)

whereK is a smoothing kernel that sums to one,n is the number
of points in the neighborhood, andqi ranges over the pixels in the
neighborhood ofp. Note that ifK is a unit-area box function and
f (s) is sampled appropriately, this reduces to the traditional binned
histogram.

Equation 1 has another important interpretation. If we consider the
pixel intensity values to be samples from a random variable, thenf
is a popular estimate of the underlying probability density function.
This method of estimating the probability density is most generally
known as kernel density estimation, while in the pattern recogni-
tion literature, it has come to be known as the Parzen window tech-
nique [Duda and Hart 1973; Parzen 1962].

There are a variety of possible smoothing kernels one could con-
sider forK. In many cases, we are concerned with extrema inf ,
so we prefer to use a kernel that can never introduce new extrema
in the course of smoothing. The unique kernel with this property
is the Gaussian [Babaud et al. 1986] which we will use for all our
examples.
Whether we considerf to be a smoothed histogram or a probabil-
ity density estimate, it is valuable to have the in�uence of nearby
pixels fall off gradually with distance. For this, we introduce an all-
positive weighting functionW with unit sum. Then the smoothed,
locally-weighted histogram (or density estimate) can be written

f̂p(s) = å
i

K(Iqi � s)W(p � qi) (2)



Figure 2: Left: Look-up table. Right: Image mapped through look-
up table with different shifts. First row: Raw Histogram. Second
Row: Smoothed Histogram. Third Row: Derivative of Smoothed
Histogram.

or as the 2D spatial convolution

f̂p(s) = K(Ip � s) � W (3)

WhenW andK are both Gaussians, this is equivalent to an expres-
sion used by Paris and Durand [2006] to normalize the bilateral
�lter. When W is a Gaussian andK is a quadratic B-spline, this is
equivalent to an expression used by Felsberg et al. [2006] for chan-
nel smoothing. Both choices forK are reasonable. As Paris and
Durand observed,K determines the frequency content off̂p(s) as a
function ofs andW determines its spatial frequency content. Both
are low-pass �lters, so it is a simple matter to compute the necessary
sampling rates.

An advantage of using a Gaussian forW is that Gaussian convo-
lutions can be performed in constant time per input pixel, inde-
pendent of the neighborhood size. At least two different practical
constant-time methods are available. Burt [1983] provides a hier-
archical method which achieves constant-time �ltering by down-
sampling coarse levels of the pyramid. Deriche [1993] provides a
constant-time method using in�nite impulse response (IIR) recur-
sive �lters. We use the Deriche approach for our CPU implementa-
tion and vendor-supplied routines for fast Gaussian convolutions in
our GPU implementation. Other choices forW are possible at addi-
tional computational cost: a convolution with an arbitrary kernelW
can be computed at a cost ofO(log(n)) operations per output pixel
using a 2D FFT. All the examples in this paper were computed with
a Gaussian forW.

The smoothed local histogram̂fp(s) tells us a great deal about the
image neighborhood nearp. If it has a single peak or mode, then
it is likely that the pixels in the neighborhood are members of the
same population. On the other hand, if the histogram has multiple
modes, then the neighborhood probably contains pixels from two
or more distinct populations. For stylization, noise reduction, seg-
mentation and other purposes, we would like to be able to identify
and characterize the modes. In particular, we would like to identify
the number of modes, their values, their widths and the percentage
of the population contained within each mode.

At a histogram mode,¶ f̂ (s)=¶s will vanish. Since onlyK depends
ons, we can write the derivative of the histogram as

Dp(s) =
¶ f̂p(s)

¶s
= � K0(Ip � s) � W: (4)

Figure 3: Error Graph

SinceK is a low-pass kernel, its derivativeK0 will also be band
limited. As a result, we can sample the derivative of the histogram
Dp(s) at or above the Nyquist sampling rate without loss of infor-
mation. Letsi ;1 < i < m, be a set of samples ofs over the relevant
range at the Nyquist rate ofK0 or above. Then all the histogram
modes can be identi�ed from the functions

Di(p) = � K0(Ip � si) � W: (5)

Computing the functionsDi(p) is straightforward and well suited
to modern GPU hardware. For eachi, we �rst compute a look-up
tableLi that maps any intensity valueIp to K0(si � Ip). We then map
the input imageI through the look-up table and convolve the result
with the spatial kernelW to get the functionDi .

Strictly speaking, to guarantee accurate results at the Nyquist rate,
sinc interpolation is necessary. However, by increasing the sam-
pling rate suf�ciently, we can ensure that linear interpolation ins
is as accurate as desired. With suf�cient sampling, we have a very
simple algorithm to calculate the modes off̂p. At each pointp we
simply look for zero crossings inDi(p) as we increasei. If we �nd
a negative-going zero crossing betweenDi(p) and Di+ 1(p), then
there is a mode located approximately at

s= si +
Di (p)

Di(p) � Di+ 1(p)
(si+ 1 � si): (6)

Figure 2 illustrates the algorithm graphically. On the left side of the
�gure are a set of image look-up tables. The look-up tables are used
with a variety of different offsets or horizontal shiftssi . Mapping
the image through the look-up table at a given offset and smoothing
over the local neighborhood gives a sample of the function on the
right.
The upper left shows a box-function look-up table. Mapping an im-
age through this look-up table and then smoothing over a neighbor-
hood gives a sample from the traditional histogram. The histogram
is drawn as a discontinuous function because traditional histogram
bins are non-overlapping.

Of course, if we consider the offset of the look-up table to be con-
tinuous rather than discrete, the result of mapping it over the image
and smoothing over a neighborhood becomes continuous. This is
illustrated in the second row of Figure 2. Spatially smoothing the
output of the look-up table gives a sample of the smoothed, locally
weighted histogram shown on the right of the second row, which
corresponds tôfp(s) in Equation 3.

To �nd extrema in f̂p(s), we use a look-up table shaped like the
derivative of the kernelK as shown on the bottom left of Figure 2.



(a) Original Tractor Image

(b) Closest-mode Filtered

(c) Dominant-mode Filtered

Figure 4: Closest Mode vs. Dominant Mode

Mapping an image through this look-up table and smoothing gives
a sample of the derivative of the smoothed histogram shown on the
bottom right. Interpolating zero crossings as we change the offset
si of our look-up tables allows us to identify all the extrema in the
smoothed local histogram.

3.1 Sampling Rates

The amount of smoothing of the histogram and the amount of error
that can be tolerated determine the number of look-up table samples
required for all of our �lters. Figure 3 shows the relationship for
the case whereK is a Gaussian of standard deviations and the
error criterion is the root-mean-square difference between the ideal
�lter and the effective �lter resulting from linear interpolation. Two
curves are shown. The blue curve shows the rms error vs. sampling
rate vs. for estimating the smoothed histogramfp(s). The red curve
shows the same trade-off for approximating¶ fp(s)=¶s.

For example, if 5% rms interpolation error is tolerable in

¶ fp(s)=¶s, the centers of the look-up tablesDi should be no far-
ther apart than:54s . The error can be reduced to 1% if the centers
are no farther apart than:24s . Estimates offp(s) can use a lower
sampling rate, as shown in the �gure.

4 Filters

4.1 Closest-Mode Filter

Identifying all the modes in the smoothed local histogram allows
us to compute the mode closest to the intensity of each input pixel.
If we de�ne the closest mode to be the mode one would reach by
steepest ascent in the smoothed local histogram, then this is exactly
equivalent to what Barash and Comaniciu [2004] call the “restricted
mean shift.” All we need to do is interpolate among the functions
Di to estimateD(Ip), the derivative of the smoothed local histogram
at Ip. If the derivative is positive, we output the �rst mode greater
than the pixel value. Otherwise we output the �rst mode less than
the pixel value. Figure 4(b) shows the results. Since we compute
the image without iteration and without any use of the mean-shift
vector, we propose calling it the “closest-mode �lter.”

To compute Figure 4 the original image was �rst transformed into
HSV space, then closest-mode �ltered in the V channel and �nally
transformed back to RGB. The choice of HSV space for the �ltering
is to avoid slight misalignments that can arise in the positioning of
edges in the different color channels, much as discussed by Paris
and Durand [2006] with bilateral �ltering.

Where the input image crosses a mode boundary, the output of the
closest mode �lter is discontinuous. When computed with a single
sample per pixel, this can result in signi�cant aliasing. To attenuate
aliasing artifacts, Figure 4(b) has been antialiased with 3� 3 over-
sampling. We compute the functionsDi once per pixel, but super-
sample the original image with bilinear interpolation. The closest
modes for each of the image super-samples are averaged together to
yield the value of the output pixel. Since most of the computation
time is in doing the convolutions to evaluate the functionsDi , 3� 3
antialiasing has a small impact on the total running time.

4.2 Median Filter

Edge-preserving �lters like the closest-mode �lter and the bilateral
can be very valuable for noise reduction (e.g. [Dominguez et al.
2003; Paris et al. 2007]). In the presence of extreme noise, how-
ever, neither of these �lters is as robust as a median �lter. The
reason is that both �lters rely too much on the central pixel in each
neighborhood. The closest-mode �lter uses the value of the central
pixel to choose a mode. If the central pixel is an outlier, the �l-
ter may choose an outlier mode. Similarly, the bilateral �lter uses
the central pixel to choose the weights of nearby pixels in its local
average. If the central pixel is an outlier, the weights may be very
inappropriate.

The histogram computations we have developed for mode �nding
are appropriate for computing the median �lter as well. More gen-
erally, the technique we use for computing the functionsDi applies
equally well to integrals or further derivatives of the smoothed local
histogramf̂p(s). Let

C(s) =
Z s

� ¥
K(u)du (7)

If K is a Gaussian, thenC will be a corresponding error function
(erf). We can estimate the integrals off̂p(s)

Rp(s) =
Z s

� ¥
f̂p(s)ds= C(Ip � s) � W: (8)



(a) Original With Noise (b) Closest Mode

(c) Bilateral (d) Channel Smoothing

(e) Median (f) Dominant Mode

Figure 5: Image corrupted with noise and then processed with
histogram-based �lters.

using the functions

Ri(p) = C(Ip � si) � W (9)

which sampleRat a collection of intensitiessi . As with Di , we can
computeRi by using a look-up table followed by a spatial convo-
lution. We then interpolate among theRi to �nd the value ofs for
whichR= 1=2. This value ofs is the median.

One can use more sophisticated interpolation schemes, but with ad-
equate sampling, even linear interpolation is suf�cient.C is much
lower-pass thanD, so the required number of samplessi is substan-
tially less than forD.

Figure 5 shows our median algorithm being used for noise reduc-
tion. An original image corrupted with noise (a) is then processed
with different �lters. The closest-mode �lter (b) and the bilateral
�lter (c) fail to remove the noise. The median �lter (e) removes the
noise without introducing artifacts. As before, we have applied the
�ltering only to the V component of the HSV representations.

Our method of computing the median takes constant time per output
sample, independent of the neighborhood size. Unlike any previ-
ous fast methods, it works with Gaussian-weighted neighborhoods
to produce a center-weighted isotropic result. Figure 1 shows the
impact of Gaussian weighting on an antialiased pinwheel image.
The Photoshop result clearly shows anisotropic artifacts which are
not present in our result. The anisotropy can be removed by using
a circular equal-weight neighborhood as shown in the �gure, but
the artifacts remain. By using an isotropic weighting function that
smoothly decays from the center, our �lter avoids the artifacts.

The median computation requires only the look-up tablesI !
C(Ip � si) which are lower-pass thanK, so they can be computed at
even lower sampling rates for the same accuracy. The mean-square
error in this case depends on the integration interval, so it is dif�-
cult to summarize in a single �gure of merit. In our experience, 15

Figure 6: Top: Original. Bottom: After closing and opening.

samples ofsi suf�ce to provide good-quality median �lter of 8-bit
images using a Gaussian functionK with standard deviation equal
to the sample separation.

4.3 Morphology

Morphological operators [Haralick et al. 1987] are a class of pop-
ular image �lters used for a wide range of image-processing ap-
plications. The fundamental morphological operators aredilation,
de�ned as the maximum intensity within a region anderosionde-
�ned as the minimum intensity within a region. In the morphology
literature, the region is traditionally referred to as thestructuring el-
ement. When all samples in the neighborhood are equally weighted,
dilation, erosion and median can be seen as examples of a wider
class of �lters known asrank-order �lters. These �lters output the
ith largest ofn samples in a neighborhood. With unequal weighting
and smoothed histograms, the proper generalization is topercentile
�lters : �lters that output a given percentile of the smoothed his-
togram.

When the percentile is 0% or 100% as in the traditional dilation and
erosion operators, unequal neighborhood weighting does not affect
the result. For any percentile in-between, however, the weighting
does have an impact. If we modify the traditional erode and di-
late operators to use the 5% and 95% points, we will have a very
similar result to the traditional operators, but with added robustness
against noise. High amplitude noise which affects less than 5% of
the neighborhood will have a very small effect on the result. More
severe noise will have an effect which falls off smoothly with dis-
tance instead of sharply with the traditional operators.

Bousseau et al. [2007] propose using image morphology operators
to make photographs look like water color paintings. In particular,
they suggest usingclosing followed by openingwhere closing is
de�ned as erosion followed by dilation andopeningis de�ned as
dilation followed by closing. Figure 6 shows the results of using



our robust isotropic dilation and erosion operators at the 5% and
95% points. The neighborhood is isotropic and center weighted,
and the running time of the algorithm is independent of the size of
the neighborhood.

4.4 Dominant-Mode Filter

The median �lter is robust in the presence of noise, but its ability
to track the center of the input population is limited by its �xed use
of the 50% point of the distribution. In principle, a more accurate
result is possible by using a robust criterion to choose among the
local modes. While many robust selection criteria are possible, a
simple and effective method is to choose the mode corresponding
to the largest population of samples. We call this the dominant-
mode �lter.

Computing the dominant mode is straightforward. We use equation
6 to compute not only the negative-going zero crossings inD which
represent modes, but also the positive-going zero crossings inD
which represent anti-modes. For each mode, we compute the inte-
gral of the distribution from its left anti-mode to its right anti-mode
using the functionsRi in equation 9. The mode with the largest
integral is the dominant mode.

Note that the dominant mode can be used in situations where the
domain is circular, as for example the hue of an HSV image, or
the 2D orientation of an image feature. In these cases, the median
is not meaningful, and something like the dominant mode is re-
quired to achieve the kind of noise immunity that the median has
on non-circular domains. Note that some care must be used when
computing integrals on a circular domain; a branch cut is required.
Integrals that span the branch cut must be computed in two pieces.

Figure 5(f) shows the dominant-mode �lter applied to the image in
Figure 5(a). Like the median �lter, it removes the noise very ef-
fectively. A close examination will also reveal that it produces a
sharper output on some edges than the median. This is a common
feature of mode �lters. At mode boundaries, the dominant mode �l-
ter will switch discontinuously from one mode to another, creating
an absolutely sharp edge where a somewhat blurred edge may have
existed previously. For a smoother result, modes can be blended
together when they account for nearly equal fractions of the popu-
lation.

Felsberg et al. [2006] use very similar motivation to develop a �lter
they callchannel smoothing. Without an ef�cient algorithm for in-
tegrating the population associated with each mode, they rely on an
estimate of the smoothed histogram height to pick among modes.
This criterion, however, is a dangerous one because the height of a
histogram mode depends critically on its variance. A low-variance
noise mode with a small population may have a greater histogram
height than a high-variance signal mode corresponding to a much
larger population. This is shown in Figure 5(f) where channel
smoothing accentuates the low-variance noise.

Figure 4(c) shows the dominant-mode �lter applied to the tractor
image of Figure 4(a). Compared to the closest-mode �ltered image
in Figure 4(b), high spatial frequency details have been removed.
For example, the word “Ford” on the tractor is readable in 4(b), but
becomes a single smooth region in 4(c). The white sprinklers in
the �eld are present in 4(b), but disappear from 4(c). Farbman et
al. [2008] note “While the [bilateral] is quite effective at smoothing
small changes in intensity while preserving strong edges, its ability
to achieve progressive coarsening is rather limited.” The same can
be said of the closest-mode �lter. By contrast, increasing the neigh-
borhood size of the dominant-mode �lter does spatially coarsen the
result.

Figure 7: Original synthetic input signal (blue) is �ltered (red) re-
sulting in over-sharpening. Our diffusion algorithm yields a smooth
signal (green) that no longer over-sharpens. Top: Using closest-
mode �lter. Bottom: Using the bilateral �lter.

5 Separating Base from Texture

In a variety of computational photography applications, images are
decomposed into a piecewise-smooth base layer and one or more
detail layers [Farbman et al. 2008]. The idea is to capture the large-
scale variations of image intensity in the base layer while putting
�ne-scale image texture into the detail layers. Depending on the
application, the base layer and the detail layer can then be processed
in different ways and recombined.

The base layer is typically created with an edge-preserving smooth-
ing �lter such as the bilateral �lter [Durand and Dorsey 2002],
anisotropic diffusion [Tumblin and Turk 1999] or a least-squares
procedure [Farbman et al. 2008]. The detail layer or layers then
characterize what is left after the base layer is removed, either by
subtraction or sometimes division. In applications like HDR tone
mapping, the detail may be boosted, while in image stylization, the
detail may be attenuated.

A key problem with all of these methods is preventing high-contrast
large-scale edges from “leaking” into the detail layers, which can
cause halos or other artifacts in further processing. Farbman et
al. [2008] show in some detail how edge smoothing or blurring in
the base-layer �lter can produce a large signal in the detail image.

The closest-mode �lter (and hence the mean-shift) is very good at
tracking the center of the underlying distributions of image textures.
Peaks in the local histogram are strong and robust indicators of the
centers of the distributions, and they rarely blur high-contrast fea-
tures. These features should make the �lter very attractive. From
the point of view of separating a base layer from a detail layer, how-
ever, local histogram modes have a severe weakness that has up to
now prevented their use: they radically over-sharpen edges.

5.1 Selective Di�usion

Local image histograms alone say nothing at all about the spatial
layout of their data samples [Koenderink and Doorn 1999]. They
contain no indication of a gradual spatial shift from one mode to
another. Thus, in order to track a blurred edge accurately, more
information must be extracted from the original images. We pro-
pose extracting this information by supplementing edge-preserving
histogram-based �lters with adiffusionstep. Our basic observation
is that wherever blurring our edge-preserving �lter causes it to get



Figure 9: Left: Original. Middle: Diffused closest-mode �lter. Right: Detailenhaced by 2.5� .

closer to the original, the blurred version is preferable as a base
layer.

Let S be the output of an edge-preserving smoothing �lter. Our
goal is to construct a modi�ed output imageD which is diffused
from Sanywhere that diffusion causes it to agree more closely with
the original input imageI . We will do this iteratively, considering
a variety of different Gaussian blurring kernelsG(s i) in turn. In
our experience, sampling the blurs by ratios of

p
2 works well. Let

D0 = Sbe the original output of the �lter. Then we will construct
Di from Di� 1 by selectively blending betweenDi� 1 and a blurred
versionBi = Di� 1 � G(s i)

An important observation is that we only want to update a pixel
with a blurred version if an entire region around that pixel of size
s i is improved by the blurring. Accordingly we construct error met-
rics to measure the localL2 deviation of the unblurred and blurred
versions from the original image:

Eu(p) = ( Di � I )2 � G(hs i)
Eb(p) = ( Bi � I )2 � G(hs i)

(10)

whereh controls the region size. We have foundh = :2 works well.
Let R(p) = Eb(p)=Eu(p) be the ratio of the error of the blurred
version to the unblurred version. WhereR is larger then one, we
prefer the unblurred version. WhereR is smaller, we blend towards
the blurred one. The exact blending is probably unimportant. The
particular formula we use is

Di =

8
<

:

Bi R< : 5
2

�
R� 1

2

�
(Di� 1 � Bi) + Bi R2 [:5;1)

Di� 1 R� 1
(11)

Figure 7 shows the result for a synthetic blurred step edge with
added noise. The closest-mode �lter (top) turns the soft edges into
very sharp transition. After diffusion, however, it accurately tracks
the input edge while smoothing out the high-frequency noise. The
bilateral �lter (bottom) also sharpens the edge, but not nearly to
the same degree. Here again, the diffusion method �xes the over-
sharpening.

Figure 8 illustrates the diffusion process for a close crop of the Cor-
morant photo shown in Figure 9. Figure 8(a) shows the result of
closest-mode �ltering the original. The edges are very sharp, as is
typical for the closest-mode �lter. In Figure 8(b) the output of the

closest-mode �lter has gone through diffusion, greatly softening the
edges. Figure 8(c) shows what happens if the closest-mode �lter is
used as a base image for contrast enhancement. The difference be-
tween the original and the base has been scaled by 3.0 and added to
the base. The result shows ugly gradient reversal artifacts around
the sharp edges, as described by Farbman et al. [2008]. When a dif-
fused version of the closest-mode �lter is used as the base image,
however, the artifacts go away. The results for the full image are
shown in Figure 9.

In Figure 10, the same contrast enhancement has been applied using
the bilateral �lter to separate base from detail. The worst over-
sharpening artifacts of the bilateral happen under slightly different
circumstances from the closest-mode �lter, so we have chosen a
different photograph to illustrate the problem. Figure 10 shows the
results with the raw bilateral. The halos and gradient reversals are
very evident. After diffusion the artifacts are gone.

There are a variety of algorithms that are not speci�cally histogram-
based and have been proposed for separating a base from a de-
tail image. One notable recent example is the method of Subr et
al. [2009] which processes local extrema into upper and lower en-
velopes that are averaged to create the base layer. Like histogram-
based methods, this approach can over-sharpen edges. Figure 10
shows the method of Subr et at. used for contrast enhancement.
Once again, gradient reversals are evident, particularly at the top of
the dog's silhouette. Selective diffusion of the base image removes
the gradient reversals.

5.2 Multi-layer

When our diffusion method is used with the closest-mode �lter for
a base layer, the signal remaining in the detail layer retains a great
deal of structure. This suggests that the decomposition can be used
recursively. LetB 0 be the base image created by closest-mode �l-
tering an original imageI followed by selective diffusion. Then
D 1 = I � B 1 is the �rst-level detail image. We can apply the same
type of decomposition toD 1 forming a new base imageB 2 and
a detail layerD 2. After n steps, we have a decomposition of the
image into a set of layers plus a residual.

I =

 
n

å
i= 1

B i

!

+ D n (12)



(a) Closest-mode �ltered Cormorant head.

(b) Diffused.

(c) Detail increased by 2.5� causing artifacts.

(d) Detail increased by 2.5� with diffusion.

Figure 8: Close up of closest-mode diffusion.

Instead of changing the spatial neighborhood size as we move
through the layers of this decomposition [Burt and Adelson
1983], [Fattal et al. 2008], [Farbman et al. 2008], we �nd it valu-
able to change the histogram smoothing kernelK, reducing it at
each iteration. This way, the decomposition is in terms of levels
of contrast. The highest contrast features appear at the �rst level,
and lower-contrast features appear at succeeding levels. Figure 11
shows an example. For display, we have increased the contrast of
B 2, B 3 and D 3. The contrast-enhanced image shown in Figure
11(b) is the sumB 1 + 2B 2 + 2B 3 + 3D 3. The separate layers are
shown in Figure 12.

6 Performance

The running time of all the �lters we have described are propor-
tional to the inverse of the histogram smoothing and independent of
the neighborhood sizes. The great majority of the work is in the spa-
tial �ltering, so the best estimate of the running time on any given
hardware is the rate at which it can do hierarchical or recursive
Gaussian convolutions. Detailed pseudo-code for all the algorithms
described here can be found in the accompanying supplemental ma-
terials.

(a) Original

(b) Detail increased by 3� from bilateral.

(c) With diffusion.

(d) Detail increased by 3� from Subr et al. base.

(e) With diffusion.

Figure 10: Selective Diffusion with Bilateral and Subr et al.



(a) Original.

(b) After multi-layer contrast boost.

Figure 11: Multi-layer enhancement of the Moon.

Our implementations are not heavily optimized and achieve the fol-
lowing speeds. The median and morphology �lters run at the rate
of approximately 6 megapixels per second in CUDA on an nVidia
Quadro FX 770M GPU using 15 samples ofsi and doing all the
computations in �oating point. The closest mode computations typ-
ically require more samples because the derivative look-up table is
higher frequency. With 20 samples, we achieve 4 megapixels per
second throughput. For the diffusion described in Section 5.1, our
GPU implementation achieves 1.2 megapixels per second.

Our single-threaded CPU implementation on an Intel 2.83 GHz
Xeon E5440 can compute the median �lter or morphology opera-
tors at the rate of 1.2 megapixels per second with 15 intensity sam-
ples. The closest-mode �lter goes at the rate of .54 megapixels per
second. The dominant-mode �lter is slower because it needs both
integrals and derivatives of the histogram. Our CPU implementa-
tion computes the result at .36 megapixels per second. Selective
diffusion goes at the rate of .67 megapixels per second. We be-
lieve there is a great deal of room to improve these numbers with
multithreading and a more careful implementation.

7 Conclusion

The ability to compute histogram integrals and derivatives accu-
rately and ef�ciently opens up a wide range of possibilities for in-
teresting non-linear image computations. Without doubt, the exam-
ples in this paper just scratch the surface.

We have provided the �rst ef�cient algorithm to compute an
isotropic center-weighted median �lter and have shown that a small
modi�cation enables ef�cient and robust dilation and erosion oper-

(a) Moon base layerB 1.

(b) Moon second layerB 2.

(c) Moon third layerB 3.

(d) Moon residual layerD 3.

Figure 12: Layers in the decomposition of the Moon.

ators. In addition to their other bene�ts, our �lters allow continuous
change in the �lter width. In a traditional square-window median
�lter, the smallest available �lters are 3� 3 and 5� 5. For some



applications, 3� 3 may have too little noise immunity, and 5� 5
may smooth the signal too much. Our �lters provide a continuum
of choices in between.

We have also introduced a new edge-preserving smoothing �lter,
the dominant mode �lter, which allows the robustness of the median
�lter to apply to circular domains like orientations. In addition, it
provides a histogram-based method of smoothing spatial frequen-
cies with larger neighborhood sizes.

Our methods make it possible to compute the closest-mode �lter di-
rectly without the iterative mean-shift computation and allows fast
antialiasing of the result. In addition, we provide a way to over-
come the most important limitation of the closest-mode �lter for
digital photography applications. Our diffusion operator controls
over-sharpening, and can be used with any edge-preserving �lter.
Finally, we note that the separation into base and detail can be re-
peated for different contrast levels, giving a very useful but different
sort of multi-level decomposition than ordinarily used for digital
photography or other image processing purposes.
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