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We show how importance-driven refinement and a wavelet basis can be combined to provide an
efficient solution to the global illumination problem with glossy and diffuse reflections. Impor-
tance is used to focus the computation on the interactions having the greatast impact on the
visible solution. Wavelete are used to provide an efficient representation of radiance, importance,
and the transport operator. We discuss a number of choices that must be made when construct-
ing a finite element algorithm for glossy global illumination. Our algorithm is baaed on the
standard wavelet decomposition of the transport operator and makes use of a four-dimensional
wavelet representation for spatially and angularly varying radiance distributions. We use a final
gathering step ta improve the visual quality of the solution. Features of our implementation
include support for curved surfaces as well as texture-mapped anisotropic emission and reflec-
tion functions.

Categories and Subject Deecriptora: G.1.9 [Numerical Analysis]: Integral Equations-Fred-
hobn equations; 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism-color,
shading, shadowing, and texture; radiosity; raytracing

General Terms: Algorithms
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1. INTRODUCTION

Radiosity algorithms assume that all reflection in a scene is ideally diffise.
This assumption, while making the computation of global illumination more
tractable, ignores important effects such as glossy highlights whose intensity
varies smoothly with direction. Though more expensive, the simulation of

lAlternatively, we could construct wavelets directly on the hemisphere, in a manner similar to
that used by Schr6der and Sweldens [1995] for spherical wavelets, but the use of different basis
functions for spatial and angular variables would significantly complicate our implementation.
Authors’ current addresses: P. H. Christensen, Mental Images GmbH and Co. KG, Fasanen-
straaee 81, D-10623, Berlin, Germany D. H. Salesin (Department of Computer Science and
Engineering), and E. J. Stollnits (Department of Mathematical), University of Washington,
Seattle, WA 98195; T. D. DeRoae, Pixar Animation Studios, 1001 West Cutting Blvd., Richmond,
CA 94804.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of ACM. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permission and/or a fee.
01990 0730-0301/96/0100-0037 $03.50

ACMTransactionson Graphics,Vol. 15, No. 1, Jsnuary 1996, Psges 37-71.



38 . P. H. Christensen et al.

directional reflection is essential for realistic image synthesis. In this paper,
we consider the glossy global illumination problem, whose goal is to find the
equilibrium distribution of light in a scene with surfaces that are glossy
reflectors. The glossy global illumination problem includes radiosity as a
special case.

This article explores a promising approach t.a solving the glossy global
illumination problem: extending the finite element method used in radiosity
algorithms. Designing a finite element algorithm for glossy global illumina-
tion involves a number of choices, as summarized in the following.

The first choice is in the parameterization of the unknown light distribu-
tion. One possibility is to use radiance distributions, which are functions of
surface position and direction [Immel et al. 1986; Sillion et al. 1991]. The
alternative is to use two-point transport intensities, which are functions of
two surface positions [Aupperle and Hanrahan 1993a; Schroder and Hanra-
han 1995]. We describe our motivation for using radiance distributions.

A second area of choice in designing a glossy global illumination algorithm
is that of basis functions. One can use a single fixed resolution or a hierarchy
of multiresolution basis functions. The benefits of a multiresolution represen-
tation are apparent from the radiosity algorithms presented by Hanrahan et
al. [1993] and Oortler et al. [1993]; and also by Schroder et al. [1994]. If we
choose a multiresolution basis for glossy global illumination, there are fur-
ther choices as well: we can use scaling functions or wavelets; we can choose
horn many types of wavelets; we can constnmt “standard” or “nonstandard”
tensor products of basis functions; and we can use the standard or the
nonstandard operator decomposition. We have chosen to represent radiance
in a basis consisting of four-dimensional nonstandard tensor products of Haar
wavelets. These basis functions interact to simulate light transport through a
standard decomposition of the light transport operator.

As a third area of choice, one must decide whether a view-independent
solution is necessary. A view-dependent solution can be computed more
efficiently using importance, as shown by Smits et al. [1992] for radiosity.
Assuming we are interested in accelerating our solution procedure using
importance, we must choose between incident and exitant importance. We
describe a formulation of exitant importance that satisfies the same transport
equation as radiance, and that can be represented and transported identi-
cally.

The last area of choice is in the rendering of the solution. A complete
solution to the global illumination problem should be both physically accurate
and visually pleasing. However, many algorithms produce solutions that are
numerically accurak yet still contain artifacts that are very obvious to the
human eye. We therefore use a final gathering step [Lischinski et al. 1993;
Reichert 1992; Smita 1994] ta improve the visual quality of the solution.

We have implemented an algorithm based on these outlined choices. Other
features of the implementation include support for curved surfaces and
anisotropic bidirectional reflectance distribution fixnctions (BRDFs). Texture
maps can be used to describe the spatial variation of both emission and
reflection.
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A preliminary version of this article was presented at the Fifth Eurograph-
ics Workshop on Rendering [Christensen et al. 1995]. In the current article,
we give motivations for the choices we made. We also present a proof
concerning exitant directional importance. This article extends our previous
algorithm by including an adaptive numerical integration method and a more
efficient final gathering step. New practical contributions include descriptions
of our data structures, as well as tests of convergence and convergence rates.

The remainder of this article is organized as follows: Section 2 motivates
the use of radiance distributions, gives a formal description of radiance and
light transport, and shows how radiance and the light transport equation can
be discretized using a finite element basis. Section 3 introduces a wavelet
basis for radiance distributions. Section 4 describes a type of importance that
is convenient for a finite element representation of radiance. Section 5
presents our importance-driven glossy global illumination algorithm, which
uses a wavelet basis for directional radiance and importance distributions.
Section 6 provides significant details of our implementation. Finally, Section
7 describes our results, and Section 8 contains a conclusion and suggestions
for future work.

2. FINITE ELEMENTS FOR RADIANCE

To determine the exact solution to the glossy global illumination problem for
a particular scene, we would have to find the amount of light leaving all
points in all directions. To date, it has not been possible to derive analytical
solutions for nontrivial scenes with glossy surfaces. Instead, we compute an
approximate solution represented by a weighted sum of a finite number of
basis fi.mctions.

In this section, we first discuss the domain of the basis functions, contrast-
ing two-point transport intensities against radiance distributions. Then we
give a formal description of radiance and discuss how the continuous radi-
ance function and transport operator can be discretized to facilitate represen-
tation and eflicient transport.

2.1 Radiance Distributions Versus Two-Point Transport Intensities

Two fundamentally different representations of light have been used for
glossy global illumination. Immel et al. [1986] and Sillion et al. [1991]
represent the light in a scene as radiance distributions, which are functions
of two spatial and two angular variables on each surface patch. By contrast,
Aupperle and Hanrahan [1993], Pattanaik and Bouatouch [1995], and
Schroder and Hanrahan [1995] use “two-point transport intensities,” which
are functions of four spatial variables; these functions represent the amount
of light traveling from a point on one patch to a point on another.

We choose to represent light as radiance distributions, as did Immel et al.
and Sillion et al., for the following reasons. First, assuming that the scene is
initially split into p patches, the coarsest possible representation of radiance
requires only one basis function per patch when we use radiance distrib-
utions, but it requires p basis functions per patch when we use two-point
transport intensities. Therefore, the initial, very coarse solution of the light
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transport equation requires 0( p2) interactions between radiance Wtribu-
tions on patches, as opposed to 0( p 3, interactions for matching two-point
transport intensities. Second, clustering algorithms for radiosity are very
effective at reducing the number of initial interactions by grouping nearby
patches together [Sillion 1995; Smits et al. 1994], and the only clustering
methods for glossy reflections that we are aware of use radiance distributions
[Christensen et al. 1996; Sillion et al. 1995].

2.2 Radiance

We now give a formal description of radiance and light transport. Let x and y
be points in space, and let o and OXYbe directions ( ~=Y is the direction fkom
x to y, so rIJ=y= – WY%).The radiance L( y, O) is defined as the power ema-
nating from y, per unit solid angle in the direction ~, per unit projected area
perpendicular to that direction. Radiance L is measured in [watt” meter-2 o
steradian - 1].

The equilibrium distribution of radiance satisfies the following light
port equation [Cohen and Wallace 1993]:

L(y, o) = Le(y, W) + /f,(wXY,y, o) G(x, Y)L(x, @.Y)&.
x

tram-

(1)

This equation states that the radiance L from a point y in direction o is the
sum of two terms: emitted radiance Le and radiance reflected fkom all other
pointa x. An infinitesimal area around point x is written ok. The term
f,(~x,, Y, o) is the bidirectional refictance distribution function, or BRDF,
and describes the ratio of reflected radiance (in direction w) to the differen-
tial irradiance (from direction ~XY) that causes it. The BRDF haa units
[steradian - 1]. As a consequence of Helmholtz reciprocity, the BRDF satisfies
fr( – o’, x, O) = f,( - co, x, a’). Finally, the geometric term O(X, y) is given by

cos 9= Cos L9y
G(x, y) = V(x,y)-

IIZ -3412 ‘

where V( x, y) is a risibility term that is 1 or O, depending on whether x and
y are visible to one another, and 0= and OYare the angles between the line
segment w and the respective normals of differential areas at x and y. The
geometric term describes how radiance leaving a differential area at x in the
direction toward y arrives at y. The geometric term has units [steradian o
meter-2 ], and is symmetric in ita arguments: O(X, y) = G( y, x). Some of
these terms are illustrated in Figure 1.

The light transport equation (1) can be rewritten in operator form as

L= Le+YL. (2)

Here the transport operator.7 is defined by

(9L)(Y, U) = ~f,(~xY, y, a)G(x, y)L(x, a@dx,
%

where (.5’2)( y, O) denotes the result of 9 operating on L( x, OJ) b produce a
function whose argument is ( y, w).
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id)
Fig. 1. Light transport from point x to point y,

2.3 Discretization of Radiance

In this section and the following one, we summarize the steps we use to
convert the glossy global illumination problem into a system of linear equa-
tions. These steps amount to an application of the Galerkin method of finite
elements [Zienkiewicz 1989].

Let B(x, O) = [bl(x, O)bz(x, O) .. . ] be a basis for the space of radiance
distributions. The unknown radiance distribution L can be expressed as a
linear combination of the basis functions b,( x, W) with unknown coefficients
4’,:

L(x, ~) = ~Z,bi(~,~).
1=1

This equation can be written in matrix form as L( x, O) = B( x, o)L, where L
is an infinite column matrix whose i th entry if Z,. When no confusion can
arise, we suppress the arguments and simply write

L = BL.

In the original formulation of radiosity, piecewise-constant fimctions were
used as a basis for spatial variation [Gorral et al. 1984]. In subsequent work
on radiosity, Heckbert [1991], Zatz [1993], and Troutman and Max [1993]
used orthogonal polynomials, and Gortler et al. [1993] used wavelets. In the
more general context of radiance, the distribution of light leaving a patch has
both spatial and angular variation. Immel et al. [1986] used piecewise-
constant basis functions for both spatial and angular variation. Later, Sillion
et al. [1991] used spherical harmonics for the angular variation and piece-
wise-constant basis functions for the spatial variation. In Section 3 we
motivate and introduce our choice of basis, a hierarchical wavelet basis for
both spatial and angular variation.

In order to project a radiance distribution onto the basis, we need an inner
product and a dual basis. Let ( flg ) denote the standard inner product,
(fig) = j.~f(y, w)g(y, a) dydu. Let [(FIG)] be the o~~erProduct of F and
G, where each element of the outer product is the inner product of elements
of F and G. For example, if F = [f1f2 ““”] and G = [glgz “.. ] are two row
matrices of functions, then [(FIG)] is the matrix whose ijth entry is (f, Ig, ).
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Likewise, [(Fig )] is the column matrix consisting of elements ( fllg ),
(fzlg) ,”””.

Let the dual basis associated with B be deno~d ~ = [~1( x, CO)%z(x, u)” ““1.
T~e dual basis is characterized by the relation ( bi Ibj ) = ~ij, or in matrix form
[(B IB)] = I, where 1 is the identity ma&x. Orthonorrnal bases are a special
case: they are self-dual, meaning that B = B.

2.4 Discrete Light Transporl

Regardless of the choice of basis functions, we can obtain a system of
equations for the unknown entries of L by substituting L = BL and L, = BLe
into the light transport equation (2), and using linearity of the operator 7 to
yield

BL = BLe + Y(BL) = BLe + (c!7B)L.

By applying the linear operator [(~1” )] to both sides of this equation, we get

[(@BL)] = [(iJIBL,)] + [(~l(SB)L)] .

Using linearity and the duality relation, we arrive at the discrete light
transport equation,

L= Le+TL. (3)

In this infinite system of linear equations, T = [(~lYB)] is an infinite matrix
representing the transport operator % The rs th entry of T is a transport
coe#ici-ent, representing the influence of the coefficient of b, on the coefficient
of b,. It can be written explicitly as

,+* = (w-b.)T

(J=%,! fr(coxy, y, a))G(x, y)b,(x, OXy)dx
x ) (4)

—— / ~r(y, @)@OJxy,y,(L))G(x, y)b,(x, tiXY)dxdycLo,
WY x

where the notation r - s serves to emphasize that T,. ~ represents the
influence of the senders on the receiver r. In this integral, the domain of x is
the spatial support of the sending basis function b,, the domain of y is the
spatial support of the receiving basis function b,, and the domain of o is the
angular support of b, (directions on a hemisphere above y).

3. A WAVELET BASIS FOR RADIANCE

In this section we construct a multiresolution basis for efficiently represent-
ing radiance distributions. Results by Beylkin et al. [1991, 1992], Alpert
[1990], Gortler et al. [1993], Hanrahan et al. [1993], and others indicate that
significant performance gains can be achieved by using a multiresolution
basis.

By contrast, Immel et al. [1986] used a single-resolution representation of
radiance distributions using piecewise-constant basis functions. Sillion et al.
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[19911 used spherical harmonics as basis functions for the angular variation
of radiance. Their implementation also used a single-resolution representa-
tion: each distribution uses a fixed number of spherical harmonics. Unfortu-
nately, there is no obvious way to make a useful multiresolution basis from
spherical harmonics because they have global support (each spherical har-
monic is nonzero over the entire sphere). Therefore it is possible for all
spherical harmonics in one location to interact with all those in another
location. In contrast, the wavelets we consider have compact support: a
sending wavelet b, will only interact with receiving wavelets b, that have
spatial support within the directional support of b,. The compact directional
support of wavelet basis functions guarantees that many of the transport
coefficients will be zero. In short, the transport matrix T is sparse in a
wavelet basis, but dense in a spherical harmonics basis.

In what follows, we first present some background on multiresolution
analysis, and then describe one-dimensional wavelet bases and how they can
be extended to the four-dimensional bases necessary for representing radi-
ance distributions.

3.1 Multiresolution Analysis

A straightforward method for solving the discrete light transport equation (3)
approximately would represent the solution with a fixed, large number of
basis functions, and transport light between all pairs of basis functions to
compute the solution. If n is the number of basis functions, this method
would require 0( n2 ) interactions to compute a solution.

Instead, we use a hierarchical, or multiresolution, method that results in
only 0(n) or 0( n log n) interactions (depending on the specific multiresolu-
tion method chosen). With this method, we first compute a very coarse
solution and then refine the representation and interactions based on that
solution. After the refinement, an improved solution can be computed, new
refinements can be performed, and so on. The multiresolution method ex-
ploits the fact that in some parts of the scene radiance distributions can be
represented with sufficient accuracy using only a few basis fimctions. Fur-
thermore, even where many basis functions are required, each basis function
will interact with just a few others.

A convenient framework for studying multiresolution bases is provided by
multiresolution analysis as formulated by Mallat [1989], which we describe
briefly ”here, A more detailed exposition on the use of multiresolution bases in
graphics is given by Stollnitz et al. [1995, 1996]; see the books by Chui [ 1992]
and Daubechies [1992] for more mathematical treatments.

There are two basic ingredienta for Mallat’s multiresolution analysis: an
infinite chain of nested linear function spaces V 0 c V 1 c V 2 c . . . . and an
inner product ( f Ig ) defined on any pair of functions f, g = VJ. The space V’

contains functions of resolution j, with resolution increasing as j increases.
Scaling functions refer to bases for the spaces VJ.

A function can be approximated by a weighted sum of scaling functions.
Alternatively, we can represent the same approximation as coarse scaling
functions in V 0 along with detail at finer and finer resolution. Detail is
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accounted for by functions in the orthogonal complement spaces WJ defined
by

w~ = {f= v~+ll(~[g) s ovg G V~}.

Wauelets refer to bases for the orthogonal complement spaces W~, and the
spaces WJ are usually called wauelet spaces.

Orthogonal complements are often written as Vj+ 1 = Vj @ Wj because,
intuitively, wavelet space WJ includes the functions that are in VJ+ 1 but
“missing” horn Vj. More formally, any function fJ + 1 ● VJ+ 1 can be written
uniquely as an orthogonal decomposition fJ “+1 = fj + f~ , where fJ = VJ and
f~ ~ WJ. The space VJ can be fully decomposed as

vj=vo~wo~...~wl-l.

Therefore, a multiresolution basis for VJ can be formed by selecting a scaling
function basis for VO together with wavelet bases for the spaces W 0,..., W~- 1.
The scaling functions spanning VO represent coarse variation, and the
wavelets provide detail at increasing resolutions.

3.2 Choice of Wavelet Basis

The simplest multiresolution basis is the IJaar basis in one dimension. The
space Vj cmsists of piecewise-constant functions on [0, 1] with discontinuities
at {O, 1/21, 2/2 J,..., 1). The space VJ is spanned by piecewise-constant scal-
ing fictions +1(u), known as box functions. The wavelet spaces W~ are
spanned by piecewise-constant functions @j(u), known as Hum wavelets. A
few box fimctions and Haar wavelete are shown in Figure 2. The Haar basis
consists of the single coarsest scaling fimction @$(u) along with all the
wavelets @.

There are many alternatives to the Haar basis, each with advantages and
disadvantages. Like the Haar basis, flatlets and muitiwavelets are suited to
the bounded domains over which we define radiance distributions [Gortler et
al. 1993]; B-spline wavelets can also be adapted to a bounded interval [Chui
and Quak 1992; Stollnitz et al. 1995, 1996]. These higher-order basis func-
tions are appealing because of their improved convergence properties, but
they also require more costly numerical integration rules than the Haar basis
functions. Our algorithm uses the Haar basis because of its simplicity and
convenience, but fin=ther research may demonstrate that the benefits of other
wavelet bases outweigh their costs. In fact, Schr6der and Hanrahan [1995]
compared a number of wavelet bases for radiance and, after testing conver-
gence rates and integration expense, found that higher-order wavelete best
suited their implementation.

3.3 A Convenient Domain for Radianoe

Four-dimensional basis fimctions are required to represent radiance distrib-
utions: two variables describe spatial variation across a surface, and two
variables describe angular variation. As is common, we split the surfaces into
patches such that the spatial variables on each patch can be parameterized
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3D surface patch 2D parameter space 

Fig. 3. Spatial projection mapping between 3D surface patch and 2D parameter space. 

on the unit square [0, 112 as illustrated in Figure 3. The domain of the 
radiance distribution on each patch is then [0, 112 x H2, where H 2 is the unit 
hemisphere. 

Next, for convenience, we transform the hemisphere of directions into 
another unit square, which allows us to use tensor products of one-dimen- 
sional basis functions for both angular and spatial variations.’ To achieve 
this transformation, we first use gnomonic projection to map between points 
in H2 and points on a disc with radius r/2. As shown on the left side of 
Figure 4, gnomonic projection maps great circles through the pole of H2 to 
radial lines, and preserves arc length along these curves. We use this map 
because it is easily computed and it introduces less distortion than “flat” 
projection (flat projection maps H2 to a unit disc by simply ignoring the 
height component, resulting in points near the equator being mapped very 
densely near the circumference of the circle). We then follow the gnomonic 
projection by a radial “stretch” of the disc to exactly cover the unit square, as 
shown on the right side of Figure 4. Note that the composition of the 
gnomonic projection and radial stretch is an invertible mapping between H 2 
and the unit square. However, the radial stretch introduces a derivative 
discontinuity along the diagonals of the square. Figure 5 shows a typical 
radiance distribution (resulting from glossy reflection of light from a single 
point) before and after this transformation. After the projection, the distribu- 
tion is still continuous, but has a first-derivative discontinuity along the 
diagonals of the unit square. 

3.4 A Four-Dimensional Wavelet Basis 

We now need to construct basis functions on the four-dimensional hypercube 
[O, 114. There are two commonly used methods, which both employ tensor 
products of univariate basis functions: the so-called “standard” and “non- 
standard” constructions [Beylkin et al. 19911. The standard construction 
forms a basis from all possible tensor products of univariate basis functions. 
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In the nonstandard construction, on the other hand, each tensor product
consists of univariate basis functions in the same space j (which restricts the
supporta of multivariate basis fknctions to be square in the Haar basis). The
standard and nonstandard basis constructions are illustrated in Figure 6 for
the case of two-dimensional basis functions. In an unnormalized basis, fi.mc-
tions are + 1 where plus signs appear in the figure, – 1 where minus signs
appear, and O in gray regions. We choose the nonstandard basis construction
primarily because the required data structures are simpler (see Section 6.4).

Let u = (ul, Uz, us, U4) denote a point in [0, 1]4, and let i = (il, iz,i~, i4)
denote a four-component multi-index of integers. The four-dimensional scal-
ing fkmctions for VJ take the form

@#@@{(U) - @/jUl)@/$U2)4/{U3)+/jU4)-

That is, the scaling functions for resolution j consist of all possible products
of the one-dimensional scaling functions for resolution j. The four-dimen-
sional wavelets sp arming the orthogonal complement WJ are formed by
taking all other products of scaling functions and wavelets for resolution j.
These waveleti consist of 15 types:

We take as our basis B the set of basis functions spanning VO, W 0, W 1,... for
each patch in the scene.

The duals to each of the scaling fhnctions and wavelets follow from the
univaria@ duals because duals of products are products of duals. For exam-

ple, ~ti’(u) = ?~(ul)?iJu2)~~(us)~~(u1).

3.5 Transport Matrix Decomposition

Just as there are two different tensor-product constructions for multidimen-
sional bases, so there are two ways to decompose a matrix: the so-called
“standard” and “nonstandard decompositions [Beylkin et al. 1991]. Gortler
et al. [1993] and Schroder and Hanrahan [1995] use the nonstandard decom-
position of the transport matrix, in which each basis fhnction interacts with
other basis functions at just a single level of the hierarchy. Each iteration of
an algorithm using the nonstandard decomposition is followed by “pushing”
and “pulling” operations [Gortler et al. 1993]. By contrast, we use the
standard decomposition of the transport matrix, in which a basis function
may interact with other basis functions at many different levels of the
hierarchy. The “pushing” and “pulling” procedures are unnecessary in our
algorithm. (However, we do have to update the results of numerical integra-
tion as described in Section 5.4.)

Note that for a smooth operator, theory predicts that a nonstandard
operator decomposition will have 0(n) nonzero entries, whereas a standard
operator decomposition will have 0( n log n), where n is the number of basis
functions [Beylkin et al. 1991]. Our experiments with flatland radiance show
that for a given error tolerance, the standard decomposition can approximate
some transport matrices using as few or fewer interactions than the
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nonstandard decomposition [Christensen 1995]. Thus in practice the nonstan-
dard decomposition is often no more sparse then the standard decomposition.
Similar conclusions were reached by Schroder et al. [1994] for radiosity, and
by Jaffard and Lauren@ [1992] for more general operators.

4. IMPORTANCE FOR GLOSSY SCENES

In order to maintain a tractably small problem for complex scenes, we use
importance-driven refinement to compute a view-dependent solution. In this
section, we describe a type of importance that satisfies the same equilibrium
equation as radiance. Section 5 discusses how radiance and importance can
be used together to compute a solution.

Smita et al. [1992] showed that diffuse importance gives a substantial
speed-up for a complex diffise scene. For glossy reflections, the potential gain
is even greater, due to the directionality of radiance and importance: a
directional interaction must be refined only if the radiance in that direction is
suffkiently large, inaccurate, and important.

4.1 Incident and Exitant Directional Importance

Smits et al. [1992] define the “importance” at a point to be the fraction of
light leaving that point that reaches the eye. Here we show that a slightly
different definition is advantageous for the finite element solution of glossy
global illumination, because it allows importance to be represented in the
same manner as radiance, and makes importance satisfj the same transport
equation as light.

The form of diffise importance defined by Smite et al. for radiosity is an
incident quantity similar to irradiance. The most direct generalization of this
quantity to radiance is an incident type of directional importance. Incident
directional importance can be defined as the fraction of radiance that reaches
the eye. This type of importance was used by Pattanaik and Mudur [ 1993] for
a Monte Carlo solution method and Aupperle et al. [ 1993b] for a finite
element solution method. Incident directional importance is represented and
transported like differential irradiance. By contrast, using an exitant formu-
lation for importance allows radiance and importance to be transported
identically, as we show in the next section.

4.2 Importance Transport

Christensen et al. [1993] showed that importance can be considered an
exitant quantity like radiance and can be transported like light, thus simpli-
&ing a finite element representation. That presentation was based on ad-
joints. Here we give a simpler and more intuitive (but equivalent) explana-
tion. With foresight, we define importance as follows:

Definition. Importance I’(y, OY=) is the fraction of G( x, y)L( x, toXY)that
reaches the eye.
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Light contributes directly to the image if it reaches the eye from one of the
directions in the viewing pyramid. We can weight the light by a distribution
of emitted importance r~ at the eye:

Definition.

(
1, if y is on the eye patch and u is within the

re(y, w) = viewing pyramid

O, elsewhere.

In order to show that importance as previously defined satisfies the same
transport equation as radiance, we will need the following lemma.

LEMMA. (.9” r,)( y, O+.=) is the fraction of G( x, y)L( x, tiXY) that reaches the
eye through exactly n bounces.

~OOF. We use induction over the number of bounces taken by the radi-
ance before it reaches the eye.

Z3asis: I’e(y, OYX) is the fraction of Gt z, y)L( x, OX~) that reaches the eye
directly the fraction is zero if y is not on the eye patch or OY= is not within
the viewing pyramid.

Inductive step: By the inductive hypothesis, (.7”- Ir, )(z, ~Z~) is the fraction
of the quantity G( y, z )L( y, OYZ) that reaches the eye through exactly n – 1
bounces. A single bounce of radiance L( x, UXY)results in a radiance distribu-
tion /_,(ti=Y, y, “ )G( x, Y)L(x, aJ=Y) at y; see the left illustration in Figure 7.

The amount of L( z, ~XY) that reaches the eye through exactly n bounces is
the integral over all possible paths involving (n – 1) + 1 bounces:

J[(Y’-’re)(z, OJ,y)]G(y, Z)[fr(Oxy, y, (I)YZ)G(X, y)L(x, ox,)] dz
z

. [J 1
(7’-11’, )(z, ~zY)G(y, z) f,(~XY, y,aYZ)dz G(X, Y) L(X, OJXY)

z

[J 1
= f,(uz,, y, aJYx)G(z, y)(9’’”’1’e)(z, ~ZY)dz G(x, Y)L(x, Ox, )

z

= (JZ5’’-1r,)(y, CiJy=)G(X, y)L(z, OX, )

= (=r,)(y, OJYX)G(X,Y)L(X, o.,).

Arriving at the last expression (illustrated in the right side of Figure 7)
proves the lemma. u

COROLLARY. The sum ~. 8 r, satisfies our definition of importance I’.

~ORRM. Importance r satisfl.es an equilibrium equation with the same
transport operator as radiunce, namely,

r=r, +fm.

ACM Transactionson Graphica,Vol. 15, No. 1,January 1996.
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ROOF. Assuming that reflections are energy dissipating, the norm of Y is
less than one and therefore .Y – 7 is invertible (here Y is the identity
operator). The importance can then be rewritten using the Neumann series
as r = E;. # r, = (Y – 9)- 1r.. Operating on both sides with > – S gives
(~ – Y)r = I’,; the theorem follows directly. ❑

Exitant directional importance satisfies the same transport equation as
radiance, therefore it can be discretized like radiance and transported using
the same transport coefficients. The discrete importance transport equation is

r=re+frr.

The only difference from radiance is that radiance is emitted by light sources,
and importance is emitted by the eye.

5. ALGORITHM

Our solution method for radiance transport makes use of a wavelet represen-
tation and importance-driven refinement. The algorithm computes a view-
dependent solution to the radiance equation; that is, the solution is refined
most in the areas that contribute most to the image. In some respects, our
algorithm is similar to the approach described by Gortler et al. [1993] for
wavelet radiosity. However, there are a number of areas aside from the
higher dimensionality of radiance in which our algorithm differs significantly
from this previous work.

In this section, we first present the main algorithm and then discuss
transport coefficients: how they are computed, which ones are computed as
refinement proceeds, and how their accuracy can be increased adaptively at
little cost. Last, we describe our use of a final gathering step to generate
smooth solutions with accurate shadows and textures.

5.1 Main Algorithm

The primary task is to solve two systems of linear equations, one for radiance
and one for importance:

L= L,+TL and r= I’e+Tr’.

We first compute a small number of entries of the matrix T and solve the
equations, then compute more entries of T and solve again, and so on. The
high dimensionality of the global illumination problem makes the entries of T
very expensive to compute, so we strive to compute as few of these entries as
possible while generating a good approximation to the solution. Put briefly,
only entries of T that are estimated to be large—and that connect large and
important basis function coefllcients-are computed.

The main part of the algorithm al@mate~ between computing approximate
radiance and importance solutions L and r and improving the finite repre-
sentation of the transport operator T. Quantities with a tilde are approxi-
mate, both because they are computed numerically and because they are
truncated versions of infinite matrices. Initially, we project L, and r, into
space V 0, the space spanned by the coarsest-level scaling functions, to give
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L, and ~,. We also compute the entries of T corresponding to interactions of
~caling fhnctions in V 0 with one another (as described in Section 5.2), giving
T. The algorithm in pseudocode is as follows:

proced-y.re GlossyGlobalIllumination (T, L,, ~,):
L-g,
r+r,

repqat
L + &ll”@, L, L=)
~ + Solve(T2 r= rc)
T e Refiw(T, L, r)

until visual convergence of L
end procedure.

The radiance and importance systems are solved simultaneously, with the
solution in one system determining the refinements in the other system.
Importance is used to refine the radiance solution only in areas that are
significant to the final image. Likewise, radiance is used to refine the
importance solution only in bright parts of the scene. The main loop iterates
until visual convergence is achieved, that is, until fbrther refinement does
not significantly change the computed image. We use Gauss-Seidel iteration
~Gol~b anq -Van Lo-a ~989] -t? solve the approximate transport equations
L = L, + TL and r = I’, + TI’. Refinement is determined by an “oracle,”
described in Section 5.3.

5.2 Computing Transport Coefficients

The preceding algorithm requires computation of transport coefficients be-
tween basis functions. Each transport coefficient is defined in Equation (4) as
a six-dimensional integral, which we approximate using numerical integra-
tion. Four-dimensional numerical integration formulas for wavelet radiosity
are discussed by Gortler et al. [1993].

The transport coefficients T,. ~ are computed as inner products For exam-
ple, the influence of wavelet I@#@${(u~) on wavelet I#+#@[(ur) is T,+, =
(w?: 17@P@Pi). Although radiance varies with position x and direction O,
the domain of our tensor-product basis functions is the four-dimensional
hypercube [0, 1]4. For convenience, we make the spatial and angular transfor-
mations implicit, and write the basis functions as functions of points and
directions: let the sending position x correspond to the two parameters UI
and Uz, and let the direction Ox~ correspond to parameters ua and U4 (and
similarly for the parameters y and w of the receiving basis fimction). Then
the inner product in our example takes the form

. J[JW{(Y> ~) f,(%y>
1

y, a)) da G(x> y)l#@//#@, aqy) dydx.
vu

(5)
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Note that only the BRDF and the receiving basis function depend on a. Our
numerical integration routine evaluates these two fimctions in its innermost
loop, and the remaining functions are evaluated only as the positional
variables change.

We approximate integrals such as the one in Equation (5) using slightly
jittered uniform sampling of the integrand, One area for future research in
glossy global illumination is the exploration of more accurate integration
rules such as Gauss-Legendre or Gauss-Kronrod quadrature [Gortler et al.
1993; Piessens et al. 1983; Zatz 1993].

5.3 Refinement

In the algorithm, the approximate tra~sport matrix T is progressively re-
fined. Here we describe how entries of T are selected for computation.

In many applications of wavelets in numerical analysis [Beylkin et al.
1991], the goal is to obtain a sparse representation of a given matrix, thereby
making repeated matrix-vector multiplications much faster. In such applica-
tions, the wavelet decomposition of the matrix is done once and for all as a
preprocess, so the cost of computing all the matrix elements is amortized by
many fast matrix multiplications. In wavelet-based approaches to global
illumination, on the other hand, the cost of explicitly constructing an entire
transport matrix far outweighs the expense of any matrix-vector multiplica-
tions that follow. Therefore, it is essential to restrict the number of computed
transport coefficients.

The goal of ~he refinement oracle is to determine which of the entries of T
missing from T should be computed to reduce the visible error in the current
radiance solution. The two most important sources of error are:

—truncation error due to significant entries missing from T, and

—integration error in computing the entries of T.

In this section we describe how our oracle reduces truncation error. Section
5.4 outlines a method for simultaneously reducing integration errors.

The refinement oracle uses concepts from the brightness refinement crite-
rion for hierarchical radiosity [Hanrahan et al. 1993], the oracle used by
Gortler et al. for wavelet radiosity [1993], and the importance-based refine-
ment strategy used by Smits et al. [1992]. The idea is to estimate the
influence on the visible image that would result if a new transport coefficient
were to be included in T. If this quantity falls below some threshold, the
expensive computation of the transport coefficient can be avoided without
resulting in significant error in the solution.

Consider two basis functions b= and b, with no transport coefficient
between th~m yet, as depicted in Figure 8. We compute a new transport
coefficient T, ~, if a sufficiently large value results from the product of

(1) radiance: the magnitude of the sending basis function coefficient ~;

(2) ejtimated transport coefficient: the estimated new transport coefficient
T,-, between the basis functions; and
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~ /~/,

Fig. 8. Sanding and receiving baais
functions.

\q
b,

(3) importance: the integral of G~ over all patches whose importance reaches
the receiving basis function.

The product of the first two quantities estimates the amount of light trans-
ported between the two basis functions. Multiplying by the importance
shining onto the receiving basis function gives the contribution of the trans-
ported light to the final image. The sending basis function coefficient is
known from the interim solution. The integral of importance arriving at the
receiving basis function can be computed horn the interim solution as well.
Our estimate of the transport coefficient uses kernel variation, as we explain
shortly.

There are ifinitely many new transport coefficients to be considered for
computation. We need a scheme for considering only some of them in each
iteration, while making it possible ta eventually consider all. To do this, we
associate with each wavelet # a unique “parent” wavelet @ that overlaps #
and is in a space one level coarser. We define the parent of a wavelet in W 0 to
be the scaling fhnction in V 0 sharing the same support. (For example, in the
simple case of the one-dimensional Haar wavelet basis, the parent of ~j is

#~~~1, ~d the parent of @ is d:.) In O.U implemen~tion, we then consider
computing a new transport coefficient T,. ~ only if there is already a trans-
port coefficient f,+ ~t or F,, +,, where r’ is the parent of r and s’ is the
parent ofs.

As an estimate for the transport coefficient ~,., under consideration, we
use the variation (maximum minus minimum) of the s~mples of the kernel
that were obtained when computing either T, ~ ~, or T,, ~ ~. This variation
estimates the kernel’s deviation from a constant function; the oracle de-
scribed by Gortler et al. [1993] used a similar measure of deviation from an
interpolating polynomial. (One might improve the estimate of ~,. ~ by using
a global visibility algorithm [Teller and Hanrahan 1993] instead of computing
an approximate visibility using sampling, although we have not explored this
possibility ourselves.)

Because the kernel variation is the same for all 15 transport coefficients
from a given basis function to the 15 wavelets sharing the same support, and
because the radiance and importance reaching these basis fbnctions are also
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the same, their estimated contribution to the image will be identical. We
therefore compute all 15 transport coefficients at once. This approach allows
us to avoid reevaluating the kernel for each of these transport coefficients. (At
the same time, we also compute the transport coefficient between the two
scaling functions that share support with the sending and receiving basis
functions. This transport coefficient is not used for light transports, but for
adaptive improvements of other transport coefficients, as described in Section
5.4.)

For each call to the refinement procedure, the maximum product of radi-
ance, kernel variation, and importance for all potential new transport coeffi-
cients is computed. Then all new transport coefficients with a product larger
than some fkaction (for example, 10% in our implementation) of the maxi-
mum product are calculated and incorporated into T. This method requires
two passes through all potential new transport coefficients, but it allows
refinement to proceed automatically without any user-specified tolerances.

5.4 Adaptive Numerical Integration

If we always use a numerical integration rule of high accuracy to compute
transport coefllcients, time is wasted evaluating the kernel for many interac-
tions that have little effect on the final image. On the other hand, the
significant transport coefficients must be computed to high precision; other-
wise, the solution will not converge to the correct value. It is therefore
necessary to use an adaptive numerical integration technique that reduces
error in transport coefficients, particularly those transport coefficients that
are refined by the oracle. We have implemented such an adaptive integration
as part of the refinement procedure.

At the time a transport coefficient is computed, a numerical integration
method is used as described in Section 5.2. Later, if we compute transport
coefficients that link narrower wavelets sharing supports with the original
basis functions, the kernel is sampled more densely. These samples are
reused to compute the coarse transport coefficient more accurately.

As we mentioned in the previous section, the transport coefficient between
two scaling functions is computed at the same time as the transport coeffi-
cients between other basis functions with the same support (at practically no
extra cost, as the necessary samples of the kernel have already been ob-
tained). Because wavelets in a certain space can be expressed as a linear
combination of scaling functions in higher spaces, coarse-level transport
coefficients between waveleta can be recomputed by taking linear combina-
tions of the transport coefficients between finer-level scaling functions. In this
way, transport coefficients are adaptively recomputed wherever the kernel is
sampled densely.

5.5 Final Gather

In order to render the solution, we can either evaluate the finite element
representation of the solution directly, or we can perform an extra step that
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improves its visual quality. Following the ideas that Reichert [1992], Lischin-
ski et al. [1993], and Smits [1994] used for radiosity, we have implemented a
firml radiance gathering step. For each pixel in the final image, we perform a
final gathering of light to the surface point y that corresponds to the
midpoint of the pixel.

We have tried three different final gathering methods. A complete final
gather method gathers light from all basis functions in the solution. A faster
final gather method gathers light from each of the basis functions that has a
transport coefficient linking it to a basis function with support at the point y
and in the direction of the eye e. This faster method only excludes light
transports that were not considered to be significant in the solution process.
The third alternative achieves still greater speed by gathering light only from
each basis function that has a transport coefficient linking it to the single
scaling function on the patch where point y lies. We have tried all three
methods and found that the fastest final gather method causes no visible
degradation in the final image; exploring the tradeoffs between the speed and
accuracy of these (and other) final gather approaches remains an open area
for research.

For each basis function from which we want to do a final gather, we
evaluate a simplified version of the integral in Equation (5). For example, the
final gather from the wavelet @$@#(x, O) requires evaluating

Because the receiving position y is freed and the radiance is reflected
towards the eye e, the integration is only over sending positions x.

Formally, this final gather corresponds to changing to a piecewise-constant
basis, where the support of each basis function is the projection of a pixel onto
a surface in the scene. Intuitively, this basis is tailored to be visually
pleasing. The final gather smooths the discontinuities in the wavelet repre-
sentation, and makes highlights, textures, and shadows crisper. The improve-
ment brought about by the final gather can be seen by comparing Figure 16,
parts (e) and (f).

Another way of thinking about the final gathering step is in the context of
distribution raytracing [Cook et al. 1964]. When a ray cast horn the eye
intersects a surface in the scene, a group of reflected rays are traced from the
intersection point to points on other surfaces in the scene. A constant number
of rays are cast to the support of each selected basis function in the radiance
solution. In this way, the directions of the rays are guided by the solution.
Thus the most refined areas of the radiance solution are sampled the most by
the distribution of reflected rays. Note that we avoid the costly “explosion” in
the number of rays associated with the recursive bounces used in distribution
raytracing because we only follow a single bounce. Also, once a finite element
radiance solution has been computed, the final gather requires no additional
memory.
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6. IMPLEMENTATION

In this section, we describe specific features of our implementation, as well as
the data structures used to represent basis-function and transport coeffi-
cients.

6.1 Surface Geometry

Curved objects are more compactly represented by splines than quadrilater-
als. Our algorithm naturally applies to spline surfaces, as long as they are
split into convex patches, so that no patch can interact with itself. With this
restriction, we can use any surface representation for which it is possible to
determine the intersection of a ray with a surface and compute a position,
surface normal, and differential area associated with a given parametric
point ( UI, u ~). Our implementation includes the Bt5zier surfaces and quadri-
laterals.

6.2 Reflection Models and Texture Maps

We use the Ward isotropic and anisotropic reflection models [Ward 1992] as
they are inexpensive to evaluate and consistent with physical observations.
Ward’s models account for angular variations in reflectance; we also allow
reflectance to vary spatially to simulate the texture of materials. Figure 16
demonstrates both texture (on the floor, walls, and pedestal) and an
anisotropic reflectance function (on the teapot).

In the course of numerically approximating a transport coefficient, the
geometric term and the BRDF are sampled at a number of quadrature points.
The reflectance for each quadrature point is determined by a look-up in a
texture map, multiplied by the angular variation given by Ward’s model.
Multiresolution textures could be incorporated in our method by using a
pyramid of texture averages instead of sampling. This approach would reduce
the errors caused by point-sampling the texture. Gershbein et al. [1994]
present a more rigorous mathematical approach for using textures in radios-
ity, which employs wavelet decompositions of the textures themselves.

6.3 Light Sources

By storing the wavelet decomposition of an image as the initial coefficients on
a patch, we can model a light source that emits a spatially varying radiance
(such as a television screen). In general, not all coefficients of the emitting
image will interact with other parts of the scene; instead, the refinement
procedure determines which coefficients affect the visible solution. This tech-
nique allows a complex environment to be displayed using simple geometry.

A simple approach to angular variation is to make emission an explicit
function of direction. For example, we model “spotlights” using a Phong-like
function, in which emission depends on some power of the cosine of the angle
between the emission direction and the surface normal of the patch. The
spotlights appear dark from most directions because of the very narrow
distribution of light they emit.
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We demonstrate the use of spotlights and a spatially varying emitter (the
outdoor environment seen through the window) in Figure 16. More complex
effects such as a slide projector or sunlight through a stained-glass window
could be modeled by combining spatial and angular variations in an emitter.

6.4 Data Structure for Basis Function Coefficients

As in previou~ h~er~rch@d radi~sity algorithms [Cohen and Wallace 1993],
the matrices T, L, L,, J, ~nd ~, are n~ver formed explicitly. In our imple-
mentation, entries of ~, L,, r, and r. are associated with the surface
patches, and entries of T are stored as “links” between radiance (and impor-
tance) coefficients. The coefficients and links are allocated dynamically as the
solution is refined.

A hierarchy of basis fimction coefficients is associated with each patch. We
have implemented the hierarchy as a tree in which each node contains all
coefficients #’ with the same indices (space J“ and translation i ~, ..., i~).
Initially, each patch has a single root node associated with it, containing a
scaling fimction coefficient in space V 0 for each of six “color bands”: red,
green, and blue radiance and red, green, and blue importance. Only root
nodes store these scaling function coefficients, but all nodes contain storage
for 15 wavelet coefficient for each color band, and 16 pointers to child nodes
that contain the coefficients in the next (more refined) space. The pointers
between nodes are illustrated in Figure 9.

6.5 Data Structure for Transport Coefficients

The transport coefficients that describe the interaction between radiance (or
importance) basis finctions on different patches are stored in links, As
described in Section 5.3, the transport coefficients fkom a sending basis
function to all 15 wavelets and the single scaling function sharing support are
computed at the same time. In our implementation, all 16 of these transport
coefficients are stored in the same link. (Alternatively, each transport coeffi-
cient could be stored in its own link, but the extra storage overhead would
make this approach infeasible as scenes became complex. Aa another alterna-
tive, the transport coefficients between all 152 possible combinations of
wavelets on sender and receiver could be stored in a single link. However,
this method would also waste memory by creating links with room for many
transport coefficients that might never be computed if, for example, a sending
coefficient was too small.)

Thus each link contains a pointer to the node from which it is transporting
radiance (or importance); information about what type of basis function it is
transporting from; 15 entries of T for each of the three color bands; the
sample variation encountered while computing those transport coefficients
(used for refinement as described in Section 5.3); a scaling-function-to-
scaling-fimction transport coefficient for each of the three color bands (used
for adaptive improvement of transport coefficients as described in Section
5.4); and a pointer to the next link with the same receiving basis functions.
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Fig. 9. Tree of basis function coefficients on a patch (simplified to two dimensions, where each
node has only four children).

Fig. 10. Example of links between basis functions (in two dimensions).

Note that there can be several links between the same pair of nodes, each
connecting different sending basis functions with the same support, as illus-
trated in Figure 10. All links pointing to a given node are organized in a
dynamic list. Initially, links are set up between root nodes for all pairs of
patches that are mutually visible.

We consider creating new links between basis functions b, and b, only if
there is already a link from b. to the parent of b,, or ffom the parent of b, to
b,; see Figure 11. This restriction reduces the number of new links that have
to be considered for refinement at one time, while still allowing all possible
links to be created eventually. The existing link contains information about
the kernel variation encountered while computing its transport coefficients;
this variation is used as an estimate of the (yet uncomput.ed) transport
coefficient to or fi-om a child basis function. The one exception to this scheme
is root nodes, because they have no parent. Here the link between the two
scaling functions is used for information about kernel variation for the
wavelets in W 0. Note that because a new link can be created in two different
ways (by refining a link at the sending end or by refining a different link at
the receiving end), we need to check for a link’s existence to avoid creating a
duplicate.

Links are never destroyed in our algorithm. By contrast, the approach
described by Gortler et al. [1993] removes a link at one level of the hierarchy
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Fig. 12. Simple scene geometry seen from the side and from above.

and replaces it with multiple links at a finer level of detail (because they use
a scaling function representation at all levels of detail).

The adaptive numerical integration described in Section 5.4 takes place
after new links have been set up, as a bottom-up traversal of all links. During
this traversal, we compute a new transport coefficient for a given link by
taking a linear combination of the scaling-function-to-scaling-fimction trans-
port coefficients on all links between child nodes. The particular linear
combination that is used depends on the sending and receiving basis func-
tions involved.

7. RESULTS

Here we present results from tests of our algorithm on two scenes, one very
simple and one more complex. For the simple scene, a reference solution is
easily obtained, so convergence and convergence rates can be tested. For the
more complex scene, computing a reference solution is infeasible. However,
we have included the scene to provide an example that is nontrivial.

7.1 Convergence Tests

To test convergence and convergence rates, we used a simple scene consisting
of two tiny patches and a large patch. The geometry is shown in Figure 12.
Patch 1 is emitting radiance L,, and this light is reflected by patch 2
according to Ward’s glossy reflection model [1992] with a = 0.2. This glossy
reflection results in a directional radiance distribution on patch 2. The light
from patch 2 is received at patch 3, which is a diffuse reflector.

The angular variation of the radiance distribution on patch 2 is shown in
the rightmost image in Figure 14 after being transformed from the hemi-
sphere of directions to the unit square as described in Section 3.3. This
“reference solution” was computed as

L2(y, OJ)=f,(OJXY, y, O) G(X, y) L,(X, COxY)A1,

where x is the midpoint of patch 1, y is the midpoint of patch 2, and A ~ is
the area of patch 1, for directions OJon the hemisphere. Converging finite
element approximations of this angular variation are shown in Figure 14,
along with difference images illustrating the error in the approximations
relative to the reference image. The graph in Figure 13(a) quantifies the
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convergence of the distribution of radiance on patch 2. The CPU times were
measured on a DEC 3000/400 “Alpha” computer.

The spatial variation of the radiance on patch 3, the large diffuse receiver,
is shown in the rightmost image of Figure 15. This reference solution was
computed as

L:l(z, o)= fr((o,,. z,(ti)G( v,z)L2(, v,[o,, )A2,

for points z on patch 3, where AJ is the area of patch 2. Here the direction w
is unimportant as patch 3 is a purely diffuse reflector, The top row of images
shows the convergence of the wavelet representation. The first four images
are identical, because all refinements take place between patches 1 and 2
(because larger radiance is involved in that transport, and importance is not
taken into account). From the fifth image on, the interactions to patch 3 are
also refined. Difference images are shown directly below each wavelet solu-
tion.

The third and fourth rows of Figure 15 show converging solutions and the
corresponding difference images when the receiving patch emits importance.
In this case, the interactions are refined more at the receiver than in the
preceding test.

The fifth and sixth rows of Figure 15 show the solution with a final
gathering step, but without importance. Here the rendering takes advantage
of the refinements of the interactions to patch 2 even before the interactions
to patch 3 are refined. Note that the final gather results in images that are
still piecewise constant because there is only one radiance distribution visible

to patch 3, namely, the piecewise-constant distribution of patch 2. The graph
in Figure 13(h) illustrates the convergence of the radiance distribution on
patch 3, with and without importance, and also with the final gathering step.

As these results show, a final gather improves the appearance of the
solution, and gives a better image in the same amount of CPU time. However.
the final gather is useful only for display, as the result is an image rather
than a set of basis functions that could be used for further refinement and
solution. Future research could examine how far the solution would have to
proceed before the final gather is performed, if a given accuracy in the
solution is required.

7.2 A More Complex Scene

As a more complex test scene, we used a maze of hallways with a glossy
Bezier-patch teapot in the center (see Figure 16). The scene consists of 152
patches, including 28 Bezier patches, and has 12,603 mutually visible pairs of
patches. The teapot’s reflectance function uses Ward’s reflection model [Ward
1992], and is anisotropic with specularities (~,, = 0.2 and n, = 0.5, specular
reflectivity p, = (0.1, 0.1, 0.1) and diffuse reflectivity [~,,= (0.2, 0.15, O). The
illumination consists of 24 “spotlights, ” patches that emit directional radi-
ance. There is a patch outside the window that emits light according to a
scanned image of an outdoor scene, giving the appearance of a full environ-
ment beyond the window. The radiance emitted by the lights and reflected in
the scene is shown in Fi~ure 16(a). The objective is to generate an image of



Fig. 14. (a) Refinement  of radiance  distribution on patch  2, displayed  as a function  of angular
parameters  for a fixed  position.  The rightmost  image  is the reference  solution.  (bJ Difference
between  each  image  and the reference  image  (blue  and red  indicate  positive  and negative  values,
respectively).

Fig. 15. (a) Refinement  of radiance  distribution  on patch 3. (b) Difference  between  each image
and the reference  image.  Cc) Solutions  when  patch  3 emits  importance.  Cd) Difference  images  with
importance.  (e) Solutions with  final  gather  (without importance).  (fl Difference  images  with  final
gather.  The three  rightmost images  all show  the reference  solution  for patch  3.

this environment as seen from the eye, a small  patch  in the hallway in front
of the teapot.  All back faces, where  no radiance  is computed,  are rendered  as
gray.

Importance  is emitted from the eye (just as a spotlight  emits  light) and
reflected  to the important parts  of the scene,  as shown  in Figure  16(b).  This
figure  demonstrates  the small  fraction  of the overall  model  that  significantly
influences  the visible  scene. Figure  16(c)  is a gray-scale  encoding  of the
number of links between  the basis  functions on each surface  patch. This
“refinement image” verifies  that most  work is performed  in areas that  are
ACM TransacLions  on Graphics. Vol.  IS. No. 1. January  1996



Global  Illumination  of Glossy Environments 67

(a) (4

W



68 . P. H. Christensen et al.

bright and important. Note that we could get arbitrarily large speed-ups,
compared to a solution obtained without using importance, by choosing a
sui%ciently complex scene in which many parts do not contribute significantly
to the final image.

The program begins by creating 12,603 links between scaling functions,
and then solves for the equilibrium distribution. This initial solution can be
seen in Figure 16(d). After six iterations of refinement and solution, there are
126 scaling functions in VO, 1,518 wavelets in W 0, 18,852 wavelets in W 1,
160,248 wavelets in W 2, 165,495 wavelets in W 3, and approximately 1.73
million links. This solution can be seen in Figure 16(e). In some refinements,
new links are created only within existing spaces, so the solution space
remains in V 4 after six iterations. Running times on a DEC 3000/400
“Alpha” machine were approximately 5 minutes to compute the initial solu-
tion, then 100 minutes to iterate the main algorithm and refine as far as V d

in important parts of the scene. Once we obtain this solution, we need to
create an image of it, either by evaluating the solution directly or by using a
final gather step. Although it might be possible to take advantage of graphics
hardware to render the solution directly, we use a ray-casting technique in
order to preserve the quality of curved surfaces and correctly account for the
directionality of radiance. The 600 X 600 image shown in Figure 16(e) was
rendered in 15 minutes. The other alternative is to use a final gathering step
for the rendering, which takes approximately two hours, making it compara-
ble to the solution process itself. The result is shown in Figure 16(f). Note the
significant color bleeding from the brick walls to the dim ceiling, as well as
the glossy highlights on the teapot.

8, CONCLUSION

We have presented an efficient method for simulating light transport in an
environment with diffuse and glossy reflections. The efficiency comes from
using a wavelet representation of radiance along with importance-driven
refinement for a view-dependent solution.

We use a finite element representation of the four-dimensional radiance
distributions associated with surfaces in a scene, as this representation has a
lower initial cost than a representation using two-point transport intensities.
For the finite elements, we used the Haar basis, the simplest wavelet basis.
Wavelets adapt to the solution, so in areas with little spatial or angular
variation a coarse solution is computed, and in areas with greater detail a
more refined solution is found.

In contrast to previous algorithms for wavelet radiosity, we use a standard
decomposition of the operator, and because we use a wavelet representation
rather than scaling functions at all levels, our algorithm does not require
“pushing” and “pulling” procedures. However, our algorithm requires that we
update numerical integrations, and we described an adaptive integration
method that reuses kernel samples to improve existing transport coefficients.

We use importance to focus the computations where their impact on the
final image is highest. We showed that importance has an intuitive meaning,
and can be considered an exitant quantity like radiance.
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Light transport is formulated as a multidimensional Fredholm integral
equation of the second kind, therefore our approach may benefit other fields
in which such equations arise-numerical analysis, finite element analysis,
computational heat transfer, and particle transport simulation, for example.

There are many possible extensions of the present algorithm. Surfaces that
transmit light in addition to reflecting it could be incorporated into our
algorithm by using wavelet basis functions defined for the entire sphere of
directions. Other wavelet bases, particularly those with more vanishing
moments, could be tried. Wavelet bases, like all finite element bases, are not
suited to the representation of ideal specular reflections; instead, a raytracing
step for ideal specular reflection could be incorporated in the same fashion as
in Sillion et al. [1991]. Finally, in a forthcoming article [Christensen et al.
1996], we describe how a clustering algorithm can be used to reduce the
complexity of the initial linking phase of the simulation by grouping together
nearby patches and representing each group’s radiance with a single distribu-
tion. Such a method, combined with the work described in this article, can be
used to compute glossy global illumination solutions for extremely complex
scenes.
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