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1 2D DEFORMATIONS VIA COMPLEX NUMBERS

The derivatives of distortion energies in R? were recently considered
by Chen and Weber [2017]. In contrast to our work, this method
analyzed energies using Wirtinger derivatives obtained by express-
ing 2D deformations with complex numbers. We now review this
complex-based formulation and compare its results to ours. Impor-
tantly, we show that Wirtinger derivatives are restricted to 2D and,
therefore, the results in Chen and Weber [2017] do not extend to 3D.
In contrast, ours is suited to both 2D and 3D.

1.1 Wirtinger Derivatives

Any 2D point (x, y) can be written as a complex number z = x + iy.
A 2D deformation can then be expressed by a complex function
®(z) = u(z) + iv(z), where u and v map complex numbers to scalars.
The Wirtinger derivatives of ® are defined by:

wi = ®_ 1/2 (5xq> - i0y<l>) =1/2 (6xu + 6yv) +i/2 (3xv - Hyu) )

0z

oo
Wy = E = 1/2 (axd) + 16y<I>) = 1/2 (Bxu - 6y[)) + i/2 (6x’U + 5yu) .
Using Euclidean coordinates (x, y), the 2D mapping ® also defines a

deformation gradient F of the form:
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We can further decompose F into similarity and anti-similarity parts:
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F=1/2(fi + fa)
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and then conclude that:

w1 =12 (fi + fa) +i/2(fa - f3).

wo =12 (fi - fa) +if2(fa + f3) -
Therefore, the first Wirtinger derivative wy corresponds to the simi-
larity deformation encoded by F, while the second Wirtinger deriva-
tive wy contains the anti-similarity transformation. More concisely,
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we can express the Wirtinger derivatives as a simple change of vari-
ables applied to the deformation gradient. To this end, we flatten
the deformation gradient into a vector, f =vec (F), and set the vector
w to the concatenation of wi and wy, i.e.:

welwl=12| i+fi fi-fi fi-fi fi+h |

It is then trivial to verify that w=1/2 0 f, where O is the matrix

1 0 0 1
01 -1 0
0= 1 0 0 -1
01 1 0

Note, however, that the Wirtinger derivatives and the similarity
decomposition of F have no equivalents in 3D. Consequently, the
results in Chen and Weber [2017] are restricted to 2D deformations.
We overcome this limitation by employing f as our primary represen-
tation, which leads to a unified formulation suited to eigenanalysis
both in 2D and 3D.

1.2 Invariants

Isotropic distortion energies are determined entirely by rotation-
invariant measures extracted from the deformation gradient F, and
can thus be expressed by functions of the singular values (o1, 02)
of F. As detailed in our main document, we compute the singular
values of F using the SVD reflection convention from [Irving et al.
2004; Twigg and Kaci¢-Alesi¢ 2010], which ensures that o7 > |o2].

Some methods (e.g. [Stomakhin et al. 2012; Teran et al. 2005]) em-
ployed the singular values (o1, 02) as the energy invariants directly.
This approach, however, leads to energy Hessians with no known
analytical eigenstructure. Our work advocates instead the use of the
invariants (I1, I, I3) derived from the stretch part S of F. As shown
in Section 4 of the main text, the eigensystem for these S-based
invariants can be expressed in closed-form. Observe that our 2D
formulation intentionally includes a third, redundant invariant so
that our results are consistent in 2D and 3D. In contrast, the work
of Chen and Weber [2017] considered invariants computed based
on the Wirtinger derivatives. These complex-based invariants can
be written in terms of our S-based invariants as follows:

{ a1 = w1l = 1/4 (o1 + 0)?

1/a (I + 2I3) = 1/4 I?,
14(Ip — 2I3).

az =||w2||> = 1/4 (01 — 02)*

1.3 Analytical Eigensystem

Similar to our work, Chen and Weber [2017] considered the opti-
mization of 2D isotropic distortion energies ¥ using a variant of the
Newton method that projects the Hessian matrix at every quadra-
ture point to positive semi-definiteness. In contrast to ours, Chen
and Weber [2017] computed the derivatives of ¥ with respect to w,
instead of using the deformation gradient f. As a side note, we point
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out that [Chen and Weber 2017] adopted harmonic coordinates as
their specific choice of basis functions so that quadrature points
could be placed solely on the boundary of the 2D domain. Yet, their
Hessian construction and eigenanalysis are agnostic to the basis
choice and follow the same steps in Section 3 of our main document.

Analogous to Eqn. (9) of our main paper, Chen and Weber [2017]
expanded the energy derivatives via the invariants (a1, az), yielding:

A .
Bw_i Low’

0?v d%a; dai\ (9a;\"
aw? Zai ow? Zﬂij (%) (%),
i i,j
where a;=0¥/da; and p;; =62‘I’/0ai(9aj. Therefore, the Hessian

eigensystem requires the analysis of the w-based derivatives of
(a1, a2). Based on the definitions in Section 1.2, we obtain:

day T  day T
— =2|w; w2 0 0] —22[0 0 w3 W4]
ow ow
1 0 0 O 0 0 0 O
#a; |0 1 0 0 d%ay L[ 0 0 0 0
w2~ |0 0 0 0 owz |0 0 1 0
0 0 0 O 0 0 0 1
and, consequently, the energy derivatives reduce to:
a; 0 0 0
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By analyzing these derivatives, Chen and Weber [2017] found the
eigenvalues 1; and eigenvectors e; of 32¥/dw? in closed-form for
any 2D energy (see Eqns. (23) and (24) of their main text). For the
purposes of comparison, we list their analytical expressions below:

T
A = 2o el = [Wz -w; 0 0]

T
Ay =2z ey = [0 0 wg -—ws3 ]

-

A3 =51+ ,lsg + 16ﬂf2a1ag e3 = [wl wy  tiws t1W4]
T

Ag =51 — ,lsg + 16ﬂf2a1az e4 = [wl wy  thws t2W4] .

Note that the eigenvectors are not normalized. Also, observe that
these expressions depend on auxiliary variables given by:

s1=oa1 + 2,511(11 + o9 + Zﬁzgaz

s2 = a1+ 2fna1 — az — 2f2az

t1 = (A3 — 2a1 — 4P11a1) / (4P12a2)

ta = (A4 — 2a1 — 4P11a1) / (4P12az)
Crucially, the variables #; and t2 may be ill-defined due to the di-
vision by f12a2, which can be zero for any energy with f12 =0 or
when ay =0 (which is equivalent to o1 = 02). Moreover, the case of
ay = 0 implies wy = 0 and thus ey = 0, which is not a valid eigen-
vector. These numerical issues can be resolved by rederiving the
Hessian eigensystem for these special cases, but to our knowledge
these special configurations must be addressed in a case-by-case

basis in Chen and Weber [2017]. Therefore, the most generic form
of the eigensystem presented by Chen and Weber [2017] requires
numerical surgery for any energy, even if the shape is at rest. In
sharp contrast, our S-based formulation is well-defined for any state
of the deformation gradient and for any energy both in 2D and 3D.

2 COMPOSITE MAJORIZATION FOR ARAP

In this section, we describe two derivations of composite majoriza-
tion for the ARAP energy in 2D. As noted in Shtengel et al. [2017],
composite majorization depends on the choice of a function’s com-
posite and convex-concave decomposition. Both of these choices
are not unique, and distinct choices may lead to different approx-
imations. Here, we present two of these choices and demonstrate
how the differences can be indeed significant. We then employ these
expressions for comparisons against our projected Newton solver.
We report these results in §6.1 of the main text and in Table 16.

2.1 Comp. Majorization for 2D ARAP: Version 1

Our first approach to derive composite majorization for the ARAP
energy uses the invariants of the stretch tensor S. In this case, the
ARAP energy per quadrature point is written as Wapap =2 —27 +2.
Using the notation from Shtengel et al. [2017], the pair of invariants
I and I, corresponds to the their function “g” and ¥y, is their
function “h”. Note that ¥,,p is linear in terms of I; and I, so its
second derivatives are zero and the convex majorizer includes only
the second derivatives of the invariants. While the Hessian of I,
is always positive definite, the Hessian of I is positive definite if
and only if I; > 0. Using the SVD reflection convention from [Irving
etal. 2004; Twigg and Kacic¢-Alesi¢ 2010], which combines reflections
with rotations, we can ensure that o7 > |02| and, consequently, I; > 0.
Therefore no convex-concave decomposition is needed. Given that
the first derivatives of Wyg,p are —2 for I; and 1 for I, we can employ
Eqn. (9) of [Shtengel et al. 2017] and conclude:

62 \PARAP
of?
As discussed in §5.4 of our main text, an identity F-based Hessian
contributes to the full Hessian with a Laplacian matrix. This implies
that this specific majorizer approximation is equivalent to [Koval-
sky et al. 2016], and thus degrades the convergence of the ARAP
optimization to first-order.

~ 2L (1)

2.2 Comp. Majorization for 2D ARAP: Version 2

Shtengel et al. [2017] proposed to set the composite function g to the
singular values (071, 02) of each quadrature point. The ARAP energy
is then expressed as Wypap = (01 —1)2+(09—1)%. The derivatives of
W,rap With respect to the singular values are: 0%Wuzap/d0; =2(0; — 1)
and aZWAMP/aaiaojzzéﬁ, where J;j is the Kronecker delta. To
address inverted elements, we again adopt the SVD reflection con-
vention presented in [Irving et al. 2004; Twigg and Kaci¢-Alesi¢
2010], which guarantees that o > |o3| and, consequently, I; > 0.
The formulation of Shtengel et al. [2017] expanded the expres-
sions for the singular values based on the similarity decomposition
of the deformation gradient F, similar to Chen and Weber [2017].
Using the notation from Section 1.1, we denote with w; the similar-
ity part of F and use wy for its anti-similarity part. We then have



the following identities:

by = ||w1l|| = Y2(01 + 02) = V)2 + 2I3 = 1/2 I1,
by = ||wz|| = 1/2(01 — 02) = Y2V, - 2I5.

Using the eigensystems of the S-based invariants presented in our
main text, it can be shown that:

2
%:lr ﬂ:itt—r
of 2 ofz  2b

2
L PR, £ Py Ly
of  4by 2 ofz  2by

Note that the Hessians of both b1 and b, are always positive definite
because b1 >0 and by > 0.

Shtengel et al. [2017] also proposed to decompose the singular
values into convex functions g* = (b; +b2, b1 ) and concave functions
g~ =(0,-by) so that g* +g~ = (01, 02). By directly substituting these
expressions into Eqn. (9) of [Shtengel et al. 2017], the convex ma-
jorizer produces:

[o1 = 09 = 1]

e T T 1 .+ 1 1
~ 2 2(01-1) | =—ttT + —1T |+2(cp—1)—1tt "
e r +2pp +2(0o1—1) 2, +2b2 +2(02 )2b1
[o1 = 1> 02]

O¥e T T 1 o+ 1 1
ZARAP o 2 2(01-1) [ —ttT+—1" | -2(cp—-1)—1I"
2 I +2pp +2(e1-1) 2b; +2b2 (02 )sz
[1>01 > 09]

02¥ s

P Y ~rr' +2pp —2(0p— l)illt

The left-most (r, p) terms correspond to the Gauss-Newton-like
part of Eqn. (9) from [Shtengel et al. 2017], while the right-most
terms include the Hessians of the convex and concave functions
(g%, g7). After algebraic manipulation, we can rewrite this Hessian
approximation in terms of the exact ARAP Hessian presented in
§5.1 of our main text:

[0'1 > 09 > 1]
YNy 0% ¥ rar
af2 — of?

[01 21> 03]

Wy _ O*Wyrar
of2 of2

[1> 01 2 02]

R
ofz — of2

1
+2(02—1)EHT

L
—2(g3—1)—tt
(02 )2b1

1+ 1 5 1.
—2(0'1 —1) (ﬁtt + %ll )_2(0—2_1)ﬁtt .
By inspecting the exact ARAP Hessian, it can be verified that the
case of 01 > 02 > 1 guarantees positive semi-definiteness. However,
composite majorization returns just Hessian approximations. In
sharp contrast, our method reproduces positive semi-definite Hes-
sians exactly. This discrepancy justifies our superior performance
compared to composite majorization, as reported in Table 16.
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3 EIGENSYSTEM OF IIc

The eigensystem of the 3D second Cauchy-Green invariant IIc =
ICJ|? is as follows:

M = 1207 q =d
Ay = 12(7'22 qz =d3
A3 = 1207 q3 = ds3
Ay = 4(022 + 0'32 — 0203) Q=1
As = 4((722 + 032 + 0203) g5 =1
Ag = 4(012 + 0'3? - 0103) qe = t2
A7 = 4((712 + 0'32 + 0103) q7 =1L
Ag = 4(012 + 0'22 - 0102) qs = t3
Ao = 4((:12 + 0'22 + 0102) Q=1

4 3D EIGENSYSTEM OF I

For completeness, we list the eigenvalues and eigenvectors for the
Hessian of I3 in 3D. The first three eigenvalues are the roots of a
depressed cubic and can be written as:

I 1 3I 3
Ai = 2,[—2 cos | = [arccos [ =2 4] = | + 27(i—-1)]|. (2)
3 3 I, I

Note that these three eigenvalues reduce to zero in the special case
when F = 0. The corresponding eigenvectors are:

zZij1 = 0103 + O'Zﬂi
Zjp = 0203 + 0'1).1'

2

1
ej = — zjid; with
. ¥
& = 2
j zi3 = Af — 03

and & =,/; zlz.. is a normalization factor. The last six eigenpairs
defined over i € {1, 2,3} are:

Ait3 =oi €i+3 = t;

Aite = —0j eire = ;.

5 MATLAB VERIFICATION

We provide Matlab code to verify the eigensystem expressions ar-
rived at via our approach. We provide verification scripts for the
ARAP, co-rotational, Symmetric Dirichlet, and Symmetric ARAP en-
ergies in both 2D and 3D. Each energy has a direct implementation
of its distortion energy, gradient and Hessian. The correctness of
the gradient and Hessian implementations are numerically verified
using finite differences.

The numerical distortion energy and Hessian are then converted
to symbolic code, and the symbolic eigensystem is constructed by
using the expressions from the main paper. The symbolic eigensys-
tem is then multiplied against the symbolic Hessian to confirm that
it is indeed a valid eigenpair. All of the provided energies pass this
sequence of tests. For further instructions on running these scripts,
see the README . txt provided with the scripts.

6 PARAMETERIZATION PERFORMANCE

In Figures 6 through 7 we provide detailed plots of the Newton
solver’s progress for Symmetric Dirichlet-based parameterizations
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on the meshes from §6.1 of the main text. We also summarize the per-
formance statistics for computing surface parameterizations using
the Symmetric Dirichlet (Table 8) and the ARAP (Table 16) ener-
gies. We tested each energy and each method against 41 meshes
drawn from the Thingil0K model database [Zhou and Jacobson
2016], the McGuire Computer Graphics Archive [McGuire 2017],
Keenan Crane’s 3D Model Repository [Crane 2018], the corpus of
canonical graphics meshes, and a collection of production meshes.
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Fig. 1. Solver iterations (left) and wall clock time (right) to compute a parameterization with Symmetric Dirichlet over the bear mesh using our method (pink
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Fig. 3. Solver iterations (left) and wall clock time (right) to compute a parameterization with Symmetric Dirichlet over the car mesh using our method (pink
circles), composite majorization (blue squares), per-element numerical projection (green triangles), and SLIM (yellow diamonds). The termination threshold is

denoted by a dashed line.
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Fig. 6. Solver iterations (left) and wall clock time (right) to compute a parameterization with Symmetric Dirichlet over the octopus mesh using our method

(pink circles), composite majorization (blue squares), per-element numerical projection (green triangles), and SLIM (yellow diamonds). The termination
threshold is denoted by a dashed line.
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Symmetric Dirichlet

Ours Comp. Major. Proj. Newton SLIM
Mesh Faces | Verts Iters. | Time Iters. | Time Iters. | Time Iters. | Time
Bear 296409 | 148484 || 16 13714 16 14092 27 38782 100 164732
Buddha 470507 | 235771 || 17 25580 17 25642 15 36458 144 461508
Lucy 1000000| 501105 || 123 443969 124 448814 111 602880 15256 | 163034065
Man 190471 | 95712 16 8652 17 9030 16 14272 94 106772
Octopus 26968 15141 37 2173 36 2219 63 6991 1442 270460
Car 5018 5215 44 1219 44 1252 39 1854 651 38866
Car 2 80308 81116 49 23037 50 23511 113 88218 176 178547
Camelhead 22704 11381 22 1279 22 1297 25 2599 527 81868
Cow 1500 762 288 925 288 914 158 979 16754 | 145891
Duck_Tube 10688 5391 90 3656 90 3681 72 4228 499999 171716036
Fish 7104 7138 48 2530 47 2596 51 3667 712 70360
Hoodie 19122 9715 64 3360 64 3302 89 7859 1553 197164
Hoodie2 21616 10884 568 38137 578 38063 563 53818 76819 | 12036300
Horse 4030 2038 207 2503 228 2860 294 5160 499999| 9169104
LPS Head 8842 8875 41 2041 41 2088 50 4078 994 109742
Ogre_Smile 39856 19985 44 3450 44 3495 38 5890 150 38168
Pants 2859 1453 99 585 99 571 108 1198 1157 16354
Pig_Body 8864 4453 433 8155 431 8255 538 16809 499999| 17539513
Pig_Tounge 768 397 8 20 8 20 7 28 35 204
Rabbit 902 461 81 219 81 218 63 275 593 3437
Spot 5856 2975 20 220 20 220 22 481 192 5086
T10K_101089 6334 3264 29 326 29 330 28 645 819 22023

T10K_101582 107970 | 54271 39 10017 39 10065 29 13542 343 209736
T10K_127243 30436 15285 219 15722 218 15850 230 30721 8024 1820192

T10K_131969 2874 1468 48 276 48 275 48 540 397 5747
T10K_1324574 || 17538 8829 29 1277 29 1269 25 1937 250 29767
T10K_134543 4262 2167 35 303 35 309 45 718 481 9248
T10K_200079 34829 17462 12 869 12 868 16 2152 21 3504

T10K_208741 84064 42101 42 8255 42 8198 69 25081 226 104377
T10K_265730 49680 24956 223 22068 223 22432 147 28164 8370 2560303

T10K_308214 394510 | 197359 || 225 221605 || 229 223385 || 47 84551 X X
T10K_37384 17374 8775 14 706 14 719 15 1209 55 6153
T10K_59340 786432 | 393438 || 21 52795 21 52219 22 87849 89 483920
T10K_65414 622 326 153 271 153 272 83 259 5194 23940
T10K_78319 46936 23518 76 6773 76 6647 136 24772 1284 336563
T10K_79189 6383 3224 32 427 32 432 42 1038 439 13399
T10K_80516 107176 | 53915 404 140154 || 513 180430 || 783 353539 || 13383 | 8886716

T10K_81369 47999 24310 33 3476 33 3470 31 6039 189 58897
T10K_998022 23362 11846 281 14252 281 14575 270 26465 10657 | 1530571
Teapot_Base 6204 6117 116 4983 118 5108 91 5726 499999| 75020793
Teapot_Top 1824 1802 12 84 12 83 16 216 107 1774

Fig. 8. Performance statistics for Symmetric Dirichlet parameterization using our method, composite majorization, per-element Hessian projection, and SLIM.
The iteration count is capped to 499,999 for each method. Tests that did not complete or reach the maximum iteration count in a reasonable time frame are
denoted with an x.
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by a dashed line.
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Fig. 11. Solver iterations (left) and wall clock time (right) to compute a parameterization with ARAP over the car mesh using our method (pink circles), S-based
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ARAP

Ours S-based CM Proj. Newton | AQP,a/f CM
Mesh Faces | Verts Iters. | Time Iters.| Time Iters. | Time Iters. | Time
Bear 296409 | 148484 || 5 4653 79 72772 10 14920 9 5244
Buddha 470507 | 235771 1| 3 4728 24 38290 6 15039 8 8294
Lucy 1000000| 501105 || 116 429373 116 443256 56 465180 616 1177953
Man 190471 | 95712 6 3384 21 12097 9 8553 12 4178
Octopus 26968 15141 75 4999 184 12661 57 6779 409 14586
Car 5018 5215 175 5472 198 6668 77 3800 338 4722
Car 2 80308 81116 8 3707 21 9988 10 7567 27 6560
Camelhead 22704 11381 51 3411 229 15680 25 2789 83 3045
Cow 1500 762 608 2279 1359 | 5186 436 2911 1294 | 3226
Duck _Tube 10688 5391 114 4893 185 8017 181 11603 220 3287
Fish 7104 7138 79 3802 219 10767 81 6172 155 3039
Hoodie 19122 9715 70 4144 402 23749 55 5241 137 4344
Hoodie2 21616 10884 211 14073 933 60420 337 36507 415 15140
Horse 4030 2038 158 1413 563 5174 137 2316 319 1894
LPS_Head 8842 8875 235 12694 305 16827 111 9912 460 10883
Ogre_Smile 39856 19985 15 1450 58 5507 15 2584 27 1708
Pants 2859 1453 279 1899 527 3673 190 2321 582 2545
Pig_Body 8864 4453 73 1339 244 4601 71 2536 144 1733
Pig_Tongue 768 397 5 14 19 51 6 26 12 19
Rabbit 902 461 592 1758 536 1635 331 1579 1212 | 1715
Spot 5856 2975 13 173 67 890 16 392 25 233
T10K_101089 6334 3264 11 154 26 370 12 310 23 228
T10K_101582 107970 | 54271 5 1452 41 12238 5 2536 9 1768
T10K_127243 30436 15285 56 4433 457 37339 133 18951 113 5274
T10K_131969 2874 1468 26 180 250 1745 25 314 52 240
T10K_ 1324574 17538 8829 77 4103 156 8414 60 5199 149 3553
T10K 134543 4262 2167 77 739 424 4166 149 2693 152 968
T10K_200079 34829 17462 8 708 85 7369 55 8290 16 965
T10K_208741 84064 42101 37 8320 98 22542 45 17712 74 9118
T10K_265730 49680 24956 8 929 120 14350 30 6415 14 1201
T10K_308214 394510 | 197359 || 7 7583 26 28588 8 15033 15 9780
T10K_37384 17374 8775 8 433 93 5106 13 1139 16 455
T10K_59340 786432 | 393438 || 21 56404 116 351814 || 38 162815 || 40 51924
T10K_65414 622 326 493 1006 941 1965 535 1794 979 1010
T10K_78319 46936 23518 427 45665 594 64611 890 177181 878 60507
T10K_79189 6383 3224 75 1118 914 13732 118 3220 148 1366
T10K_80516 107176 | 53915 67 19309 216 64050 68 33716 255 39075
T10K_81369 47999 24310 14 1743 365 45300 23 5047 26 1971
T10K 998022 23362 11846 680 41834 1193 | 75021 494 52622 1842 | 62696
Teapot_Base 6204 6117 272 12182 721 32491 196 13257 511 8446
Teapot_Top 1824 1802 3 27 139 1162 6 93 9 63

Fig. 16. Performance statistics for ARAP parameterization using our method, S-based composite majorization (detailed in §2.2), per-element Hessian projection,
and AQP (equivalent to «/S-based composite majorization, detailed in §2.1).
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