Large Scale Geometric Visibility Culling on Brave
Pixar Technical Memo #13-05

Zachary Repasky™

Patrick Schork  Kevin McNamara

Susan Fong

Pixar Animation Studios

Disney-Pixar’s Brave is visually complex, containing fully clothed
and articulated crowds characters, a forest full of vegetation, ruins
littered with debris, and a full fledged castle. In fact, it is so com-
plex that our previous methods to remove unnecessary geometry are
no longer adequate in keeping the renders feasible. On prior shows,
we used a low quality render to determine an object’s visibility per
shot. However, even a shot-level removal of the geometry limited
the artist’s turnaround times. To address this, we developed a new
two pass algorithm that aggressively culls geometry on a per frame-
level, while maintaining accurate visibility. The approach first culls
non-visible geometry in the shot using low quality renders on sparse
frame intervals containing the full data set. The culled set is then
further refined on a per frame-level using a heuristic based on ob-
ject to camera relationships. In addition to our implementation that
uses a software renderer, we developed a GPU version that allows
immediate geometry removal.

1 Basic Algorithm

Brave’s sets are created as full environments based on location.
Many shots are placed in these locations and therefore each shot
contains an entire environment worth of data. The complexity of the
data demanded aggressive culling. Interactive approaches [Hud-
son et al. 1997] could be used to quickly approximate culling using
large data sets, but these approaches don’t provide accuracy when
using displacements, transparencies, and dynamically loaded pro-
cedural geometry.

Shot Based Visibility Culling Pass: Before the visibility culling
passes, each shot includes the full set. Since off-screen objects
can include illumination dependencies such as reflections and shad-
ows, we use a camera with a field-of-view (FOV) offset greater than
the shot camera, and limit culling to a radius around its location to
minimize potential visual differences. To shrink the data per shot,
renders with basic lighting are run on sparse frame intervals and
employ an atmospheric shader to determine the visible objects per
pixel. Each pixel has the potential to store multiple objects at vary-
ing depths to account for material transparencies. The raw output
for each frame gets processed and written to a cache containing
only visible objects. After the renders complete, each cached frame
is loaded and combined into one data set that contains all shot-level
cullable objects. Next, an exclusion pass runs to avoid removing
objects or groups that the user defines as non-cullable, such as a
shadow casting tree that was missed by the culling camera. To com-
plete the first pass we do a visible object constraint analysis on the
refined set to determine if any objects in the cullable set are needed
for computation at final render-time by the visible objects.

An optional secondary feature culls away geometry that was visi-
ble onscreen, but made little visible contribution to the final image.
This was helpful on large establishing shots where the majority of
the set was in camera. To do this we used image heuristics based on
the raw cache output from the render to determine the percentage of
screen space each object occupies. If a visible object is found with
visible area below a specified threshold, it is marked cullable and
further checked for dependencies as discussed in the above para-
graph. Once the pass is completed, pre and post renders are verified
to ensure acceptable visibility before authoring the results to a file.

*zkr,pschork,sfong @pixar.com

(a) No Culling
Prep: 4h 18m Render: 25h 49m
Render Memory: 9.6G

(b) Shot-Level Culling
Prep: 45m Render: 13h 32m
Render Memory: 5.6G

(c) Frame-Level Frustum Culling
Prep: 32m Render: 13h 30m
Render Memory: 5.6G

(d) Frame-Level GPU Culling
Prep: 15m Render: 9h 45m
Render Memory: 4.8G

Figure 5: This is an example of an actual production shot. The
non-visible items vastly dissapear when using the frame based ap-
proaches. Notice in figure (d), occluded geometry is removed by
forground elements. (©) Disney-Pixar

Frame Based Visibility Culling Pass: Since the geometry set is
so complex, even after the shot-level pass, a pre render process was
developed to cull a frame on the fly, immediately before passing it
to the renderer. Two approaches were developed to achieve this,
an approximate frustum culling based approach, and a more accu-
rate screen space GPU accelerated approach. The camera frustum
centric approach gathered bounding boxes for each model and eval-
uated them against the camera frustum to determine approximate
frame-level visibility.

Since the frustum centric approach only culled what was outside of
the camera, a GPU accelerated method was developed to account
for object occlusion. To achieve this we build an image histogram to
represent the distribution of screen space pixels to scene nodes. Hi-
erarchical sampled scene data is loaded into a custom vertex buffer
object (VBO) renderer. The renderer assigns each node a unique
RGBA value. An image is rendered to an off-screen framebuffer
using GL select mode. After the histogram has been built from
the select image, nodes with pixel counts below a specified thresh-
old can be easily queried for and culled. If transparency needs to
be taken into account, a multi pass approach, where semi opaque
nodes are iteratively hidden, can be used.

As in the shot-level pass, a dependency analysis is executed using
either approach to check for geometry whose locations are needed
to evaluate visible objects at render-time.

The two passes provided a 80-90% render preparation time de-
crease and lowered render memory use by 40% or more, allowing
the film to be feasibly completed. We thank Yasmin Khan, Gordon
Cameron, Ariela Nurko, Tim Babb, Brett Warne, Max Planck, Paul
Kanyuk, Don Schreiter, Danny Nahmias, Arun Rao, and David Yu.

References

HUDSON, T., MANOCHA, D., COHEN, J., LIN, M., HOFF, K., AND ZHANG, H.
1997. Accelerated Occlusion Culling using Shadow Frusta. In Proc. on Comp.
Geometry 1997., 1-10.



