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ABSTRACT
Upscaling techniques are commonly used to create high resolution
images, which are cost-prohibitive or even impossible to produce
otherwise. In recent years, deep learning methods have improved
the detail and sharpness of upscaled images over traditional algo-
rithms. Here we discuss the motivation and challenges of bringing
deep learned super resolution to production at Pixar, where upscal-
ing is useful for reducing render farm costs and delivering high
resolution content.
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1 BACKGROUND & RELATEDWORK
To increase the resolution of images, several techniques are com-
monly used such as nearest-neighbor, bilinear, and bicubic inter-
polation. Total Variational Inpainting has proven fruitful for up-
scaling in the film industry via the Nuke node, TVIScale. In recent
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years, deep convolutional neural networks have demonstrated even
greater reconstruction quality by learning the low-resolution (LR)
to high-resolution (HR) mapping from a high volume of data. With
the introduction of generative adversarial networks (GANs) and
perceptual loss functions in the seminal SRGAN work, upscalers
can now produce images with details and sharpness indistinguish-
able from the ground truth. The aim of our work at Pixar is to put
GANs into production for upscaling.

2 TRAINING DATA
Training a super resolution model requires pairs of high-resolution
and low-resolution frames. Most prior research relies on pre-built
datasets comprised of high-resolution photographs representing
the HR, and LR photos obtained by employing a downsampling
operator (typically bicubic). However, in our testing, pre-trained
super resolution models trained on bicubic downsampled pairs do
not generalize to novel data (i.e. no new details are synthesized)
because real-world degradation operators are much more complex
than bicubic downsampling. At Pixar, we have a renderer to synthe-
size the pairs of images, high quality scenes (with diverse shaders,
geometry, and lighting conditions), and a datacenter fine-tuned to
render at tremendous scale.

To obtain training data, we render 1K-2K pairs of production
images using RenderMan, with shots randomly sampled from Coco,
Incredibles 2, Toy Story 4, Onward, and Soul. As a given shot in-
cludes multiple passes (e.g. solid elements, volumes, and sky) that
are composited at the end of the pipeline, we gather all elements
excluding deep layers. We correct for known resolution-dependent
parameters such as the micropolygon length and the camera ray
differential multiplier. Despite this, we still occasionally notice in-
coherent pairs and exclude them from the training set. We note
that we often cannot re-use previously finaled 2K renders because
shots often change even after finaled due to production churn. We
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also obtain pre-existing 4K renders from the UHD releases and add
any coherent 2K-4K pairs to the dataset (typically a small fraction
of each show is rendered at 4K, and the rest is upscaled from 2K
with TVIScale, as large-scale 4K rendering is cost-prohibitive). We
end up with a dataset containing 3700 pairs.

3 TRAINING PIPELINE
We observe in the literature that the state-of-the-art super res-
olution deep learning models use deep residual networks with
adversarial training [Wang et al. 2018]. Minor differences in the
architecture or loss functions differentiate these works. We begin
with an open source training pipeline and network architecture.
We then create a PyTorch development environment, and prepare
a Linux instance with two 24GB NVIDIA Quadro P6000 GPUs.

4 PRODUCTION FEATURES
Most work in super resolution does not take into account high
dynamic range (HDR) imagery, but doing so is crucial in the film
industry. HDR data is typically represented with floating point in-
tensities exceeding 1, stored in a file format like OpenEXR. As neural
networks perform best with input data normalized between [−1, 1]
or [0, 1], we apply the following range compression function to ac-
commodate HDR data [Bako et al. 2019]:Ty = κloд(1+µy)/loд(1+µ).
We set κ = 0.6 and µ = 5000, providing range up to luminance val-
ues near 300. We then convert our range-compressed dataset into a
high-performance data structure, the lightning memory-mapped
database, accelerating training speeds by about 1/3 over reading
EXR images directly.

We experiment with a novel on-the-fly data augmentation strat-
egy, whereby we introduce random color shifts to the (LR,HR) pairs
to make the network more robust to diverse lighting conditions. We
do so by adding a random color (cr , cд , cb ) ∈ [−0.01, 0.01] patch-
wise to each of the color channels: R′ = R + cr , G ′ = G + cд ,
B′ = B + cb . We find that this improves generalization. We note
that the training pipeline we adopt also performs random flips and
rotations of the (LR,HR) pairs, which further improves robustness.

A key challenge was addressing unwanted color shifts in the
generated image. We introduce an additional loss term that penal-
izes the ℓ1 loss between the downsampled generated image and
the input LR image. With this additional loss term, we have not ob-
served any color shifts in the trained network output. We perform
hyperparameter tuning experiments to maximize the sharpness of
the synthesized image while avoiding excessive noise artifacts that
commonly accompany GANs. Our latest trained network occasion-
ally produces edge artifacts on text (such as end credits) which we
anticipate obtaining more training data with text will help elimi-
nate. The PSNR-only network (no GAN) does not produce edge or
noise artifacts, but blurs some high frequency details such as film
grain or small highlights.

Our network is pretrained with a PSNR-only loss term for 215k
iterations, then trained with GAN, color shift loss, and a percep-
tual (feature) loss term for 340k iterations. We importance sample
192x192 patches based on intensity with minibatch size 20. The
weights for the loss terms are {PSNR, colorShift, feature, GAN}
= {1, 5, 0.1, 0.0005} Our training time is 108 hours for PSNR-only

and 208 hours with GAN (316 hours total training time). Our in-
ference time from 2K to 4K is around 15 seconds on the GPU, and
we emphasize the model can upscale at any input resolution (lim-
ited by GPU/CPU RAM). Later in development we started training
on NVIDIA’s DGX2 supercomputer, which accelerated training
speeds by around 5x and enabled running multiple experiments
concurrently.

5 RESULTS
We have trained and deployed a production-quality super resolu-
tion model that consistently produces high-quality, artifact-free
upscaled images in most cases - especially where TVIScale synthe-
sizes insufficient detail and a 4K render would have been required.
The quality is consistent even on scenes with depth of field, motion
blur and/or volumes, as these phenomena were represented in the
training set. Elements of the Onward UHD disc were upscaled with
our model, and broader usage is planned on Soul. Our work is under
active testing for other use-cases such as promotional work and
theme park deliverables. Further, our latest trained model shows
promise towards a pipeline where we can render at 1K and upscale
to 2K, which would save 50-75% of the studio’s renderfarm footprint
if used for all intermediate renders.

6 FUTUREWORK
Our super resolution model only supports single-frame upscaling
of the RGB color channels, making our work useful only at the end
of the pipeline. For usage in intermediate renders, upscaling alpha
is required, which is non-trivial given that pre-trained discrimi-
nator networks are generally RGB-only. While our current model
produces temporally coherent results without taking in cross-frame
inputs as in [Bako et al. 2017], doing so is still expected to help. We
anticipate accounting for auxiliary feature buffers such as normals
and albedo will further enhance the quality of synthesized images.
Additionally, we expect our training time and inference speed to
improve with network quantization and pruning. Finally, while we
have focused on 2x upscaling so far, 4x upscaling has shown great
promise in prior work and could be helpful for high-resolution
promotional renders and delivering content for 8K TVs recently
entering the market. Towards this end, running a 2x network for
multiple passes has shown potential in our testing.
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