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generalize triangular and tensor product Bézier surfaces by allowing patches to be defined over any
convex polygonal domain; hence, S-patches may have any number of boundary curves. Other

sroperties of S-natehes are ceometrically meanineful control noints. senarate control r Dositi
properties of S-patches are geometrically meaningful control points, separate control over positions

and derivatives along boundary curves, and a geometric construction algorithm based on de Casteljau’s
algorithm. Of special interest are the regular S-patches, that is, S-patches defined on regular domain
polygons. Also presented is an algarithm for smoothly joining together these surfaces with C*

continuity.

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—curve, surface, solid, and object representations; J.6 {Computer-Aided Engineer-

ing): computer-aided design (CAD)
General Terms: Algorithms

Additional Key Words and Phrases: Computer-aided geometric design, tensor product Bézier surfaces,
triangular Bézier surface patches

INTRODUCTION

The Bézier curve form was developed independently by P. Bézier and P. de
Casteljau in the late 1950s and early 1960s for use in the automotive industry.
Since that time, much has been written about the numerous properties of these
curves, and the techniques have been effectively applied in many areas of
computer-aided geometric design (CAGD). Bézier and de Casteljau also consid-
ered extensions of their ideas to surfaces, but the resulting surface forms are
qdite different. These differences ucgii‘l with the buape of the domain: de Castel-
jau’s surface has a triangular domain (so-called Bézier triangles), whereas Bézier’s
surface has a rectangular domain (so-called tensor product Bézier surfaces).

Although defined on different domains, the resulting patches are remarkably
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similar. Both methods share many interesting and useful properties, including

—the shape of the surface is “intuitively related” to a collection of control points,
—the surface is confined to the convex hull of the control points,
—the shape of the surface is independent of the coordinate system in which the

control points are expressed,
—the “corner” control points are lnfprnnl.qud

—the boundary curves are Bézier curves,

—the mathematical representation of the surface is a parametric polynomial (or
possibly rational poiynomiai), and

—there is a simple geometric algorithm for constructing points lying on the
surface.

Despite these similarities, the theory (and implementation) of these techniques
have progressed independently.

In this paper we present a theory of surface patches that exposes a deep
connection between Bézier triangles and tensor product Bézier surfaces, and
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of Bézier triangles and tensor product surfaces is important from a theoretical
perspective because it provides new insight into the similarities possessed by
both techniques. It may also prove to be useful from a practical standpoint
because it allows both methods to be implemented with a single, more general
algorithm. The need for extensions tc n-sided domains has been recognized for
some time in the CAGD literature (cf. [15] and [27]). Charrot and Gregory
pioneered the development of n-sided patches in the spirit of Coons’ patches
[4 14-16] i Some work has been done to generauw mangmar and tensor pIOuuCL
Bézier patches, but the proposed methods impose severe restrictions on the
number of sides of the domain polygon [19, 25].

Our method overcomes these limitations while maintaining the properties
listed above. However, the polynomial degree and storage requirements for these
patches (with boundary curves of comparable degree) increase as a function of n.
For instance, a bicubic tensor product Bézier surface requires more storage and
is of higher total degree than a cubic Bézier triangle. This, together with the fact
that an n-sided patch may be simulated by collections of 3- or 4-sided patches
(cf. [3], [11], and [17]), may stir debate over the practicality of true n-sided
patches for n > 4. It should be pointed out, however, that arguments against the
use of true n-sided patches are often quantitative (i.e., they appeal to time and

space considerations), as opposed to qualitative (i.e., which surface is the fairest).
Others might contend that the inclusion of mn]hn]n surface tvnes in a modeling
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system increases software complexity via a proliferation of special cases. The
unifying nature of this work has precisely the opposite effect since only one
surface type need be implemented.

Although the ideas will be made more precise in later sections, roughly
speaking, our approach is as follows: While Bézier methods (also called Bern-
stein-Bézier methods) have not previously been generalized to arbitrary domain
polygons, they have been generalized to arbitrary dimensions to describe volumes,

and a0 on. Thig ig aceomnlicshed usine multivariate Rarngtein
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Fig. 1. Schematic representation of S-patches.

polynomials, leading to functions defined on simplexes (a two-dimensional sim-
plex is a triangle, a three-dimensional simplex is a tetrahedron, and so forth for
higher dimensions). The theory of the resulting functions, called Bézier simplexes
or B-forms, is well developed (cf. [4], [6], and [22]). Conceptually, we construct
an n-sided patch S by embedding its n-sided domain polygon P into a simplex A
whose dimension is one less than the number of sides of the polygon. A Bézier
simplex B is then constructed using A as a domain. The patch representation S
is obtained by restricting the Bézier simplex to the embedded domain polygon.
If E denotes the embedding, the patch representation S can be expressed as a
composition

S(p)=B°E(p), pEP,

as indicated in Figure 1. The control net of S is then defined to be the control
net of B.

We call these representations “S-patches” to emphasize their connection to
the theory of Bézier simplexes. Much of the power of the method is derived from
the way in which the domain polygon P is embedded in the simplex A. Bézier
simplexes have the property that the position and boundary derivatives at the
edges of the domain simplex can be controlled individually (cf. [4]). This property
is exploited in S-patches by requiring that the embedding of the polygon into the
simplex be such that the edges of the polygon map to edges of the simplex. In
this way, it is guaranteed that the edges of the polygon map to individually
controllable Bézier curves and that a large degree of separation is achieved in
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controlling boundary derivatives. Higher order derivatives also behave nicely, as
is discussed more fully in Section 5.

The separation of boundary control makes S-patch representations potentially
attractive tools for CAGD applications, where surface patches of an indeterminate
number of sides must be joined together in a smooth fashion. The primary
purpose of this paper is to uncover basic S-patch properties and algorithms. We
must stress, however, that there remains much to be done and that many
fundamental questions are still open, a number of which are summarized in
Section 8.

The paper is structured as follows: Background material is presented in
Section 2. In Section 3 the basic definitions are presented, and an example of an
embedding satisfying our requirements is constructed. In Section 4 we address
the issue of how S-patch control nets are represented. In Section 5 many of the
fundamental properties of S-patches are enumerated. In Section 6 a particularly
useful special case of S-patches, called regular S-patches, is introduced, and in
Section 6.1 it is shown that regular 4-sided S-patches are very closely related to
tensor product Bézier surfaces. In Section 6.2 a useful property of the regular
embedding is identified and proved, and in Section 7 this property is used to
develop a geometric algorithm for connecting regular S-patches to Bézier triangles
with C* continuity.

2. BACKGROUND

Readers not proficient in the basic theory of triangular and tensor product Bézier
surfaces are encouraged to consult [1], [12], and [13]. An abbreviated account of
simple concepts and terminology of affine geometry and Bézier simplexes can be
found in [6]. More complete treatments of these topics can be found in [4], [7],
and [9]. It is the purpose of this section to familiarize the reader with our notation
and with the basic notions of Ramshaw’s development of polar forms [22, 23].
(Historical note: In {22] and [23], the term blossom was used instead of polar
form. Polar form is the currently accepted term so as to conform more closely
with classical multilinear algebra [24].)

In what follows, multi-indexes will be denoted by italic characters ornamented
with a diacritical arrow, as in i. For our purposes, multi-indexes are tuples of
nonnegative integers, the components of which are subscribed starting at one;
for instance, i = (i1, ..., in).! Following Farin, the norm of a multi-index i,
denoted by | i |, is defined to be the sum of the components of i. By setting i =
(i1, ..., Ixs1) and requiring that | i | = d, the k-variate Bernstein polynomials of
degree d can be defined by

d _{dY i
BE WUy, ooy W) = (i’) ujug «-- ufgi

where () is the multinomial coefficient defined by

d\ _ d!
07T 0l il e !

! In many works indexes are chosen to run from 0 to k rather than from 1 to k& + 1. We have chosen
the latter convention because it simplifies later discussions.
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and where u,, ..., U, are real numbers that sum to one. It is well known that
every polynomial Q: %%, — 2%, of degree d, where £, is an affine space of
dimension k and &, is an affine space of arbitrary dimension, can be represented
uniquely in Bernstein-Bézier form once a domain simplex 6 is chosen in #,.
That is, for every polynomial : 2°; — 2%, there exist unique points V; in 2,
such that

. nd
Q(u) = ZVlBI (ula ey uk+1)9 (21)
i
where uy, ..., u,; are the barycentric coordinates of u relative to the domain
simplex 8. Summations such as the one in eq. (2.1) above are intended to be

taken over all multi-indexes whose norm matches the degree of the Bernstein
pglynomial. Thus, in eq. (2.1), the multi-index i is to take on all values such that
jt]=d.

The points V; are individually referred to as control points and collectively
referred to as the Bézier control net for @ relative to 6. We shall refer to
polynomials represented as in eq. (2.1) as Bézier simplexes; when k = 2, we shall
refer to such representations as Bézier triangles, and when k = 3, we shall refer
to such representations as Bézier tetrahedrons.

Ramshaw [22, 23] has recently uncovered a beautiful and powerful con-
nection between Bézier simplexes and symmetric multiaffine maps. (A map
f(ul, ey ud} is said to be multiaffine if it is affine when all but one of its
arguments is held fixed; it is said to be symmetric if its value does not depend on
the ordering of the arguments.) Associated with every polynomial Q: &, — 2%,
of degree d there is a unique, symmetric, d-affine map that agrees with @ on its
diagoral (the diagonal of a multiaffine function f(u,, ..., uy) is the function
obtained when all arguments are equal: F(u) = f(u, u, ..., u)). Ramshaw refers
to this multiaffine map as the polarization of . Ramshaw also shows that the
Bézier control net for a polynomial relative to a domain simplex can be obtained

}\v avaliiatine the nolvnomial’s nolarization at the vertices of the simnley. More
eva:uaiing ine poiynomial s poiarization at tne vertices ©1 ine simpiex. vViore

prec1sely, if 27, 1s an affine space of dimension k, if @: 2, — %, is a polynomial

of degree d having polarization g, and if A = (v, ..., Urs:1) is a simplex in 27,
Ramshaw shows that the Bézier control net of § relative to A is given by
d
- % ~,
V;= q(vlv ceey Ul Uy ooiy U2y ovvy Ukbry o0 ey Uk+1)~
N
b iy lr+1

Rational polynomial maps can also be described using Bernstein-Bézier meth-
ods and polar forms. Rational polynomial maps of degree d can be represented
as Bézier simpiexes by tagging each of the control vertices with a positive weight.
These representations take the form

. o,.Yr.nds \
2t Wi ViDi\Uy, ... Up+1)

Zj' wJTB}! (ub ey uk+1)

Associated with each of these representations is a unique, symmetric, d-projective
map called its projective polarization.

Qu) =
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3. BASIC DEFINITIONS

Referring to Figure 1, an n-sided S-patch is obtained by restricting a Bézier
simplex of dimension n — 1 to a surface obtained by smoothly embedding the
n-sided domain polygon P in such a way that edges of the polygon map to edges
of an intermediate simplex A, and the interior of the polygon maps to the interior
of the intermediate simplex. In the remainder of this paper, these ideas are made
more precise, and some basic properties of S-patches are identified.

Unless otherwise stated, we use 2 to denote the domain space (an affine plane)
of an n-sided S-patch S, and we denote by .# the modeling space (i.e., the range
of S); we use P C & to denote the convex polygonal domain having vertices
D1y - .., Dn; We use % to denote an affine space of domain n — 1; and we use A to
denote a simplex in % having vertices vy, . .., U, (see Figure 1).

Remark. All indexes are to be interpolated in a cyclic fashion. That is, every
index i is to be mapped into the range 1, ..., n according to [( — 1) mod n] + 1.

Definition 3.1. A C* mapping E: P — % is said to be an edge-preserving
embedding of P into A if

(i) p in the interior of P implies that E(p) is in the interior of A and
(ii) p on an edge of P implies that E(p) is on an edge of A.

We note that every embedding can be written as
E(p) = ex(pluy + -+ + ex(p)vs,

where e,, . .., e,: P — R are functions that partition unity and are nonnegative
whenever p € P (a set of functions is said to partition unity if it sums to one at
every point of its domain). A simple consequence of the definition is that edge-
preserving embeddings must carry vertices in P into vertices in A.

We now construct a particularly useful instance of an edge-preserving embed-
ding, which we shall denote by L. (Throughout the remainder of this paper, the
symbol E will be used to represent an arbitrary edge-preserving embedding,
whereas the symbol L shall refer to the particular edge-preserving embedding
that follows.)

Let a;(p) denote the ratio of the signed area of the triangle pp;p;+: to the area
of the triangle p;pi+1D;+2, as shown in Figure 2, where the sign is chosen to be
positive if p is inside P. Let «;(p) denote the product of all as, except for a;—;(p)
and «;(p); that is,

7 (p) = ou(p) +++ aia(p) ar(p) ++- an(p), 1=1,...,1;
and let
mi(p)
7"1(p) + .-+ 7rn(p) ’
Remark. For those concerned about the use of Euclidean concepts in the
definitions above, it should be noted that since «; is defined in terms of ratios of
areas it is actually an affinely invariant function. In fact, a strict affine definition

is “a;: P — R is the unique affine function that vanishes at p; and p..; and
achieves the value 1 at p,.;.” A more symmetric definition would have the

li(p) = i=1,...,n.
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Fig. 2. Geometry of the affine functions used to construct
the embedding L.

function achieve a value + at the centroid of P. We use the former definition to
simplify subsequent proofs.

By construction, the functions I, ..., I, form a partition of unity and are
rational polynomial functions of degree n — 2. Moreover, they are guaranteed to
be nonnegative whenever p € P since each of the functions «; are nonnegative in
this case.

Example 3.1. Consider the construction of the embedding L for the pentagonal
case. The normalized area functions «;(p) may be defined as

p* P! DPin
a;(p) =« det{ p* p; Pl (3.1)
1 1 1

where « is a normalization constant that need not be computed, and superscripts
u and v denote coordinates with respect to some coordinate system on the domain
& . The functions m;(p) fori =1, ..., 5 are defined as

m1(p) = az(p)as(p)as(p),

m2(p) = az(ples(plas(p),

w3(p) = ay(plas(plea (p), (3.2)

m4(p) = as(ples(plez(p),

75(p) = ar(p)az(p)as(p).

Finally, the functions [;(p) fori =1, ..., 5 are defined as

L(p) = (D) + ma(p) + ::((;); + mi(p) + w5(p)’
T e s o e e gy
lL(p) = 1 (p) + m(p) + 77:::5; + my(p) + 75(p)’
h(p) = w5 (p)

T1(p) + m2(p) + w3(p) + ma(p) + w5 (p)’
ACM Transactions on Graphics, Vol. 8, No. 3, July 1989.
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For a coordinate definition of (3.3), (3.1) may be expanded and substituted in
(3.2) and (3.3). This is rather cumbersome to do by hand, but very easy to
program.

Since the functions [, ..., I, partition unity and are nonnegative whenever p
is inside the domain polygon, the embedding L: P — A given by
L(p) = L(p)vs + -+ + L(p)v,, PpEP, (3.4)

maps the interior of the polygon P into the interior of the simplex A. To show
that L is actually edge-preserving, let p. be a point on the edge p, p;. In this case,
the function «, vanishes, implying that all ;s vanish except for l; and [, since
these are the only two that do not contain «; (cf. egs. (3.2) and (3.3)). Thus,
L(p.) can be written as

L(p.) = Li(p.)vy + L(pe)ve, (3.5)

which is clearly a point on the v,v, edge of A, showing that the p,p, edge of P
maps to the v v, edge of A, for all i = 1 --. n. By symmetry, the edge p:pi+:
of P is mapped to the v;v;., edge of A.

It is interesting to note that the functions [, . . . , [, are actually a generalization
of barycentric coordinates. Taking n = 3, we find that

oz (p)
ai(p) + az(p) + az(p)’

L(p) =

The denominator is an affine function that has value 1 at the vertices p,, p., and
ps—it must therefore be identically 1. Thus, [, (p) = a.(p), implying that [, is
the unique affine function that vanishes at p, and ps, and attains the value 1 at
D:- Since these are exactly the defining characteristics of barycentric coordinates,
{, must be a barycentric coordinate function; a symmetric argument holds for
and ;. The affine nature of [;, l,, I3 means that L is simply an affine map from
D1P2ps onto Ly Vs V3.

The behavior of the functions [;(p) for various values of n is illustrated in
the contour plots of Figure 3. These plots empirically demonstrate the edge-
preserving character of the functions.

Before returning to the case of a general edge-preserving embedding E, we
should point out that functions [,, .. ., [, are not new to CAGD. Herron [17] and
Charrot and Gregory [2] discuss equivalent formulations in connection with n-
sided convex combination surface schemes.

We are now in a position to rigorously define the class of S-patch surfaces:

Definition 3.2. An n-sided S-patch of depth d is a map S: P — .# of the form
S =B o E, where E: P — A is an edge-preserving embedding of P into A and
B: A — .# is a rational Bézier simplex of degree d, expressed relative to the
domain simplex A.

We use the word depth in the definition of S-patches to avoid confusion with
the rational polynomial degree of the patch itself. In fact, depending on the
functional form of the embedding E, S may not even be a rational polynomial
map. However, if the map L from eq. (3.4) is used as the embedding, then the
S-patch will be a rational polynomial surface whose degree is the product of
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Fig. 3. Contour plots of the functions [;(p) from eq. (3.4). Contours are drawn every % of a unit.

the degrees of B and L. Thus, when L is used as the embedding, an n-sided
S-patch of depth d is of rational degree d (n — 2).

Just as the domain triangle of a Bézier triangle does not affect the shape of
the resulting patch, the simplex A does not affect the shape of an S-patch. This
is most easily seen by writing S as

S w;ViBi(e:(p), - .., e.(p))
Z:f w;B?(el(p)’ ceey en(p))

S(p) = , DEFP, (3.6)

where

—V; are the S-patch control points for S relative to P;
—uw; is the rational weight associated with the control point V;; and
—(ei(p), ..., e,(p)) are the barycentric coordinates of E(p) relative to A.

Equation (3.6) also points out that the shape of S is controlled by manipulating
the control net V; and the weights w;. Equation (3.6) can also be used to define
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S-patch blending functions. Specifically, eq. (3.6) can be rewritten as
S(p) =T V:iWi(p), PpEP,

where w;B?(el(p), ceey en(p))

¥; wiBHei(p), ..., en(p))

Wé(p) =

is defined to be the ith S-patch blending function of depth d.

Alternatively, S = path blending functions may be found by forming a multi-
nomial expansion of the embedding component functions (the e;s) and grouping
like monomial terms. Since

1=-e(p) +exp)+ -+ + e.p),
it follows that

1= (es(p) + ex(p) + -+ + en(p))*

=2 (?)e(p)i‘e(p)éz .- e(p)i, (3.7)

from the multinomial theorem. The terms of (3.7) are S-patch blending functions
with rational weights w; = 1; that is,

Wé(p) = (?)e(p)‘fe(p)? .- e(p)h.

Example 3.2. As a specific example, consider the construction of S-patch
blending functions using the embedding L for the case n = 5 and d = 2, with all
rational weights set to 1. From (3.7), the complete set of blending functions are

Whoo00(p)=L{(p)? Wiro00(p) =2L(p).(p), Wioirunl(p)=2L(p)is(p),
Weo01.0(P)=20(P)(p), Wi ooon(p)=2L(p)s(p), Wh2.000(p) =L(p),
Wiinen(p)=2L(p)(p), Wiieie(p)=2L(p)L(p), Wh.i000(p) =2L(p):(p),
W(Zo,o,z,o,o)(p) =5L(p)’, Whon0(p) =2L(p)(p), Whoronlp)=2L(p)i(p),
Who020(p) =L(p)? W o010(p)=2L(P)s(D), Waoooa(p)=1k(p)-

4. CONTROL NETS

The shapes of S-patches are intuitively related to their control nets, at least
when L is used as the embedding. It is therefore convenient to describe how
S-patch control nets are depicted graphically.

Since the control net of an S-patch is the control net of a Bézier simplex,
S-patch control nets could be drawn in the same way that control nets for Bézier
simplexes are drawn. For example, the control net for a 4-sided S-patch could be
drawn as a control net for a Bézier tetrahedron, as shown in Figure 4a.

Although the position of the points in the net is crucial, the connectivity of
the points is somewhat arbitrary. In particular, when drawing control nets for
Bézier simplexes the usual rule for connecting points V; and V; is that there
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(a) (b)

Fig. 4. (a) The control net for a Bézier tetrahedron; (b) the S-patch control net obtained by using
the connectivity rule given in eq. (4.2).

must exist integers r and s such that the multi-indexes 7 and j satisfy

- -
- 2

L—é =] —é, (4.1)

4

where €, denotes the multi-index having zeros in all components except for the
ath component, which is one. This connectivity rule is appropriate for Bézier
simplexes since it reflects the fact that the domain simplex has all vertices
connected to all other vertices. This reflects the fact that there is no natural
ordering on the vertices of the simplex.

However, for S-patches there is a natural ordering on the vertices in the
domain polygon. Since K must carry vertices in P into vertices in A, a natural
ordering on the vertices in A is imposed. The ordering can be reflected in the
depiction of the control net by modifying the connectivity rule. The rule we shall
use is that V; and V; are connected if there exists an integer r such that

=6 =] 6. (4.2)

Examples of control nets using this rule are shown in Figures 4b, 5, and 6. A
detailed labeling of the control points appropriate for Example 3.2 is shown in
Figure 7.

5. GENERAL PROPERTIES
The compositional structure of S-patches allows many of their properties to be

immediately deduced from corresponding properties of Bézier simplexes. Below,
we list several such properties.

5.1 Geometric Construction Algorithm

The point S(p) can be evaluated by first evaluating E(p), and then evaluating
B at the point E(p) using de Casteljau’s algorithm. The fact that de Casteljau’s
algorithm has an elegant geometric interpretation provides a geometric construc-
tion for points on S-patches, as shown in Figure 8.
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Fig. 5. Examples of S-patch control nets for various numbers of sides and depths.
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Fig. 6. Depth 2 S-patches and control nets for 3, 4, and 5 sides.
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Fig.7. Labeling of control points for a 5-sided S-patch of
depth 2.

5.2 Convex Hull

S-patch surfaces are confined to the convex hull of their control nets. This is a
direct consequence of two simple facts: (1) Edge-preserving embeddings map the
interior of the domain polygon P into the interior of the intermediate simplex A,
and (2) Bézier simplexes are confined to the convex hull of their control nets.
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Fig. 8. The S-patch geometric construction algorithm.

T

5.3 Deptn Eievation
Another property possessed by S-patches that is directly inherited from Bézier
simplexes is an algorithm for depth elevation. That is, given an S-patch control
net of depth d describing a surface S = B © E, the S-patch control net of depth
d + 1 for S can be constructed by using the Bézier simplex degree elevation
algorithm on the control net of B (cf. {4] and {22]).

Repeated degree elevation of a Bézier simplex produces control nets that
converge to the image simplex. The implication for S-patches is that repeated
depth elevation produces control nets that converge to the image of A; they do

not, in general, converge to the surface patch, except when n = 3.

5.4 Boundary Behavior
Perhaps the most important properties of S- patches stem from their behavior

along the Dounaary curves. First, we note that each of the n uouuaary curves of
an S-patch of depth d are rational Bézier curves of degree d defined by the control
points associated with the boundary. (An example of this behavior is shown in
Figure 6 for the case of depth 2 S-patches of 3, 4, and 5 sides.) This follows from
the fact that the edges of the domain polygon map to edges of the simplex, which

AMAA M P Iepiny LG 75 -
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in turn map to rational Bézier curves under B (cf. [4]). Moreover, if the rational
weights associated with the boundary control points are equal, the resulting
S-patch will have purely polynomial Bézier curves as boundaries. Note that this
occurs even if the embedding is not a polynomial or rational polynomial map.
Thus, S-patches automatically achieve separation of boundary curve behavior in
that only a few control points determine each of the boundary curves. It is
therefore trivial to insert an S-patch into a network of, say, Bézier triangles or
tensor products in a C° fashion (as long as the degree of the triangles or tensor
products does not exceed the depth of the S-patch).

Not only do S-patches enjoy separation of positional behavior along the
boundary curves, they also exhibit separation of derivative control along the
boundaries. For instance, first-order derivatives along a boundary curve are
completely determined by the boundary vertices and the vertices adjacent to
them (using the usual Bézier simplex connectivity rule of eq. (4.1)). Again, this
follows immediately from the fact that the S-patch is obtained by restriction of
a Beézier simplex to an embedded surface. Higher order derivatives behave

similarly The rth_oarder derivative hahaviar alane & hoimdary enirve is determined
DLIIIIALly. & IIT 7 VIITULUVUL UTLIVAUIVU UTLIAViVUL AiUllg d VU ULIRALy CUL VU 15 WU LVULIIITICU

completely by the vertices a “distance” r or less from the boundary vertices. The
term distance here refers to the number of edges of the control net that are
traversed in a path from a boundary control point (using the Bézier simplex
connectivity rule of eq. (4.1)).

6. REGULAR S-PATCHES

By a regular S-patch, we mean an S-patch S = B ¢ L, where L is the embedding
of eq. (3.4) and S is defined on a domain polygon that is the affine image of a
regular n-gon (we call such polygons regular). Several interesting phenomena
appear when L is used on a regular domain polygon.

The first occurs when n = 3, that is, for triangular domains. In this case, L is
an affine map, implying that the image of S = B ¢ L is the same as the image of
B. Thus, S is simply a rational Bézier triangie. In other words, reguiar S-patches
generalize rational Bézier triangles.

The second interesting thing occurs when n = 4, that is, for parallelogram
domains. In Section 6.1 it is shown that, when the domain is a parallelogram,
S-patches generalize rational bi-d-ic tensor product Bézier surfaces.

Remark. Since regular S-patches generalize both the Bézier triangles and the
bi-d-ic tensor product Bézier surfaces, the theory of regular S-patches can be

il tha thanrice af RaAciar +viangles and tanaar nradiieta Far inatane

used to unity tne tneories o1 DEZier triangies ana tensor proqudcts. i Or instance,
in Section 6.4 we derive an algorithm for representing an m-sided regular
S-patch as an n-sided regular S-patch. Unification implies that this algorithm
is both an algorithm for converting Bézier triangles into tensor product form
(set m = 3 and n = 4) and an algorithm for converting tensor product surfaces
into Beézier triangle form (set m = 4 and n = 3). Unification also shows that
the de Casteljau algorithms for Bézier triangles and tensor product surfaces are
specific manifestations of a common, more general construction.

The third interesting thing that occurs for regular S-patches concerns a special
property of L. In general, L is a rational polynomial mapping. However, when
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Fig. 9. The domain of a regular 4-sided S-patch.

the domain polygon is regular, L has, in a sense to be precisely defined in
Section 6.2, an extremely simple inverse. This fact has striking practical impli-
cations. In particular, it is the key to a construction for joining regular S-patches
to Bézier triangles and tensor product Bézier surfaces with C* continuity.

6.1 Regular 4-Sided S-Patches and Tensor Product Surfaces

To investigate the relationship between regular 4-sided S-patches and tensor
product surfaces, we establish a coordinate system in the domain space 2 by
placing the origin at p;, choosing the unit vector in the u direction to be p, — p1,
and the unit vector in the v direction to be p, — p;, as shown in Figure 9. The
representations of the functions a4, . . ., oy in this system are particularly simple.
Referring to Figure 9, if p has coordmates (u, v) in this system, then

7y

~ ) =
LIy v

(Xz(p) =1—-u
az(p)=1-v
a{p) = u.
These representations give rise to functions [, ..., l; that are also simply

s se
expressed. In fact, the common denominator of these functions is identically one:

m(p) + 7a(p) + w5(p) + 74(p)
=l -u+ A -w@-v)y+1Q~-v)u+u =1.

Thus, the functions L, ..., I, become
Lip) =1 —uw)@ —v)
L(p) =u@ —v)
L(p) = w

L(p)= (1 — u.

ML A atvnanln vmndiind cdswitnditnn AL dhhnon acrimncainmg chosrg o Anmantinm $o dasonse
i1e DLUNIPIC pluuuub SLILUCLLULE UL LLIEDBT TAPICTSBBIVILLIS BIIUWD a LUILLITULIVIL U l/UllDUl
product blending functions. The precise nature of this connection is established

in the following lemma:
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LEMMA 6.1. Let p be a point having coordinates »(u, v) in the coordinate system
of Figure 9, and let | = (iy, iz, i3, iy) be such that | 1| = d. Then

()

B;'i-f-i (u)B:'iﬂ' v).
d d 2743 3 4(
I + i3/ \is + 14

Bf o L(p) =

PROOF
Bf e L(p)
= B:’i(ll(P), lz(P), l:s(P), 14(p))
=B{((1 — u)(1 - v), u(l = v), uv, (1 — u)v)

= <(§> (1= w)*(1 = v)ru2(1 — v)2uBvs(1 — u)sv™

d d ip+ig _ Iytiy,,iatig — i)+
d d (Lz + l3)(l3 + i4)u (1 u) v (1 U) *
o+ i/ \iz + iy
d
i
= B(ii+i (u)B(ii+i (v). O
d d 2 3 3 4
o + i3/ \is + Iy

An immediate consequence of Lemma 6.1 is that the regular S-patch blending
functions are not always linearly independent. As a specific instance, Lemma 6.1
shows that

W(21,0,1,0) (p) = W(20,1,0,1) (p).

For practical design applications, it is necessary for blending functions to be
independent, so the question of exactly when S-patch blending functions are
dependent is an important one. Although the general question is currently open,
it is interesting to note that the dependence of the blending functions in the n =
4 case is precisely what is needed to establish a connection between S-patches
and tensor product surfaces, as the next lemma shows:

LEMMA 6.2. Let S be a regular 4-sided S-patch of depth d having control points
Vi and rational weights w; = 1. S can be written as the following (nonrational)
bi-d-ic tensor product surface:

S(p) = ¥ W,;B{(u)B;] (v),

ACM Transactions on Graphics, Vol. 8, No. 3, July 1989.



A Multisided Generalization of Bézier Surfaces . 221

where p has coordinates (u, v) relative to the coordinate system of Figure 9 and
where

PROOF
S(p) =X V;:B{ o L(p)

\/ 12'”3( )Bl3+14( )

=3 V: B{(u)B;(v)
iJ
t2+13——t (LZ + l3

iytig=j

v

(44

= 3 W;;B{(u)B; (v). a
i

Remark. A slight generalization shows that Lemma 6.2 holds for rational
bi-d-ic tensor product Bézier surfaces.

Lemma 6.2 provides a simple algorithm for converting a regular 4-sided
S-patch into tensor product form. It also shows that, if each of the S-patch
control points V;, for all i such that i, + is = i and i3 + iy = j, coincide at a point
W, then the S-patch control net is identical to the tensor product control net.
In other words, regular 4-sided S-patches generalize bi-d-ic tensor product Bézier
surfaces. In order to represent a general r-by-s tensor product surface (i.e., one
that is degree r in u and degree s in v, where r # s), the S-patch must be of depth
max(r, s).

6.2 The Pseudoaffine Property

In the introduction to Section 6, it is claimed that the embedding L possesses a
certain property when the domain polygon P is regular. The property of interest
is a generalization of a property satisfied by barycentric coordinates for triangles.
The definition of barycentric coordinates for triangles associates with each point

p in a triangle p,p.ps a triple of numbers 8, B, 8; that partition unity and are
such that

p = Bip1 + Baps + B3ps.
ACM Transactions on Graphics, Vol. 8, No. 3, July 1989,
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More generally, the embedding L associates with each point p in an n-gon

Dis - - -, Dn a collection of numbers [, (p), ..., L,(p). In order to generalize bary-
centric coordinates as closely as poss1ble, we would like the ;s to be such that
p = ll (p)pl + ..+ ln(p)pn (6'1)

Loosely speaking, when this relation holds, we say that L possesses the pseu-
doaffine property (motivation for this term will be explained shortly). Although
L does not possess the pseudoaffine property for arbitrary n-gons, in the appendix
it is shown that L does possess it when the n-gon is regular. Rather than defining

nidnaffina m 3 10
pseudoaffineness by making explicit reference to components of L (the l;s), we

shall find it more convenient for later use to phrase pseudoaffineness for arbitrary
maps without reference to the components of the map.

Definition 6.1. Let M: &, — &, be any map from an affine space 2, into an
affine space #°,. M is said to be pseudoaffine if there exists an affine map F':
Z, — Z; such that F o A is the identity map on #°;. When such a map F exists,
we say that M is pseudoaffine with respect to F.

ml . DR RS R | L£ond i mam AA o e

1ne tern 1pbeuuuu”uw is motivated uy the fact blldb, ifa map Mis pbcuuuauuu:
then, even if M is itself nonaffine, it has a left inverse that is affine. Intuitively
speaking, a map is pseudoaffine if its nonaffine behavior can be affinely “projected
out.” In the appendix the following claim is proved, showing that the embedding
L is such a map whenever the domain polygon is regular:

CLAIM 6.1. Let A: & --» & be the unique affine map that carries v; into p; for
i=1,...,n. The embedding L: P — % is pseudoaffine with respect to A whenever
P is regular.

PROOF. See Appendix A. O

7 h}\nt v al fiinmationg tc b ha ronra

It is the pbeuduaffuxc property allows yux.yuuuucu Uncrions
sented in S-patch form. This has a number of useful consequences: It allows
Bézier triangles to be represented as n-sided S-patches (see Section 6.4), it allows
the graphs of scalar valued functions to be represented as S-patches (see
Section 6.5), and it allows S-patches to inherit algorithms for connecting Bézier

triangles with geometric continuity (see Section 7).

6.3 Subdivision

Subdivision algorithms are among the most powerful techniqt

in CAGD. It is therefore natural to study the character of subdivision algorithms
for S-patches. Unfortunarely, it is rather unlikely that such algorithms exist, at
least in the usual sense. To investigate this further, we note that a subdivision
algorithm for regular S-patches would typically be characterized as follows:

sna miierrondtli ta ad
ued CUILITIILLY ustu

Given. A control net for an n-sided S-patch S of depth d defined on an n-gon
P. Also input to the problem is another n-gon P’.

b B Y o

Find. The control net for an n-sided S-patch of depth d defined on P
exactly reproduces S.
Q_patch
L) auvuil
e

curves

nar algamithae awiatad anlya +hi
1

T
1T all alsUllbLllll TAIdDLCWU bU SO1VE i

vl
boundaries are Bézier curves implies that the images of the edges of P’ ar
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Fig. 10. The geometric interpretation of eq. (6.2).

of degree d. However, in general, the image of a line on an n-sided S-patch of
depth d is a rational curve of degree d (n — 2). Thus, if an algorithm exists at all,
it cannot exist for an arbitrary polygon P’. Tensor nroduct surfaces provide an
example of a technique where subdivision does not exist for arbitrary P’, but
does exist for specially chosen ones (P’ must be a parallelogram whose sides are
paraliel to the sides of P). If special polygons P’ exist for general S-patches, we
have yet to identify them.

6.4 Representation Theorems

In this section we show that the space of bivariate polynomials of degree d is
contained in the span of regular n-sided S-patches of depth d, for all n = 3. We
then derive an algorithm for the construction of an S-patch control net for a
glvei‘l pO(yﬂO‘ﬂ‘ual As a conseguence of the pseuumuuue behavior of Lz the
S-patch control net for a polynomial @ is shown to be intimately related to the
theory of polar forms in that the S-patch control points correspond to certain

values of @’s polarization.

CLAIM 6.2. The space of bivariate polynomials of degree d is contained in the
space of regular n-sided S-patches of depth d.

PRrROOF. Let Q: & — # denote an arbitrary bivariate polynomial of degree d
for which the existence of an S-patch representation is to be demonstrated, and
let A: & — # be the affine map that carries v; into p; for all i.

DRaocall that A aa Aofirved shavn ia aiioh that ag o anneeanience of Maiva 281 +ha
necau tnat A as Gerined anove is sucn uuab, as a Consequceiice o1 viaim 0.1, i

map A ° L: & — % is the identity map I of 2 onto itself. The key to the proof
(and the algorithm) is as follows, the geometric interpretation of which is shown
in Figure 10:

Q=@Q-r1 o
=@g°(A°L) (6.2)
=(QoA)oL
=Be¢° L.
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Since B =@ ° A: A — ./ is a composition of purely polynomial maps, B is itself
a purely polynomial map; thus, ¢ written as @ = B o L is a map in regular
S-patch form. The S-patch control net of @ is the control net of B, the
construction of which is described in Claim 6.3. O

CLAIM 6.3. Let Q: & — # be a polynomial of degree d having polarization q.
The regular S-patch representation of depth d for @ on the (regular) polygon p,,
., P» has control points given by

Vf:q(pb"'aplyp27'--’p2"”7pn,-"9pn),
. % J . v J/ b_v—J
I is i,

with rational weights that are all equal to unity.

PrOOF. The proof is actually a special case of Claim 4.3 of [6]. Here we offer
an alternative proof tailored to the special case that is substantially shorter and
more to the point.

From the proof of Claim 6.2, the S-patch control net of @ is the control net of
the composition map B := @ o A, where A is the affine map carrying v; onto p;,
=1, , n. This control net can be determined by appropriate evaluation of
E[le pmanzamon D OI D. lfle pOldrlZdElOD D can De WI'lUJeIl as

bui, ..., us) = q(Aw), ..., A(ug))

since this is the unique symmetric d-affine function whose diagonal agrees with

B. Evaluating b at the vertices of the simplex A yields B’s control net and,
haonna tha Q_natah anntwnl nat far -

ucuCU, VLT T pacull vullvl \IL nev ior ¥ -

Vi=b, ..., U1, Us, c.., U2y eou, Unyonunr,Up)
A\ - —_ —_ N/ | S
131 2] in
=qAW), ..., AW), A.), ..., A(v2), ..., A(V,), ..., A(v,))
| — N L - -
Y Y .V
i1 i2 Ln
= (I(Ph cees P15, P2y ooy P2y -0y Py ""pn)’
. J J H_J
Y M )
I 123 ln

which completes the proof. O

Claim 6.3 establishes the algebraic relationship between a polynomial’s polar-
ization and S-patch control nets for it. Owing to the close connection between
geometric constructions and polar forms, the algebraic relationship of Claim 6.3
leads immediately to a geometric construction for an S-patch control net given a
Bézier control net for a polynomial surface. This is demonstrated in the following
example for a quadratic Bézier triangle:

Example 6.1. As a specific example of the construction of an S-patch control
net for a polynomial surface, let @ be a quadratic Bézier triangle with polarization
q. The control points for @ on the triangle rst are obtained by evaluating q at the

points rst, as shown in Figure 11. We shall describe the construction of the

raciilar B _qidad Q_natoh aantrnl nat far ) an tha nonta
Lcsuxax UTRAIUCW W Pﬂb\/!l \VAVI B AVI QUL VRS AV ) § q Vil viie ybxlvusuxx
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q(tt)

q(rm) a(55)

Fig. 11. The domain triangle and control net for a Bézier triangle @ that is to be
represented as a regular 5-sided S-patch. Also shown is the domain pentagon for the
S-patch.

The first step is to construct the image of abcde under the affine map that
carries the triangle rst onto the triangular “panel” q(rr)q{rs)q(r¢). The points
thus constructed are the polar values (i.e., values of the polarization) g (ra), g (rb),
g(rc), g(rd), and g (re). Using a similar process to find the image of abcde on the
other two panels results in the situation shown in Figure 12a. Next, find the
image of abede under the affine map that carries the triangle rst onto the triangle
q\ru;q\bu;quu;, mereuy CGi“up‘ubing the pOu’ii‘ values q \uu/, q\uu;, ey q(ae), as
shown in Figure 12b. According to Claim 6.3, the points thus constructed are
S-patch control points. The remaining S-patch control points are found by
constructing the image of abede on the panels q(rb) g(sb) q (tb), g (rc) g (sc) g (tc),
q(rd)q(sd)q(td), and g(re)q(se)q(te), as shown in Figure 12c.

Example 6.2. As another example of S-patch representations of polynomial
maps, consider the construction of a regular n-sided depth d S-patch represen-
tation of the identity map. That is, we seek control points P; such that

= Z P;B;(ll(p)’ veey ln(p))-

A simple solution to this problem is to construct the d-affine polarization of
the identity and then to evaluate it at the locations indicated by Claim 6.3. The
d-affine polarization of the identity map is given simply by
U+ Uy + -+ + Uy
d .

Evaluating this polar form at the vertices of P as indicated in Claim 6.3, we find
that

Lpy + 2Dy + - + LDy
P; = 1P1 2P2 D . (6.3)

-1
a

Examples of control nets produced in this way for various n and d are given in
Figure 5.
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g(ra)
CIAO

(a) (b)

(c)

Fig. 12. 'The construction of a 5-sided regular S-patch control net.

We would now like to generalize Claims 6.2 and 6.3 in a number of ways. First,
these claims can be generalized to include the case in which @ is a rational
polynomial. The construction of S-patch control nets is very similar in this case,
the exception being that the weights take on values other than one and projective
images of the polygon are constructed rather than affine images. Second, recall
that rational Bézier triangles are identical to 3-sided regular S-patches. The
claims can therefore be interpreted as stating that 3-sided regular S-patches can
be represented as n-sided regular S-patches. One might conjecture that a similar
result is more generally true for the case in which an m-sided regular S-patch is
to be represented as an n-sided regular S-patch. This conjecture holds, as we now
show. Moreover, the proof is constructive in that it provides an algorithm for
computing the n-sided representation given the m-sided representation.

CLAIM 6.4. For every m-sided regular S-patch of depth d, there exists an
equivalent n-sided regular S-patch of depth d{m — 2). In other words, the space of
m-sided regular S-patches of depth d is contained in the space of n-sided regular
S-patches of depth d(m — 2).
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Table I. Corollaries of Claim 6.4

Interpretation

Triangle — Tensor product
Tensor product — Triangle
Triangle — S-patch
Tensor product — S-patch
S-patch — Triangle
S-patch — Tensor product

I I o~ |F
w3 I W |

PROOF. Let L; denote the embedding L for an i-sided S-patch, let A; denote
the affine map with respect to which L; is pseudoaffine, and let I denote the
identity mapping on the domain space 2”. Also, denote by S = B,, ° L,, the
m-sided S-patch for which an n-sided representation is to be constructed. The
proof proceeds by using essentially the same reasoning as was used in the proof
of Claim 6.2:

o . r
O = DBy, ° Ly
= Bm o Lm o]
=B, L,° (A, ° L,
0 o Ein n;

—(BmoLmoAn)oLn
ML & $mvesn 3 3n .‘A,.,.“LL,..-._.\N ,,A“H:ALN AL 4T n nmrarimccdiae AP Flhnan smadl .
1 1€ term in PAlTIIULIITHeS COUILIBISLD UL LI CULLIPUSIUIVIL UL LILLICT Laulv

> ial 1 PO y omiai
maps. Control nets for B,, and A, are already known, and the control net for L,,
can be obtained by evaluating its multiprojective polarization. A slight generali-
zation of the Bézier simplex composition algorithm developed in [6] can therefore
be used to compute the control points for the map B, :=B,, ° L,, ° A,, [8]. This
definition of B, allows S to be written as § = B, ¢ L, which is an n-sided
S-patch representation. Since B,, is of degree d, L,, is of degree m — 2, and
since A,, is of degree 1, B, is of degree d(m — 2), implying that S =B, ° L, is
an S-patch representation of depth d(m — 2). O

Claim 6.4 has a number of corollaries, one of which is Claim 6.2. Other
corollaries can be interpreted as change of representation algorithms; these are
summarized in Table I.

6.5 Nonparametric S-Patches

The coefficients of a real- vn]npd olynomial expressed in Bernstein form, also

known as Bézier ordinates [12, 13] have a simple geometric 1nterpretat10n In
particular, they are closely related to the geometric locations of the triangular
Bézier control points for the graph of the polynomial. As a direct consequence of
the pseudoaffine property of Section 6.2, a similar results holds more generally
for real-valued functions given in regular S-patch form when the rational weights
are set to cne. Suppose that F: P — R is a real-valued function given in regular
S-patch form as

F(p) = X fiB{(L(p), ..., l.(p)).

AOR Teoanmanstions on Nuonhins Al
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Fig. 13. The graph of a depth 2 5-sided function in regular S-patch
form.

The graph of F is the parametric function G#(p) = (p, F(p)). The S-patch
control points G; of Gr must therefore be such that the first component represents
the identity map and the last component represents F. Using the results of
Example 6.2, these control points are therefore given by

1 + .-+ .pn
Gf=<hp1 b ,fi‘).

d
Figure 13 shows the graph of a depth 2 5-sided function.

7. JOINING REGULAR S-PATCHES TO BEZIER TRIANGLES

Using Claim 6.3 for representing polynomials in S-patch form, it is a simple
matter to derive an algorithm for smoothly joining (in a C* sense) regular S-
patches to Bézier triangles. To do this, suppose that @ is the Bézier triangle to
be joined to with C* continuity, let T denote @’s domain triangle, and let g denote
Q’s polarization. The algorithm consists of the following steps:

(1) Using Claim 6.3, compute the S-patch control net for @ defined on an
adjacent domain polygon P. The S-patch thus constructed meets @ with C*
continuity since they represent the same function.

(2) If the S-patch control points within & vertices of the boundary are kept fixed,
the first k derivatives of the S-patch remain equal to Q’s derivatives, and
therefore the S-patch and  meet C*.
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Fig. 14. C'joining of a regular S-patch to a Bézier triangle.

Fig. 15. A degree 2 Bézier triangle and a 5-sided, depth 2 S-patch
meeting with C' continuity.

The geometric interpretation of this construction for C' is shown in Figure 14.
Note that adjacent panels must be affine images of the domain polygons and
hence are coplanar. Figure 15 shows an example of this method for a degree 2
Bézier triangle joined in a C* fashion to a 5-sided, depth 2 S-patch.

A slight generalization can be used to achieve G* continuity (cf. [5] and [18]),
assuming that there exists a construction for joining Bézier triangles together
with G* continuity. (Farin [10] and Piper [21], for instance, have exhibited such

ACM Transactions on Graphics, Vol. 8, No. 3, July 1989.



230 . C.T.Loopand T. D. DeRose

constructions for k = 1.) This hypothesized construction can be used as follows
to achieve a G* join of an S-patch to a Bézier triangle Q:

(1) Use the hypothesized construction to determine a Bézier triangle @ that
meets @ with G* continuity.

(2) Use Claim 6.3 to compute the S-patch control net for Q. The resulting
S-patch also meets @ with G* continuity.

(3) The S-patch control points further than k vertices from the boundary can be
moved at will without. destroying the G* join.

The important aspect of this result is that a pair of S-patches are no more
difficult to join together than a pair of Bézier triangles. Since S-patches in general
have more control points influencing derivatives across boundaries than do equal-
depth Bézier triangles, more general G* joins may be possible. Further work in
this direction is needed.

8. SUMMARY

In this paper we have introduced a new class of surface representations, called
S-patches, that may be defined on arbitrary convex polygonal domains. Based
on the idea of restricting Bézier simplexes to embedded surfaces, the theory of
S-patches can be derived largely by adapting results from the theory of multivar-
iate Bernstein—-Bézier representations. Using this technique, we have shown that
S-patches can be geometrically constructed, that they possess a depth elevation
algorithm, that they lie in the convex hull of their defining points, and that the
positional and derivative behavior of their boundary curves is determined entirely
by control points “near” the boundary.

It was shown that regular S-patches, that is, S-patches defined on regular
polygonal domains, possess additional special properties. In particular, it was
shown that regular S-patches unify the theory of Bézier triangles and bi-d-ic
tensor product Bézier surfaces; it was also shown that regular S-patches can be
joined to Bézier triangles with either C* continuity for arbitrary k, or G'
continuity. However, it appears unlikely that regular S-patches possess a recur-
sive subdivision algorithm.

Quite a lot of work remains to be done to fully develop the theory of S-patches.
Here we list a number of topics for future research:

Linear independence. We have shown that regular S-patch blending functions
are not necessarily linearly independent. In particular, linear dependence of the
blending functions was shown to occur for parallelogram domains. It is desirable
to know exactly when S-patch basis functions are linearly independent.

Pseudoaffine embeddings on irregular domains. The pseudoaffine property has
been shown to be very useful in developing algorithms for representing polyno-
mials and for joining polynomials and S-patches. However, the embedding (L
from eq. (3.4)) we have used in this paper is pseudoaffine only when the domain
polygon is regular. If pseudoaffine embeddings can be constructed on arbitrary
convex polygons, many of the results in this paper could be immediately extended.
The use of piecewise smooth embeddings can also be considered.

Smooth interpolation to scattered data. The problem that originally motivated
the development of S-patches is that of constructing smooth surfaces that
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interpolate the vertices of an arbitrary polyhedron. This problem has been

pvn‘nr\nq]v addreccad }“r number of anfhnrc for the cace in ‘n]'nr'h the verticeg

reviously addressed by a number of authors for the case in which the vertices
of the polyhedron are 1nterpolated using only triangular and/or quadrilateral
patches (cf. [3], [11], [20], [21], and [26]). We are currently developing a scheme
that uses S-patch representations to construct surfaces given polyhedrons whose
faces have any number of sides.

Derivatives of S-patches. Detailed knowledge of derivative behavior at the
boundaries and over the interior of surface patches is important for constructions
ensuring geometric continuity, as well as for high- quality surface-shading algo-
rithms. The compositional structure of S-patches allows these derivatives to be
studied using the chain rule. That is, an S-patch S = B © E has a differential
given by DS = DB ¢ DE. Thus, knowledge of S-patch derivative behavior can
be determined once the differentials of B and E are known. The joining of patches
with geometric continuity is not only of theoretical interest, it is necessary for

An £p ~le ot tho anattarad da aty Ahla
lalCVUlUlJllls CLlUblAlVC DULU\/IUIIB LU LLIIT dravilelicocu uaua ulbcx.puxauuu }JlUUlUlll

APPENDIX A. Proof of Claim 6.1

The proof proceeds by showing that A o L is the identity map when restricted to
an edge of the domain polygon P. We can then use degree arguments to show
that A o L must be the iucuuuy evci‘y"‘“““. Before provmg the clai n, a 1Iew

preparatory lemmas are in Order.
Tonenra A1 JFF£. DZ,\D"»

o "o VeYzz X757
ALLIVIIIA fxeds Af [ o v U Uy riurivile

that vanishes on the line g(x, y) = 0, then g divides f.

Proor. Set un
bt od

EADAAEAD )

a J
the line g(x, ¥) = 0. In the primed system, g can be ex pressed as

where a is a constant, and f can be expressed as

Fx,y)=polx’) + pr(x")y" + po(x’)y"* + -+ + pa(x”)y’e
where pq, . .., py are univariate polynomials. Since f vanishes when g does, the
polynomial py{x’) must be identically zero. Thus, f can be written as

fx',y") =y'[pi(x’) + pa(x’)y’ + -+ + pa(x’)y’ 4]

1
= Eg(x',y')[pi(x') + po(x” )y + oo+ palx’)y ¢,

showing that g does in fact divide f. [J

LEMMA A.2. Let ¢ be an affine functional defined on an affine plane that
vanishes at the points P, and P,. If @, and Q, are two points on a line parallel to

PP, then ¢(Q1) = ¢(Q).

PROOF. If §, and @; lie on the line P, P;, the lemma is trivially true. Otherwise,
write €, barycentrically with respect to the triangle P, P,@, and use the fact that
¢ is an affine map. O

LEMMA A.3. The restriction of L to an edge of P is a pseudoaffine map with
respect to A whenever P is regular.
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Proor. If n =3, L is everywhere affine as shown in Section 3, so its restriction

+ L ad 3 5 T¢ ~ 2 3d +1 + 43
10 ealn eqage is aiiine. i1i 7 ~ o, ConsiGer the restriction L of L to the edge D1P2

(the other edges follow from symmetry). Referring to eq. (3.5), L, will be of the
form

L.(p) = L(p)v + L(p)vs, P € p1ps.

The composition map A ¢ L, is therefore of the form
A o L.(p) = Ali(p)u: + L(p)ve)
— ] Y AL Y YA\
= L{p)A(v) + L(pP)A(v2)

= L(p)p, + l:(p) P
— f3m Y3 A e )
TPl + 7 D) P2

m(p) + ma(p)

The functionals m; and #, share the product a3 --- «,_; as a common factor.

Since this common factor never vanishes on p;p, it can be divided out, leaving

a:{p)pr + a.{p)p>
az(p) + an(p)

Ao L(p)= ’ P € p1pa.

In this form, we recognize that A © L, is a projective map from the line p; p, onto
itself. We can show that this is the identity map by showing that it fixes three
points on the line. It is particularly easy to show that two points, namely, p, and
D2, are fixed: The point p; is fixed under A ° L, since «, vanishes at p;; a similar
argument holds for p, since a, vanishes at p,. Showing fixture of a third point
requires us to use regularity of the domain polygon P. First, recall that a.(p,) =
1. If P is regular, the the line p, p, is parallel to p,p;. By Lemma A.2, we conclude
that a.(p;) = 1. With these simple facts, fixture of the midpoint follows readily:

+ +
Q(QTP_> - a(e_2£> o,

(p: + D2\
A°L, ) =
2 a<p1 +p2)+a <p1 +p2)
2 \ 2 7 " % 2 4
as(p1) + azx(ps) P+ a,{p1) + a.(p2) ,
P 2 — P — 72 - —-
az(p1) + a2(ps) 4 a,(p1) + an(p:)
2 2
_ B + D2 O
— -

We are now in a position to prove the claim.

ProoF oF CLAIM 6.1. Consider the following map H that carries points in 2
into vectors in #:

H(p) = (A ° L(p) — p)(mi(p) + --- + m(p)). (A1)

If we establish a coordinate system on %, then H is represented by two functions
Hx, Hy, each of which maps R? into R. Since the second factor of eq. (A.1)
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cancels the denominator of L, Hx and Hy are (nonrational) polynomials. They

ara aach of daoras n — 1 ginee n (renresented by the nolvnomials ¥ and '\/\ is a

ait calil Vi Utgicco s 1 S1IilT 1’ WOPICSTIILOW Uy will pOLyIIVLIUAS & QL a

linear polynomial and the second factor of eq. (A.1) is a polynomial of degree n
— 2. By Lemma A.3, H(p) is the zero vector whenever p is on an edge of P. Thus,
Hx and Hy each vanish on the n lines defined by a,(p) =0, ..., an,(p) = 0. By
Lemma A.1, the functions Hx and Hy must therefore be divisible by n linear
factors. Since they are polynomials of degree n — 1, the only way that they
can have n linear factors is if they identically vanish. Thus, Hx(x, ¥) = 0 and
Hy(x, y) = 0, implying that H(p) is identically the zero vector.

The proof is completed by noting that if p € P then the second factor of eq.
(A.1) is strictly positive, implying that A ¢ L{p) — p is the zero vector for all p
€ P; thus, A c L(p) =p for all p € P. Since A ¢ L is a rational polynomial map
shown to be the identity on an open set, it must be the identity everywhere. O
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