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Abstract—This survey gives an overview of the use of importance, an adjoint of light, in speeding up rendering. The importance of a

light distribution indicates its contribution to the region of most interest—typically the directly visible parts of a scene. Importance can

therefore be used to concentrate global illumination and ray tracing calculations where they matter most for image accuracy, while

reducing computations in areas of the scene that do not significantly influence the image. In this paper, we attempt to clarify the various

uses of adjoints and importance in rendering by unifying them into a single framework. While doing so, we also generalize some

theoretical results—known from discrete representations—to a continuous domain.

Index Terms—Rendering, adjoints, importance, light, ray tracing, global illumination, participating media, literature survey.
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1 INTRODUCTION

THE use of importance functions started in neutron
transport simulations soon after World War II. Im-

portance was used (in different disguises) from 1983 to
accelerate ray tracing [2], [16], [27], [78], [79]. Smits et al. [67]
formally introduced the use of importance for global
illumination in 1992. Since then, importance has been used
to optimize finite element methods (radiosity [7], [20] and
radiance [4], [12]) and various Monte Carlo methods (path
tracing [29], [42], [73], random walk radiosity [56],
stochastic relaxation radiosity [49], ray bundles [72], and
photon particle tracing for photon maps [38], [58], [71]).
Importance also provides the theoretical foundation for
algorithms such as bidirectional path tracing [40], [41], [76].
To date, there have been more than 60 publications
describing various uses of importance to increase rendering
efficiency. This multitude of publications can be overwhelm-
ing and confusing. Part of the confusion stems from the fact
that there are six commonly used representations of light
(incident and exitant radiance, radiosity, irradiance, and
incident and exitant power), six corresponding representa-
tions of importance (incident and exitant directional im-
portance, incident and exitant diffuse importance, and
incident andexitantpower importance), and several different
inner products used to define adjoints. Also, some methods
use a continuous framework while others use a discrete
approximation and different authors use different notation
and terminology. This paper is an attempt to clarify and
categorize the uses of importance in rendering so far.

Importance is defined as a specific adjoint. In general, an

integral equation has infinitely many adjoint equations,

each with a different source term. If the source term is

given, the adjoint equation and its solution are unique. The

solution to the adjoint equation with a source term at the

most important part of the function domain is called

importance since it indicates how much the different parts
of the domain contribute to the solution at the most
important part. Importance is also known as visual
importance, view importance, potential, visual potential, value,
or potential value.

For rendering, the integral equations we are concerned
with express light transport and importance is defined as
the adjoint of light that has a source term at the region of
most interest; typically, this region is the eye point, the
image plane, or the directly visible parts of the scene.
Importance expresses the fraction of light that makes it to
the region of interest. It turns out that importance is
transported like light. There is an intuitive illustration of
this: If we turn the light sources off, shine light from the
important region (for example, from the image plane in the
directions within the field of view), and let that light bounce
in the scene until it reaches equilibrium, then the contribu-
tion (to the image) of different parts of the scene is
proportional to the amount of light reaching those parts.
Importance is very useful for rendering since it enables us
to focus the computations on the light that contributes most
to the image.

The rest of this paper is organized as follows: We begin
with an example of how importance improves the efficiency
of a global illumination solution method. We then provide
an overview of the necessary mathematical formalism:
inner products and adjoints. Next, we describe various
representations of light and importance, followed by a
discussion of the adjoint relationships between these
representations. We also provide physical interpretations
and discuss importance source terms. A comprehensive
overview of publications about importance in rendering, as
well as the most pertinent publications from neutron
transport theory, follows. A conclusion and discussion of
future work is given at the end. It is assumed that the reader
is familiar with standard global illumination terms such as
radiance, radiosity, power, bidirectional scattering distribu-
tion function, and geometric term. (If not, several textbooks
provide excellent introductions [15], [25], [64].) No prior
knowledge of adjoints or importance is assumed.
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2 EXAMPLE: IMPORTANCE FOR PHOTON TRACING

This section provides a simple example of the use of

importance in rendering. The purpose is to give an intuition
about how importance is emitted and transported and how

it is used to guide the accuracy of the light calculation. In

this example, we use the photon map method [30], [31], but
importance is just as applicable to many other global

illumination methods.
Fig. 1a shows our example scene, four rooms with closed

doors between them. Fig. 1b is the image we are interested
in computing, a close-up of the tabletop in the upper right

room. The red pyramid in Fig. 1a indicates the view point

and directions for Fig. 1b.
First, importance particles (“importons”) [38], [58], [71]

are emitted from the intended viewpoint in directions

within the viewing frustum. These particles are traced

around the scene and stored every time they hit a diffuse
surface. The stored particles are shown in Fig. 2a. (The

emitted importance particles are white, but they change

color at each bounce according to the color of the surfaces
they hit. In this scene, most particles turn orange.) After the

importance particle tracing, the importance is estimated at
each importance particle location using the local density of
importance particles. These importance estimates are
shown in Fig. 2b. Note that no importance reaches adjacent
rooms since the doors are closed; this reflects the fact that
no light from adjacent rooms reaches the view point.

Then, the photon tracing phase follows. We use the
importance estimates to determine photon storage prob-
abilities. At locations with low importance, we use Russian
roulette to decide whether to store the photon or not; if the
photon is stored, its power is increased to compensate for
the low storage probability. Compare the top row of Fig. 3a
with the bottom row of Fig. 3: Importance was not used in
the top row of Fig. 3, so most photons are stored in bright
regions, no matter how unimportant those regions are. In
contrast, the bottom row of Fig. 3 shows the gain from using
importance—most photons are stored in areas that are
either directly visible from the intended viewpoint or are
significantly influencing the illumination there. Due to the
higher concentration of photons, the illumination is
approximated much more accurately in Fig. 3f than in
Fig. 3c. The most visible difference is the sharper shadows.
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Fig. 1. Orange interior: (a) entire scene seen from above; (b) seen from the intended viewpoint.

Fig. 2. Importance in interior scene, seen from above: (a) 100,000 importance particles; (b) importance estimates.



In this example, importance is only used to determine
photon storage. It is also possible to use importance to
guide photon emission and reflection [31], [58], but that is
beyond the scope of this example.

3 MATHEMATICAL BACKGROUND

Light and importance are adjoint functions. But what
exactly does that mean? This section introduces mathema-
tical concepts—inner products and adjoints—that enable us
to define the precise relationships between light and
importance.

3.1 Inner Products

The inner product of two functions, f and g, defined on
domain D with measure function �, is

hf j gi� �
Z
D

fðuÞ gðuÞ d�ðuÞ:

Among other uses in rendering, we use inner products to
compute scalar functions of radiance distributions. For
example, assume that we know the (exitant) radiance Lo

everywhere in a scene and are interested in the average
radiance through a single pixel of the image plane. We can
compute this average by integrating the radiance with a
weighting function W that is nonzero only in the pixels’
part of the image plane. Written as an inner product, the
integral is hLo j Wi�.

We use inner products with different measure functions
for functions defined on different domains. Consider first
the inner product of an exitant and an incident directional
quantity, i.e., a quantity leaving some surfaces and another
quantity impinging on the same surfaces—for example,
exitant radiance and incident directional importance. In this

case, the integration is over points x on all surfaces S and all

(exitant) directions ! on the hemisphere � above each point.

The measure function � is the solid angle times projected

area: cos �x d! dAx. The inner product is then

hf j gi!A0 �
Z
S

Z
�o

foðx; !Þ gið�!; xÞ cos �x d! dAx:

Another useful inner product is between two exitant

directional quantities (at different locations). Here, the

domain of integration is all pairs of points in the scene.

The measure function � is the geometric term G (including

a visibility term) times the differential areas at the two

points; this measures “beam throughput” [15]. The inner

product is then

hf j giGAA �
Z
S

Z
S

foðx; !xyÞ goðy; !yxÞGðx; yÞ dAx dAy:

For diffuse and power quantities, we use simpler

integration measures; these will be introduced in Section 5.

3.2 Adjoint Operators

An operator is a transformation of one function to another

function. Examples are integration, differentiation, and

functional inversion. In global illumination simulation, a

commonly used operator is the “exitant transport operator”

To that expresses one bounce of exitant light: the exitant

radiance distribution that results from one bounce of some

other exitant radiance distribution. Another common

operator is the “incident transport operator” T i that

similarly expresses one bounce of incident radiance. Two

operators O and O� are adjoint (with respect to an inner

product with measure �) if
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Fig. 3. Light in interior scene: (a) 500,000 photons stored without importance; (b)-(c) radiance estimates based on the photons in (a); (d) 500,000

photons stored using importance; (e)-(f) radiance estimates based on the photons in (d).



hOf j gi� ¼ hf j O�gi�
for all functions f and g. It will be shown in Section 5 that To

and T i are adjoint operators.
The adjoint of an operator is unique (except for a set of

measure zero) [45]. An operator is self-adjoint if O� ¼ O.
Using thedefinitionof adjoint operators, it is easy toverify the
following three algebraic rules: The adjoint of the adjoint of an
operator is theoperator itself, ðO�Þ� ¼ O. The adjoint operator
is linear, ðO þ PÞ� ¼ O� þ P�. The adjoint of an operator
composed of two operators is the composition of the adjoint
operators in reverse order, ðOPÞ� ¼ P�O�.

3.3 Adjoint Equations and Functions

Given an equation Of ¼ f 0, its adjoint equations are the
equations O�g ¼ g0 for all functions g0. (The functions f 0 and
g0 are usually called “source terms” in computer graphics, but
the terms “boundary conditions” and “driving terms” are
common in other fields.) Two equations are adjoint if they
involve adjoint operators. For example, the equilibrium
equation for exitant radiance (Lo ¼ Lo;e þ ToLo) and the
equ i l i b r i um equa t i o n f o r i n c i d en t r ad i an c e
(Li ¼ Li;e þ T iLi) are adjoint equations. This will be dis-
cussed in detail in Section 5.

Two functions f and g are adjoint functions if they satisfy
adjoint equations. From the previous example, we see that
exitant radiance Lo and incident radiance Li are adjoint
functions.

4 LIGHT AND IMPORTANCE

In order to define the precise relationships between light
and importance, we need to first examine the different
representations of light and importance and the operators
used to transport them.

4.1 Light

There are six commonly used representations of light:
exitant and incident radiance, radiosity, irradiance, and
exitant and incident power.

The canonical representation of light is the exitant
radiance Loðx; !Þ leaving point x in direction !. Incident
radiance Lið!; yÞ is the light reaching point y from
direction !. (Incident radiance is also sometimes called
“field radiance” [1].) Radiance is constant along an
unobstructed ray in a nonparticipating medium, so the
relationship between incident and exitant radiance is
Lið!xy; yÞ ¼ Loðx; !xyÞ when points x and y are mutually
visible. (Here, !xy is the direction from x to y.)

Radiosity BðxÞ at a point x is the cosine-weighted
integral of the exitant radiance over the exitant hemisphere
at x: BðxÞ ¼

R
� Loðx; !Þ cos �x d!. Radiosity is therefore

independent of direction and is sufficient to characterize
the light reflected from a diffuse surface. Similarly,
irradiance EðyÞ is the cosine-weighted integral of incident
radiance over the incident hemisphere at point y. (For
consistent notation, we could use the symbol Bi for
irradiance, but E is standard.)

The exitant power dPo at a point is the product of the
radiosity there and the area of an infinitesimal region
around the point: dPoðxÞ ¼ BðxÞ dAx. Like radiosity, exitant
power is the same in all directions on the hemisphere above

the point. The incident power dPi at a point is the product
of irradiance and the area of an infinitesimal region around
the point: dPiðxÞ ¼ EðxÞ dAx.

These six different representations of light are listed in
Table 1a. More details on light representations and light
transport can be found in, e.g., the textbook by Cohen and
Wallace [15].

4.2 Importance

Several definitions of importance have been used in the
literature; the definition determines which units should be
assigned to importance. Fortunately, the exact definition
does not influence the equilibrium equations. So, we will
use one definition in the following discussion and return to
the topic of the exact units of importance in Section 5.5.

The importance of radiance Loðx; !Þ or Lið!; yÞ is
commonly defined as the fraction of that radiance that
contributes (directly or indirectly) to the region of interest.
Consequently, if radiance is directly incident onto the
region of interest, its importance is 1.

Importance is often represented as the exitant directional
importance Woðx; !Þ from a point x in direction ! or the
incident directional importanceWið!; yÞ from a direction ! to
a point y. What is the relationship between incident and
exitant directional importance? Since radiance is constant
along an unobstructed ray, the contribution of that radiance
—and therefore the importance—must also be constant along
that ray.Hence, the relationship between incident and exitant
directional importance is Wið!xy; yÞ ¼ Woðx; !xyÞ when x
and y are mutually visible.

We can also define diffuse importance quantities
similar to radiosity and irradiance: Exitant diffuse im-
portance Io is the cosine-weighted integral of the exitant
directional importance over the exitant hemisphere at x,
IoðxÞ ¼

R
� Woðx; !Þ cos �x d!. Similarly, incident diffuse

importance IiðyÞ is the cosine-weighted integral of
incident directional importance over the incident hemi-
sphere at point y.

Finally, we can define power-like importance quantities:
Exitant power importance Jo at a point is the product of the
exitant diffuse importance there and an infinitesimal area
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TABLE 1
(a) Light Representations and Units;

(b) Importance Representations



around the point, dJoðxÞ ¼ IoðxÞ dAx. The incident power
importance dJi at a point is the product of incident diffuse
importance and an infinitesimal area around the point:
dJiðxÞ ¼ IiðxÞ dAx.

These six representations of importance are listed in
Table 1b.

Note that (visual) importance is different from the
importance function used in importance sampling. Importance
sampling is a general Monte Carlo method which increases
local sampling efficiency by concentrating samples in places
where the contribution to the total value is expected to be
high. (This is also knownas “sampledensity biasing.”)Visual
importance is optimal for importance sampling, but, in
general, any function that might reduce variance can be
used. General importance sampling is outside the scope of
this paper, but detaileddescriptions canbe found in [25], [36].
(There is also a nice paper by Veach and Guibas [77] that
describes how to importance sample using a combination of
multiple importance functions.)

4.3 Operators

Operator notation is very convenient to describe transport
of light and importance. We most often use the four
operators P, S, To, and T i. The propagation operator P
converts exitant radiance to incident radiance: Li ¼ PLo

(recall that Lið!xy; yÞ ¼ Loðx; !xyÞ if x and y are mutually
visible) and exitant directional importance to incident
directional importance: Wi ¼ PWo. The scattering operator
S converts incident radiance to exitant radiance by reflection
or transmission: Loðy; !Þ ¼

R
fsð!0; y; !ÞLið!0; yÞ cos �0y d!0 or,

more concisely, Lo ¼ SLi. If the BSDF fs is symmetric, the
scattering operator also converts incident directional im-
portance to exitant directional importance, Wo ¼ SWi. (We
can only use the same BSDF fs for importance as for light if
fs is symmetric [74].) The exitant transport operator is the
composition of propagation and scattering, To ¼ SP. The
incident transport operator is the composition of scattering
and propagation, T i ¼ PS. Both transport operators express
one bounce of light, as shown in Fig. 4.

The operators are simpler for light transport between
diffuse surfaces. Radiosity is transported by the exitant
diffuse transport operator To;d and irradiance is transported
by the incident diffuse transport operator T i;d. Exitant
power is transported by the exitant power transport
operator To;p and incident power is transported by the
incident power transport operator T i;p. The definitions of
these operators are listed in Table 2. With these operators, it
is simple to write equilibrium equations for each type of
light and importance—see Table 3.

5 ADJOINTS IN RENDERING

Given the formal definitions of adjoints in Section 3 and the
description of the different representations of light and
importance in Section 4, we are now ready to look at the
precise adjoint relationships between light and importance.

5.1 Directional Operators and Functions

Writing out the inner products and manipulating integrals,
we can show that hPfo j goi!A0 ¼ hfo j Pgoi!A0 . Therefore, the
propagation operator P is, by definition, self-adjoint,

P� ¼ P. Similarly, we can also show that the scattering

operator S is self-adjoint, S� ¼ S, if the BSDF is symmetric.

(Most real BSDFs are symmetric, the most notable exception

being refraction [74].)
Since P and S are both self-adjoint, it can be seen directly

from their definitions that To and T i are adjoint:

T�
o ¼ ðSPÞ� ¼ P�S� ¼ PS ¼ T i. Hence,

hTofo j gii!A0 ¼ hfo j T igii!A0 :

It follows directly that incident radiance Li and incident

directional importance Wi are adjoint functions of exitant

radiance Lo and exitant directional importance Wo. This

important result has been shown by numerous authors

[1], [3], [4], [5], [19], [20], [21], [37], [39], [41], [51], [63],

[74], [75], [76].

It is most common to use Lo and Wi for global

illumination calculations. However, it is more practical for

some algorithms to only propagate exitant quantities, i.e.,

Lo and Wo. Then, the inner product can be expressed as

hLo j PWoi!A0 or hPLo j Woi!A0 . It is interesting to note that

the value of this inner product can also be expressed as an

inner product with the “beam throughput” measure:

hLo j WoiGAA.

(An aside: Using an inner product with two areas in the

integration measure, it can be shown that Kajiya’s two-point

transport intensity [34] (which has units ½W=m4�) and a

similarly defined two-point importance are adjoint func-

tions of exitant radiance Lo and exitant importance Wo. This

was shown by Christensen et al. [11] (although two-point

importance was confusingly called incident importance

there) and by Arvo [1]. It can also be shown that incident

radiance Li and incident directional importance Wi are

adjoint functions of two-point transport intensity and two-

point importance.)
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Fig. 4. Operators: (a) propagation operator P; (b) scattering operator S;
(c) exitant transport operator T o ¼ SP; (d) incident transport operator
T i ¼ PS.



5.2 Diffuse Operators and Functions

For purely diffuse reflection, it can be shown that

hTo;dfo j gii!A0 ¼ hfo j T i;dgii!A0 :

Therefore, To;d and T i;d are adjoint operators and irradiance

E and diffuse incident importance Ii are adjoint functions of

radiosity B and exitant diffuse importance Io. This was

informally shown for the discrete case by Pattanaik and

Mudur [55]. (We can derive the same adjoint relationships

using inner products with measures d� ¼ dAx dAy and

d� ¼ dAx.)

5.3 Mixed Diffuse and Power Operators and
Functions

Still considering purely diffuse reflection, one can show

that:

hTo;dfo j dgii ¼ hf j T i;pdgii:

(fo is a radiosity-like function, dgi is an incident power-like

function, and the inner product has no integration

measure.) So, To;d and T i;p are adjoint operators under this

simple inner product and incident power dPi and incident

power importance dJi are adjoint functions of radiosity B

and exitant diffuse importance Io. Smits et al. [67], Sbert

et al. [61], [62], and Bekaert [5] showed a discretized version

of this. It can be shown in a similar manner that

hTo;pdfo j gii ¼ hdfo j T i;dgii:

(Here, dfo is an exitant power-like function and gi is an

irradiance-like function.) So, To;p and T i;d are adjoint

operators, and irradiance E and incident diffuse importance

Ii are adjoint functions of exitant power dPo and exitant

power importance dJo. This was used by Pattanaik and

Mudur [51], [54], [56] and shown formally by Sbert et al.

[61], [62] and Bekaert [5] for the discrete case.

5.4 Power Operators and Functions

Still considering purely diffuse reflection, it can be shown

that

hTo;pdfo j dgii1=A ¼ hdfo j T i;pdgii1=A:

(Here, dfo and dgi are both power-like functions, and the
integration measure is d� ¼ 1=Ax.) Therefore, To;p and T i;p

are adjoint operators and incident power dPi and incident
power importance dJi are adjoint functions of exitant power
dPo and exitant power importance dJo. Neumann et al. [49]
and Prikryl et al. [60] used the fact that dPo and dJi are
adjoint.

These adjoint relationships are summarized in Table 4.

5.5 Physical Interpretation of Inner Products

There are three commonly used interpretations of the inner
product of exitant radiance and the source term for incident
directional importance, hLo j Wi;ei!A0 . One interpretation is
that the inner product is the power that radiance distribu-
tion Lo contributes to the image. With this interpretation,
the inner product has unit ½W� and, therefore, directional
importance must be dimensionless. Another interpretation
is that the inner product is the (dimensionless) response of a
measuring device at the viewpoint as result of radiance
distribution Lo; with this interpretation, the unit of
directional importance must be ½W�1�. Other authors define
dJi to be a dimensionless fraction [67] and the unit of
directional importance follows from that. These differences
of interpretation are mostly academic; the usefulness of
importance is independent of the units assigned to it. We
have chosen the first interpretation in this paper.

5.6 Source Terms for Importance

In general, any part of the scene can be defined to be most
important and, hence, be the source of importance. For
example, a particular art piece in the middle of the image
may be the center of attention and, hence, requires the most
accurate solution. Very often, everything that is directly
visible in the image is defined to be very important. In that
case, the optimal importance source term depends on the
error metric used to measure image quality.

If the error metric measures total image error, then the
imageplane should emit importance 1 in all directionswithin
theviewing frustum.This results in the illumination at visible
surfaces being computed to an accuracy proportional to their
projected area in screen space. This was used by Smits et al.
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TABLE 2
Transport Operators

The notation ðT oLoÞðy; !Þ denotes the result of T o operating on Loðx; !0Þ
to produce a function whose argument is ðy; !Þ.

TABLE 3
Equilibrium Equations for Light and Importance



[67], Christensen et al. [11], Bekaert and Willems [7],
Neumann et al. [49], and implicitly by Dutré et al. [20].

If the error metric measures maximum pixel error, then
all visible patches should emit importance 1. Pattanaik and
Mudur [54] used a slight variation on this by initially
assigning importance 1 to all visible patches, but stopping
importance emission from patches which achieve sufficient
accuracy during calculations.

Final gathering complicates the issue somewhat. Final
gathering is the use of one level of distribution ray tracing at
directly visible diffuse surfaces. When final gathering is
used for rendering the image, we are no longer interested in
getting the most accurate global illumination simulation
results at the directly visible patches. Instead, the most
important parts of the scene are those that contribute light
directly to the directly visible parts (i.e., one bounce away
from the image plane). Hence, only indirect importance
should be used to guide solution accuracy. (Neumann et al.
[49] made a similar observation in a different setting: Only
indirect importance should determine how many particles
(rays) to shoot from a patch in stochastic relaxation
radiosity. Bekaert [5] gave a proof of the lower variance
with this choice.) For a more in-depth discussion of the
subtleties of the use of importance in a final gathering
setting, see Suykens and Willems [71].

6 LITERATURE SURVEY

The following is a fairly complete description of articles,
books, and dissertations related to the usage of adjoints and
importance in rendering. The publications are divided into
the following six categories: mathematics and nuclear
physics, theoretical results in rendering, “classic” and
distribution ray tracing, finite element global illumination,
Monte Carlo global illumination, and participating media.

6.1 Background Material: Mathematics and Nuclear
Physics

The term “adjoint equation” was first used by Lagrange and
adjoint equations were used by Fredholm in 1903 to
determine the solvability of certain integral equations [24].
The adjoint of neutron density was used early in the
development of the Monte Carlo method to speed up
simulations of neutron transport. According toMalvin Kalos
[personal communication, 1999], it was von Neumann who

first pointed out the significance of the adjoint function in
variance reduction in Monte Carlo transport calculations.
Discussions between Feshbach, Friedman, Goertzel, and
Kahn at the Oak Ridge National Laboratory in the summer
of 1949 led to the insight that the optimal importance
sampling function is equivalent to the solution of an adjoint
problem [32]. The first papers describing this relationship
were published by Goertzel [26] and Kahn and Harris [32],
[33] later in 1949. The term “importance function” was
coined by Soodak [45], [68] (also in 1949). A number of
references [17], [35], [36], [45], [46], [69] describe adjoints
and importance in the context of neutron transport
simulation.

6.2 Theoretical Results in Rendering

Pattanaik and Mudur [52], [55] and Dutré et al. [21]
showed that the exitant radiance equation is the basis for
light gathering methods, such as ray tracing, path tracing,
and “classic” (full matrix) radiosity, and that the incident
importance equation is the basis for light shooting
methods such as progressive refinement radiosity and
photon particle tracing from the light sources. For
gathering methods, we are given Wi;e (for example, the
image plane or a current patch of interest) and must
compute � ¼ hLo j Wi;ei!A0 using the equilibrium equation
for exitant radiance Lo ¼ Lo;e þ ToLo. For shooting meth-
ods, we are given the light source emissions Lo;e and
compute � ¼ hLo;e j Wii!A0 using the equilibrium equation
for incident directional importance Wi ¼ Wi;e þ T iWi.

The PhD dissertations of Arvo [1] and Veach [75] derived
the light transport operators and their adjoints using very
strict formalisms. Veach [74], [75] showed that, if the BSDF
is not symmetric (as, for example, when refraction occurs),
the scattering operator S is not self-adjoint and the transport
operators for exitant radiance and exitant directional
importance differ (and the transport operators for incident
radiance and incident directional importance also differ).
He formulated an integration measure that takes the index
of refraction into account and showed that the scattering
operator is self-adjoint using an inner product with that
measure.

6.3 “Classic” Ray Tracing and Distribution Ray
Tracing

In ray tracing [80], the light transported by a ray is radiance
[15]. The importance of a ray is simply the fraction of its
radiance that ends up in the image; for this reason,
importance is often called ray weight or ray contribution in
ray tracing. Knowing a priori that the color resulting from
tracing a ray will contribute very little to the final image
makes it possible to speed up the ray tracing by making
shortcuts and approximations. For example, Hall and
Greenberg [27] avoided tracing reflection and refraction
rays with low importance, while Arvo and Kirk [2]
suggested using Russian roulette when the importance is
low (to avoid introducing bias by path truncation). Cook
et al. [16] suggested that the number of new rays to be
traced at nonspecular reflection and refraction should be
proportional to the importance, while Ward et al. [79]
suggested that the number of new rays should be
proportional to the square of the importance. The correct
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choice probably depends on the expected coherency in the
samples. Ward [78] increased the sampling tolerance for
unimportant shadow rays and Jensen [30] used importance
to select an indirect illumination calculation method
(lookups in a photon map for low importance and one
level of distribution ray tracing for high importance). One
can also use importance to speed up the calculation of
procedural textures, bumpmaps, shading normals, and ray-
surface intersections [9].

6.4 Finite Element Global Illumination

The finite element method used in computer graphics stems
from the heat transfer literature. The finite elements are
either 2D (representing positional variation of radiosity or
power on diffuse surfaces) or 4D (representing positional
and directional variation of radiance).

6.4.1 Diffuse Global Illumination (“Radiosity”)

In finite element diffuse global illumination methods, the
surfaces are divided into patches and the radiosity or power
on each patch is represented with basis functions (constant,
polynomial, wavelets, etc.). The influence of one basis
function on another is called the “transport coefficient” or
“form factor.” The exitant diffuse transport operator is
discretized into a matrix with form factors as the matrix
elements. (The adjoint of a discretized transport operator is
simply the transpose of its matrix.) In “full matrix radiosity”
methods, the solution is found by solving a large system of
linear equations.

A significant improvement is the use of hierarchical
bases. Hierarchical radiosity [28] starts out by computing a
solution for very coarse basis functions. An “oracle” then
analyzes the solution and refines basis functions and
interactions where necessary, based on estimated transport
error and radiosity. Then, a new solution is found, the basis
functions and interactions are refined again, and the process
repeats until a sufficiently accurate solution has been found.
Smits et al. [67] introduced the use of importance for a view-
dependent hierarchical solution of the diffuse global
illumination problem. They transported incident power
importance at the same time (and using the same hierarchy)
as radiosity and used estimated transport error, radiosity,
and incident power importance to decide where to refine.
This leads to a solution which is refined most in bright
visible regions. (They made the observation that their
importance—“incident power importance” in our termino-
logy—needs to be transported differently than radiosity.
For example, radiosity needs to be averaged when being
“pulled up” in the hierarchy, while power importance
should be added. This is simply because power importance
is not measured per area.) Lischinski et al. [47], [48]
improved the error bounds used for importance-driven
refinement. Smits et al. [65], [66] extended the method with
clustering and also used the importance-driven refinement
for clusters.

Another popular finite element solution method is
progressive refinement radiosity [14]. With this method, the
solution is improved (refined) little by little, but there is no
refinement of the finite elements. The patches with the
highest unshot power are selected first to “shoot” their light
to other patches, giving fast convergence and useful images

early in the solution process. Bekaert and Willems [7]
extended progressive radiosity to use importance. In their
method, radiosity and incident power importance are
propagated in alternating steps. In the importance propaga-
tion steps, the patch with the highest unshot importance is
selected; in the radiosity propagation steps, the patch with
the highest product of importance and unshot radiosity is
selected. Their method allows incrementally changing view
points: When the visible patches change, the importance
sources are updated accordingly.

With the bidirectional radiosity method [20], the radiosity
is computed for—and importance is emitted from—the
directly visible patches one at a time. The order of the
visible patches is selected depending on their projected
screen area so that as many pixels are illuminated as
quickly as possible. The solution for each patch is found by
progressive refinement of radiosity and importance in a
manner similar to the importance-driven progressive radio-
sity method described above, but no radiosity is computed
for patches with low importance. Even though solutions are
computed independently for one patch at a time, much
information can be reused, including the form factors
between patches and the approximate radiosity on non-
visible patches.

Pueyo et al. [59] presented a radiosity algorithm with a
more heuristic definition of importance. The importance is
not an adjoint; instead, the important patches or objects can
be manually tagged in the scene database. Radiosity is
neither shot to nor from unimportant patches; the unim-
portant patches are only used for occlusion testing.

6.4.2 Glossy Global Illumination (Radiance)

Finite element methods have also been used to solve the
more general problem of glossy global illumination.
Importance is even more helpful in this case since radiance
is only important if it is in a position and direction that
contribute significantly to the image. Even within a simple
glossy scene that is entirely visible, there are many
unimportant transport paths.

Aupperle and Hanrahan [3], [4] extended the hierarch-
ical radiosity method to handle glossy reflection. They let
the finite elements represent radiance from one surface
patch to another and replaced the “form factor” matrix with
a matrix of transport coefficients representing the influence
of one patch-to-patch radiance on another. Radiance and
directional importance is transported using the same
matrix: When radiance is transported along a link, direc-
tional importance is transported in the opposite direction
along the same link. They used the product of estimated
transport error, exitant radiance, and incident directional
importance to decide where to refine the solution. (“Push-
ing” and “pulling” are the same for their choice of
importance as for radiance.)

Schröder and Hanrahan [63] compared different wavelet
bases for representing patch-to-patch radiance and impor-
tance. Bekaert and Willems [6] also used the same
representation as Aupperle and Hanrahan, but used
shooting for both light and importance to get an algorithm
similar to progressive radiosity, but adapted for radiance.
They used a combination of radiance and directional
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importance to decide which patch-to-patch basis function to
shoot from next.

Christensen et al. [8], [10], [11], [12], [13] used a different
representation of radiance: Instead of representing radiance
between all pairs of patches, we represented radiance from
each patch in the directions on the hemisphere above the
patch. In [11], we used spherical harmonics to represent the
directional variation; in later publications, we used wave-
lets. We noted that, with this representation, it is better to
use exitant importance than incident importance since it has
fewer discontinuities (most BSDFs act like a smoothing
operator) and it is transported like radiance (simplifying the
algorithm). For point representations of clusters of geome-
try, we introduced an importance quantity transported like
radiant intensity (a representation of the light from a point
with units [W/sr]) and called it radiant importance [10].

Several textbooks [15], [25], [64], [70] contain overviews
of the use of importance-driven refinement for finite
element solutions of diffuse and glossy global illumination.

6.5 Monte Carlo Global Illumination

Photon transport shares many characteristics with neutron
transport, hence Monte Carlo global illumination is very
similar to Monte Carlo neutron transport simulation.

6.5.1 Diffuse Global Illumination

In the random walk radiositymethod, light particles (photons)
are emitted from the light sources, transported through the
scene, and stored at the premeshed diffuse surfaces they hit
along the way. The sum of the power of the photons that hit
a patch is an estimate of the incident power on that patch.
Importance can be used to guide the photon particles to the
locations where they will most improve the accuracy of the
visible solution. Pattanaik and Mudur [51], [54], [56] used
importance to determine the directions in which to focus
the emission and reflection of photon particles. The
importance of a patch was estimated by counting the
fraction of the photons leaving that patch which eventually
reached the region of importance. With this method, there is
no explicit transport of importance.

Dutré and Willems [19], [23] also used premeshed
diffuse surfaces, but only to store approximate incident
importance. When a particle hits a visible point, the power
is propagated directly to the corresponding pixel and stored
there, so no light information is stored on the surface
patches. The importance functions are used to guide
emission and reflection of photon particles. The importance
at a patch in a certain direction is increased if a photon
particle leaving the patch in that direction eventually makes
it to a visible point.

Pattanaik and Bouatouch [53] used a cheap estimate of
the importance of each light source (called “illuminating
capacity”) to modify the probabilities of emission. Their
method keeps a tally of how many photon particles emitted
from each light source get reflected (through multiple
bounces) into different regions of the scene. During an
interactive walk-through of the scene, the emission of
photon particles is biased toward emission from those light
sources that contribute most to the illumination of the
currently visible region.

Sbert [61] pointed out that, in order to minimize the
variance of the radiosity solution, the number of photon
particles to be emitted from each light source should be
proportional to the square root of its importance (and not
directly proportional to it). The reason is that the variance in
the radiosity solution should be inversely proportional to
the importance and the variance is reduced by one over the
square root of the number of particles.

In stochastic relaxation radiosity (a.k.a. stochastic ray radio-
sity) [50], photon particles are shot from one patch at a time.
At each iteration, each patch emits a number of particles
proportional to its power. Points on each patch and
emission directions are randomly chosen. Neumann et al.
[49] traced both photon and importance particles and used
importance to bias the emission probabilities (both origin
patch and direction) such that more photon particles are
shot to important parts of the scene. Their basic algorithm
shoots power and power importance. As an improvement,
they also used directional importance: The hemisphere
above each patch is divided into eight solid angles and the
incident importance is stored for each. Most particles are
shot in important directions. Prikryl et al. [60] extended the
method to use a hierarchical representation of radiosity
(and importance).

6.5.2 General Global Illumination

The general global illumination method used by Dutré and
Willems [19], [22] is similar to Pattanaik and Mudur’s
random walk radiosity method in that they both use
random walks from the light sources and use importance
to guide the emission from the light sources. However,
Dutré and Willems used no tessellation of the scene to
represent the light distribution: When a particle hits a
visible surface, the contribution is stored directly in the
corresponding pixel. Also, their method was not restricted
to diffuse scenes—they used a Phong BRDF in their
implementation. On the downside, their method did not
use importance to guide reflection at surfaces, only to guide
emission. (They later modified this method to also use
importance sampling at surfaces. However, the new
method used a tessellation to represent importance and
was restricted to diffuse scenes, as described above in
Section 6.5.1.)

Bidirectional path tracing combines light paths from light
sources with importance paths toward the image plane.
This method can be derived in a natural way using the
framework of the exitant radiance equation and the incident
directional importance equation [39], [40], [41], [75], [76]. In
related work, several methods used information about the
illumination directions to guide path tracing from the eye.
Jensen [29] used photon directions from a photon map,
Lafortune and Willems [42] used a 5D tree structure of ray
origins and directions, and Szirmay-Kalos et al. [72], [73]
used photon directions from photons stored on surface
patches.

Peter and Pietrek [58] extended the photon map method
[30] with an initial pass where importance particles are
traced from the eye point. The resulting distribution of
importance is then used in the photon tracing pass to guide
the emission and reflection of photons. For example, few
photons are emitted in unimportant directions (each photon

CHRISTENSEN: ADJOINTS AND IMPORTANCE IN RENDERING: AN OVERVIEW 9



with relatively high power). The problem with this method
is that the power of “neighbor” photons in the photon map
can vary a lot, resulting in noisy irradiance estimates. Keller
and Wald [38] and Suykens and Willems [71] presented
methods to overcome this problem: They use importance to
determine only the probability of storing each photon. Few
photons are stored in regions with low importance, but the
photons that are stored there get a high power to
compensate for the low probability. Keller and Wald
increase the power of photons that are stored despite low
probability, while Suykens and Willems distribute the
power of a nonstored photon among the nearest previously
stored photons. With these methods, important regions get
a dense population of low-power photons while unim-
portant regions get a sparse population of high-power
photons, thus avoiding mixing high and low-power
photons. The disadvantage of these two methods is that
using importance does not reduce the number of traced
photons.

6.6 Participating Media

If a scene contains participating media such as fog, smoke,
or silty water, the volumes should participate in the
transport of light and importance.

Volume ray tracing, a.k.a. ray marching [57], is often
used for direct illumination calculation and to render
global illumination solutions. For each ray from the eye,
the change in light along that ray is computed at many
steps along the ray by adding the local irradiance and
taking attenuation into account. Importance for eye rays
in front-to-back ray marching is simply the remaining
transparency along that ray, i.e., one minus accumulated
opacity. Danskin and Hanrahan [18] suggested the use of
importance to speed up ray marching: If the remaining
importance along a ray is low, the steps can be longer and/
or the calculation at each step can be simplified. Ray
marching can be terminated when the remaining impor-
tance gets low [44]; this should be done with Russian
roulette to avoid bias [18].

To our knowledge, importance has not been used for
finite element simulation of participating media. For Monte
Carlo methods, photons and importance particles can be
emitted, scattered, and absorbed in the medium. Bidirec-
tional path tracing was extended to participating media by
Lafortune and Willems [43].

7 CONCLUSION AND FUTURE WORK

Importance, defined as an adjoint quantity, originated in
neutron transport simulation. In the last decade, it has been
used to speed up many different rendering methods. In
rendering, there are six commonly used types of importance
(just as there are six commonly used representations of
light): incident/exitant directional importance, diffuse
importance, and power importance. Each type of impor-
tance is adjoint to at least one representation of light (some
types of importance are adjoint to more than one repre-
sentation of light using different inner products). We have
shown precisely which types of importance are adjoint to
which light representations, generalizing results known

from the discrete case. We have also presented an overview

of the many uses of importance in rendering.
One interesting direction for future research is the

incorporation of perceptual importance measures. Cur-

rently, light transports are computed to an accuracy that

is linearly dependent on importance. However, the human

visual system is nonlinear—for example, small differences

are more important in dark regions than in bright. It seems

reasonable to use the computed importance in a nonlinear

way. For example, the required accuracy could be increased

in dark regions even if the importance is moderate.
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