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(a) Delta tracking
SMAPE: 0.316

(b) Equiangular sampling
SMAPE: 0.535

(c) Resampled product importance
sampling
SMAPE: 0.185

Fig. 1. Noise bank with 50 colored light sources at fixed render time of 1m per image. Delta tracking can
resolve the heterogeneous density (le�) and equiangular sampling improves areas around light sources
(middle). Our resampled product importance sampling method (right) handles e�icient sampling of both the
density and light distributions, even in a many-light situation.

1 INTRODUCTION AND PREVIOUS WORK
With path tracing [4] �rmly established as the basis for nearly all �lm-oriented rendering, a large
body of research into the related mathematics and integration techniques have followed. While both
CPUs and GPUs get faster each year, the need to create ever-more spectacular imagery demands
that improvements are made on as many fronts as possible. Given the

√
N convergence rate of

Monte Carlo simulation, variance reduction techniques, such as importance sampling, are one of
the key paths towards making �lm-quality image rendering faster.

When rendering participating media such as smoke, clouds, or �re, the volume rendering equation
(VRE) de�nes how light is emi�ed, sca�ered, and absorbed within the medium:

L(x ,ω) =
∫ t

0
T (x ,y)

(
µt (y)Le (y,ω) + µs (y)p(ωi ,ωo)Ls (y,ω)

)
dy. (1)

Parts of the VRE can be importance sampled, as has been shown in several works. Tracking
methods [7, 12] e�ectively importance sample the transmi�ance term; equiangular sampling [5]
importance samples the radial fallo� of the Ls term, and other works have focused on the emissive
Le term. While it is bene�cial to importance sample individual terms compared to sampling blindly,
it does not yield sample distributions that conform to the VRE as a whole. To address this problem,
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Fig. 2. The function f (s) = T · L in green with T in orange (representing transmi�ance) and L in blue
(representing light contribution). The peak of the product does not line up with either of the two terms.
Multiple importance sampling (MIS) can combine samples from multiple distributions by weighting, but does
not produce a sample set that conforms to the true product of the distributions.

multiple importance sampling (MIS) [10] provides a way of combining samples drawn from multiple
distributions by combining the samples’ weights according to both distributions. However, MIS has
several shortcomings: the samples produced have weights according to the combined importance,
but they are not themselves distributed according to the product of the terms; additionally, MIS
requires a way of evaluating the probability density function (PDF) for each distribution, something
that tracking-based methods such as Woodcock tracking cannot provide. Figure 2 illustrates how
MIS can produce samples that miss the true peak of a product importance.

Georgiev et al. [2013] showed a method for importance sampling of multi-vertex paths in
anisotropic volumes where sample generation took into account the transmi�ance along both the
camera and shadow rays, as well as the phase function, but was limited to homogeneous media.

Besides not providing a PDF, tracking is inherently a di�erent form of importance sampling
than inversion-based techniques. While e.g. equiangular sampling (and many types of BRDF and
phase function sampling) rely on inverting the cumulative density function (CDF) mathematically,
tracking is iterative and physically analogous, re�ecting the behavior of individual particles moving
through a medium �lled with interacting ma�er. As such, tracking fuses the mechanics of the
physical problem with the mathematics. When implementing a tracking-based integrator, this
analogous behavior of simulating a particle’s path along a ray �ts well with the way a ray traverses
an acceleration structure in the computer’s memory, and this is an advantage we want to retain,
along with tracking being unbiased, consistent, as well as e�cient.

�e mechanics of tracking (incrementally taking random steps along a ray and sampling the
underlying volume) also explain why we cannot directly compute a PDF value for an arbitrary point
on a ray: in order to compute the PDF value, we would need information about the transmi�ance
up to the given point (an iterative process) as well as the transmi�ance for the entirety of the ray
until in�nity (continuing the iterative process). With this in mind, it is clear that MIS is ill-suited as
a method for importance sampling multiple terms of the VRE using tracking methods.

Another aspect of tracking concerns the sampling majorant µ̂, which controls the length of each
tracking step according to

s = − ln(1 − ξ )
µ̂

. (2)

When employing a e.g. delta tracking in a direct lighting context, we need to increment the tracking
step in this fashion, and at each step determine whether a real or virtual sca�ering event is found
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according to
Pr eal =

µ

µ̂
. (3)

�e stepping needs to be continued until a real sca�ering event is found, so in general we want µ̂ to
be a tight bound on µ, such that the Pr eal is large. In fact, many important works explore methods
for optimizing this aspect of tracking [1, 13], and a good acceleration structure is key to making
tracking practical in production rendering.

2 INTEGRAL FORMULATION OF TRACKING
Recent work [2, 7] has shown that the notion of using virtual particles to facilitate tracking has a
corresponding integral formulation, which also generalizes the probability de�nitions to arbitrary
weights. �e integral formulation is helpful in understanding how importance resampling �ts with
the tracking framework, and that resampling is a natural incorporation of more information into
the generalized integral.

As we recall, delta tracking adds �ctitious particles into the medium which exactly �lls in the
di�erence between the true density µ and the majorant µ̂. We can incorporate this into the VRE by
de�ning the �ctitious (virtual, or null) particles as being present in the medium, but sca�ering light
exactly in the direction of travel:

µn(x)L(x ,ω) = µn(x)
∫
S2
δ (ω − ω̂)L(x , ω̂)dω̂ . (4)

�is leads to a modi�ed volume rendering equation

L(x ,ω) =
∫ ∞

0
Tµ̂ (x ,y)

(
µa(y)Le (y,ω) + µs (y)Ls (y,ω) + µn(y)L(y,ω)

)
dy, (5)

where Tµ̂ (x ,y) = e−
∫ y

0 µ̂(x,z)dz and µ̂(z) = µa(z) + µs (z) + µn(z).
From this de�nition, we can then de�ne a Monte Carlo estimator of the equation on the form

〈L(x ,ω)〉 =
Tµ̂ (x ,y)
p µ̂ (y)

{µa(y)Le (y,ω) + µs (y)Ls (y,ω) + µn(y)L(y,ω)}, (6)

where we stochastically choose one of the interaction types based on

Pa(y) =
µa(y)
µ̂(y) , Ps (y) =

µs (y)
µ̂(y) , Pn(y) =

µn(y)
µ̂(y) . (7)

3 TOWARD PRODUCT SAMPLING
�e iterative process of �nding sca�ering events using delta tracking produces a sample distribution
that is proportional against the T (x ,y) · µt (y) terms in the VRE. T (x ,y) is not directly evaluated,
but rather it is the implicit product of the previous series of virtual sca�ering probabilities

Pvir tual = 1 − Pr eal = 1 − µ

µ̂
, (8)

against which delta tracking is e�ectively doing a russian roule�e termination using Equation 3.
�us, a�er i steps along a ray, the estimated transmi�ance up to that point can be found through

Ti =
i−1∏
j=0

P jvir tual . (9)

It may be tempting to try and introduce additional terms from the VRE, such as the radial fallo� of
the Ls term, thereby incorporating equiangular sampling, but because the termination probabilities
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Fig. 3. Top: Example scene with heterogeneous medium and embedded light source. Middle: density profile
along camera ray. Bo�om: integration segments with µ̂ majorant (bold) and tracking-based sample points
(red).

indirectly drive our estimate of T , this is not possible. However, as a thought experiment, we can
see that the samples produced by delta tracking are the same as if we had taken a more circuitous
path: we could hypothetically perform tracking along the entirety of the ray, and for each step i
record a weight wi as the product of Ti from Equation 9 and Pr eal . �e set of locations and their
corresponding weights would then de�ne a discrete PDF from which we could randomly draw
samples. �is process would be more costly than delta tracking, and would yield no be�er sampling;
however it does o�er a place for us to incorporate other sampling weights into the decision of
where to sample direct lighting: by multiplying each wi by µsLis , we could pick samples according
to the full product of the VRE.

In the Monte Carlo literature, the process of computing sample weights by evaluating a function
f (x) directly, rather than relying on its PDF, is referred to as sampling-importance resampling (SIR),
or just importance resampling [8]. In graphics, the method has been used for direct lighting on
surfaces [9] and shows an alternative way to MIS for combining samples from multiple distributions.

While the importance resampling method of incorporating Ls into the sample weights appears
promising at �rst glance, it su�ers from the fact that the candidate points that the incremental
stepping produces is proportional to µ̂, but not to Ls . �us, for a ray that passes near a light source,
we may never sample Ls at its most important location. Figure 3 shows this arrangement: as the
light is embedded in a thin part of the volume, very few sample points fall in the area where L/r 2

is large. In order for importance resampling to be viable in the tracking context, this de�ciency
would have to be addressed.

Finally, we note that when tracking, the distribution of real sca�ering events generated conforms
to the full T (x ,y) · µs (y) function of the heterogeneous medium. However, the distribution of
candidate points, i.e. the points generated by repeated steps through the volume in optical depth
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space is by de�nition a uniform, i.i.d. distribution1, an important factor that we take advantage of
in this work. �is is again illustrated in Figure 3, where the concentration of candidate points is
highest in the dense part of the volume, but within each constant-µ̂ interval, the set of candidate
points is uniform. �e method presented by Villemin et al. [2018] of stretching piece-wise constant
segments during tracking such that µ̂ = 1 shows that we can treat the candidate points for an
arbitrary set of integration intervals as an i.i.d. distribution of samples in optical depth space. As
such, it is clear that µ̂ acts as a control on the placement of candidate points, and that we can steer
an arbitrary density of candidate points to a given segment of a ray simply by increasing µ̂ in that
region.

4 OVERVIEW
In order to overcome the previously mentioned constraints on importance sampling, we propose
a new volumetric integration method that combines guiding of candidate point positions and
importance resampling. We refer to this as the virtual density segment method (VDS). �e key
insight that enables our method is that tracking-based integration can be indirectly controlled using
µ̂: in areas where we want a greater concentration of candidate sample points, we simply increase
µ̂, and vice versa. In particular, we show that this control can be driven by treating invertible PDFs
as virtual density sources, which in turn steers a tracking algorithm to generate distributions of
points that conform to the same, arbitrary PDFs. We combine this virtual density process with
importance resampling to pick samples from the set of candidates according to the full product of
the VRE. �e resampling step is especially bene�cial for non-invertible terms, such as complex light
shapers like projected texture maps. In the end, by bridging tracking methods and inversion-based
importance sampling, we arrive at a method for steering sampling that can incorporate any number
of PDFs, thereby providing a general framework for combining arbitrary importance sampling
schemes with tracking.

Finally, having employed the importance resampling method for direct lighting, we also introduce
a related method to the sampling of indirect volumetric illumination for highly anisotropic media.

5 PROBABILITY DENSITY AS CONTROL SIGNAL FOR TRACKING
Next, we explore in more detail how µ̂ can be used to control sampling distributions. If we consider
equiangular sampling, we have the PDF

P(t) = D

(θb − θa)(D2 + t2) (10)

and the corresponding CDF inverse which is used for drawing samples from the distribution:

C−1(ξ ) = D tan((1 − ξ )θb + ξθa). (11)

�e square fallo� function itself, along with some sample points from C−1 can be visualized as:

s

I

1�is may seem counter intuitive at �rst, but although the distance between points produced by a tracking algorithm is an
exponential distribution, the set of points formed by the incremental stepping are in fact a uniform, i.i.d. distribution. See
”Memoryless property” at h�ps://en.wikipedia.org/wiki/Poisson point process
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�e domain of C−1 is [0, 1], and the range is de�ned by the subtended angles θa and θb . In
order to produce integration intervals for our tracking algorithm, we divide the domain of C−1

into N equal-size segments de�ned as Ii = [pi ,pi+1], with pi =
i

(N−1) , which gives us a set of N
equal-importance segments along a ray.

s

I

Next, we need to set a µ̂ for each segment such that the tracking algorithm places the desired
amount of samples in each one. We know that tracking takes a number of steps through a segment
proportionally to µ · l , from which we conclude that we can get an equal likelihood of sampling a
given segment if we assign an even optical thickness to each segment. �us, we de�ne

µ̂i =
c

li
, (12)

where c is an arbitrary scaling constant, and li is the physical-space length of each segment.
�roughout this work, we typically set c = 1, which makes each control segment exactly one mean
free path in optical thickness. We refer to these control densities as virtual density segments.

Given these segments, we are able to achieve a distribution of candidate points in our track-
ing method that approximates the distribution of an arbitrary PDF: in this case the equiangular
distribution, as illustrated in Figure 4.

Although N would need to be large for the resulting distribution to closely resemble the discretized
PDF, in practice, the number of segments does not need to be very large. Because the subdivision is
performed in the [0, 1] domain of the importance function itself, the resulting intervals automatically
adapt to the appropriate areas of interest. If we consider a set S consisting of sample points drawn
from C−1 and denote the set of points generated by our method S ′, then the distribution of S ′ will
converge on S as N increases. In fact, we can see that our method is analogous to a Riemann
sum, and we are thus guaranteed to produce an S ′ distribution that converges to the original S
distribution.

5.1 Combining control segments
Because our control method works by specifying density intervals, we can incorporate it with
the general tracking strategy seen in Figure 3. Given two sets of overlapping intervals, A and B,
we construct a new set C by taking the maximum of µ̂a and µ̂b . Figure 5 illustrates the resulting
interval set, which is readily employed by the tracking part of our product sampling method.

s

σ

Fig. 4. Seven intervals generated by inversion sampling of the equiangular distribution yield control segments
which force tracking methods to generate sample distributions that are approximately proportional to the
original distribution.
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�e motivation for using max rather than addition or multiplication is that the parameter N that
de�nes the number of subdivisions of the control PDF acts as a control over how many times we
would like to evaluate the PDF (if c = 1 is used, we will get on average N /2 samples.) If we were
to add the virtual densities to the natural µ̂, certain regions would be sampled more �nely than
either of the two distributions would suggest. Multiplying the two could cause undersampling of
the density portion if the virtual density is below one, which would introduce large amounts of
variance into the integration. By taking the maximum of the two densities, we ensure that the
tracking process samples at least as �nely as either of the two distributions desire.

s
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(a) Integration intervals A based on volumetric density.
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(b) Integration intervals B based on 1/r2 fallo�.
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(c) Combination of integration intervals using max(A,B).

Fig. 5. Multiple sets of integration intervals can be combined in order to capture multiple terms in the VRE.

6 IMPORTANCE RESAMPLING
With a method in place for generating the necessary candidate sample locations, we next show
how importance resampling can be used in order to select the most suitable location at which
to compute direct illumination. As previously mentioned, we wish to incorporate transmi�ance,
illumination estimate, local sca�ering properties as well as the phase function response in this
decision. To this end, we assign the following weight to each sample point:

Wi = Ti · µs (yi )p(ω)Ls (yi ,ω), (13)

where Ti is the transmi�ance up to sample i (Equation 9), µs is the sca�ering coe�cient, p(ω) is
the phase function response relative to the light’s direction ω and Ls is the I/r 2 intensity of the
picked light at the point yi . We note that none of these require any global information, i.e. they
can be sampled directly or computed inexpensively.

Given the set of samples with weightsW = (W0,W1, ...,Wi ), we compute a discrete CDF from
which we draw the �nal sample stochastically.
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7 LIGHT PICKING
So far we have only considered scenes with a single light sources, but production scenes o�en
contain hundreds or thousands of light sources. Whether surface or volume rendering is considered,
it is computationally impractical to sample the light contribution of all lights. Instead, a process
known as light picking aims to reduce this two a single light sample for each direct lighting
calculation. Light picking is an area of current research [? ], but for the purposes of this paper it is
su�cient to assume that a method for intelligently picking a single relevant light source given a
ray is available. In this paper, we use a simple method by which each light is given a contribution
likelihood according to

C(i,y,ω) = I

DistanceToRay(pi ,y,ω)2
, (14)

from which a single light source is chosen by constructing a discrete CDF. �e chosen light is
then used for computing the virtual density segments along the ray, as well as for estimating
the illumination term in Equation 13. However, we note that a new light sample is chosen when
computing direct illumination, as point-based light picking can be done more accurately than
ray-based picking.

While the one-light approach to constructing the virtual density segments captures the sharp
transition in illumination near a light source, the sum of all illumination at a given point is generally
much more gradual. To this end, we make the sample weight Ls in Equation 13 less aggressive by
taking the logarithm of the illumination estimate according to

Ls (yi ,ω) = log
(
1 +

I

r 2

)
. (15)

7.1 Distant light sources
We also note that lights far away from scene (such as a sun light or a sky dome light) present a
degenerate case for equiangular sampling. In fact, the contribution of these lights (not considering
visibility) is the same for the length of the entire ray. Although these in�nite-distance lights appear
problematic, we note that they are the limit case of the equiangular distribution for very large
values of D. As such, in the cases where a light sample is chosen on an in�nitely-far light source,
we replace the virtual density segment generation step in Equation 11 with a uniform subdivision
of the integration interval [t0, t1]. Besides avoiding the edge case for equiangular sampling, this
approach has the additional bene�t of ensuring that (on average) at least N /2 tracking steps are
taken along the ray. �is implicitly addresses the common problem with delta tracking in thin
volumes, where µ̂ would otherwise be low enough that few samples are computed in the volume.
�is problem was partially addressed in Villemin et al. [2018], but our method provides a be�er
solution for heterogeneous volumes.

8 OPTIMIZATIONS
We note that our method, in its naı̈ve form, can be ine�cient in certain types of scenes. Where
densities are large enough to cause transmi�ance along a ray to approach zero, we will generate
many candidate samples for which the weight is also close to zero. �is is wasteful, as each sample
deep inside of a volume is as expensive as the �rst but will not contribute signi�cantly.

A common technique in Monte Carlo integration is to use Russian roule�e to terminate event
sequences that have low contribution to the �nal estimate. We adopt an analogous process in our
construction of the discrete CDF. First, we ensure that the I/r 2 term is monotonically decreasing,
i.e. we have passed the point along the ray that is nearest to the light sample. From there, we set a
termination threshold Kt (usually 0.01) and randomly terminate the sampling of µ if Ti if it falls
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below Kt according to

ξ <
µ

µ̂
Kt . (16)

While this introduces variance (as Russian roule�e always does), it can still be worthwhile, as
dense regions can require very large numbers of steps to traverse completely.

9 IMPORTANCE RESAMPLING FOR INDIRECT LIGHTING
In production rendering, the term that speci�es incoming light in both the volume rendering and
surface rendering equations is generally split into two components: one for light arriving directly
(without sca�ering) from a light source, and one arriving indirectly (having sca�ered at least once)
from a light source. �is process is called next event estimation, and is premised on the fact that
much, if not most, of the light arriving at a given point in a scene arrives unimpeded from a light
source.

�e method described so far in this paper is concerned with deciding where along a ray, passing
through a participating medium, this next event estimation process should take place. �at is
to say, it steers samples towards areas that are expected to provide good throughput for direct
illumination. However, importance resampling o�ers a way to improve upon the second part as
well: the indirect illumination.

When spli�ing incoming illumination in the VRE into direct and indirect illumination, we
choose the direction for direct illumination by sampling a light. �e indirect direction is chosen by
randomly generating a direction from the phase function of the volume. We note that the phase
function concerns itself only with the distribution of the forward/backward angle compared to the
preceding direction of travel, but that the function is entirely symmetric around the direction of
travel. Again, this occurs because we do not factor any knowledge about the direction of incoming
indirect illumination into the equation. Although it is di�cult to incorporate the sum of all light
sources as a weight on the direction to choose, we note that the direction of direct illumination is
likely to serve as a good guess for the general direction from which indirect illumination would
arrive from.

In this context we apply a second importance resampling approach: by generating N candidate
directions di from the phase function inversion, we produce a uniform distribution of directions
in the plane that is tangent to the direction of travel. Next, we compute a weight wi for each di
direction according to the phase function response between di and the direction of the previously
picked light source, ωi according to

wi = p(ωi , .i). (17)
Similarly to the product sampling technique for direct illumination above, we build a discrete
CDF from the weights and pick a single indirect direction, which is drawn directly from the phase
function, but which also incorporates knowledge about which directions are likely to produce the
greatest indirect illumination contribution.

10 RESULTS
In this section we look at numerical results comparing our two proposed methods compared to
existing approaches. �roughout the comparison we have chosen to use Symmetric Mean Absolute
Percent Error (SMAPE) rather than Root Mean Square Error (RMSE), which is generally more
common for Monte Carlo-based methods. However, RMSE measures absolute error, which means
that an over-estimate of 10x (e.g. 100.0 instead of the true value 10.0) produces a much greater
error than an under-estimate of 10x (1.0 instead of 10.0). Figure 1 provides a good example of this:
the type of noise that is introduced by both delta tracking and equiangular sampling tends to be of
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under-estimation. Delta tracking can miss the bright areas around a visible light source, but its
error is one of omission, for which the error is bounded to the magnitude of the ground-truth value.
Likewise, equiangular sampling can produce areas where nearly all chosen samples are so deep
inside a volume that they produce zero throughput to the viewer. In both cases, our method may
produce an RMSE value that is only slightly lower than the two other methods, even though the
visual result is signi�cantly cleaner.

A second reason for using SMAPE rather than RMSE is that it makes all pixels count evenly.
When using RMSE, the majority of the value will be contributed by the bright pixels in the image,
which under-represents the visual noise in the midtones while over-representing the noise in very
bright areas, which (due to the logarithmic nature of human vision) is less noticeable, relatively,
than the midtones.

10.1 Virtual density segment sampling
In Table 1 we show the performance of our proposed method (VDS) compared to delta tracking and
equiangular sampling in a variety of scenarios. All tests were performed by running the algorithms
on an 8-core Xeon workstation for 2 minutes and computing the error on this equal-time basis.

�e �rst table shows results for a single light source, e�ectively ruling out variation due to the
discussed light picking method. �e second table show the same scene with 50 light sources. In
both cases the results are consistent. In order to show that our method works independently of
the light picking method, we also test strongly forward sca�ering and backward sca�ering media
(д = 0.95 and д = −0.95, respectively) in addition to an isotropic medium. We also vary the mean
free path (MFP) from 0.2, to 1.0 and 10.0, corresponding to sca�ering coe�cients of 50.0, 1.0 and 0.1.
Across all the tests, our method outperforms both of the previous methods, with far lower variance
in nearly all cases. Figure 6 shows visual examples from the test, illustrating the improvement in
perceived variance.

Certain combinations illustrate the weaknesses of the previous methods. Due to the fact that
a large number of rays traverse the volume without �nding a sca�ering event, delta tracking
performs worst in thin media (the MFP=10.0 case), even though the number of samples taken per
pixel is very high (around 800spp, as compared to 150spp for equiangular sampling and 100spp for
VDS.) Equiangular sampling fares worst in anisotropic media, since the sample locations chosen
near the light source no longer corresponds to high-throughput paths.

10.2 Indirect sampling
Table 2 shows the performance of our proposed method compared to naı̈ve sampling. In the
experiment, four candidate directions were generated at each indirect sca�ering event, which has
a negligible impact on performance. As expected, the two methods produce the same amount
of variance for д = 0, as isotropic sca�ering give all generated directions the same weight. As д
increases, we note that the SMAPE value increases much more slowly for our importance resampling
method than the naı̈ve sampling. Figure 7 shows the visual results of the two methods. In our
experience, anisotropy values over 0.875 are impractical to render in production scenes with the
standard method, as �re�ies become too prominent. With our method, it is possible to push д as
high as 0.95 while still producing relatively well-behaved variance characteristics.

11 DISCUSSION
As our results illustrate, our proposed method for sampling direct lighting works across a wide
range of participating media contexts. �in and thick media are both handled well, as is strongly
anisotropic media and many-lights situations. However, there are some cases in which our product
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(a) Single light source

д MFP Method SMAPE

-0.95

0.2
Delta Tracking 0.430

Equiangular 0.941
VDS 0.279

1.0
Delta Tracking 0.328

Equiangular 0.384
VDS 0.152

10.0
Delta Tracking 0.420

Equiangular 0.201
VDS 0.137

0

0.2
Delta Tracking 0.347

Equiangular 0.795
VDS 0.224

1.0
Delta Tracking 0.285

Equiangular 0.270
VDS 0.120

10.0
Delta Tracking 0.373

Equiangular 0.142
VDS 0.092

0.95

0.2
Delta Tracking 0.382

Equiangular 0.909
VDS 0.250

1.0
Delta Tracking 0.322

Equiangular 0.353
VDS 0.151

10.0
Delta Tracking 0.430

Equiangular 0.192
VDS 0.128

(b) 50 light sources

д MFP Method SMAPE

-0.95

0.2
Delta Tracking 0.738

Equiangular 1.260
VDS 0.624

1.0
Delta Tracking 0.734

Equiangular 0.929
VDS 0.513

10.0
Delta Tracking 0.862

Equiangular 0.784
VDS 0.567

0

0.2
Delta Tracking 0.326

Equiangular 0.955
VDS 0.264

1.0
Delta Tracking 0.316

Equiangular 0.535
VDS 0.185

10.0
Delta Tracking 0.422

Equiangular 0.409
VDS 0.216

0.95

0.2
Delta Tracking 0.825

Equiangular 1.320
VDS 0.709

1.0
Delta Tracking 0.833

Equiangular 0.978
VDS 0.605

10.0
Delta Tracking 0.954

Equiangular 0.834
VDS 0.623

Table 1. Results for delta tracking, equiangular sampling and VDS at fixed render time of 2m per image. Error
calculated using symmetric mean absolute percentage error (SMAPE).

д Method SMAPE

0 Naive sampling 0.328
Importance resampling 0.328

0.5 Naive sampling 0.339
Importance resampling 0.331

0.75 Naive sampling 0.372
Importance resampling 0.351

0.875 Naive sampling 0.417
Importance resampling 0.380

0.935 Naive sampling 0.455
Importance resampling 0.414

Table 2. Results for naı̈ve and importance-resampled indirect illumination at fixed render time of 2m per
image. Error calculated using symmetric mean absolute percentage error (SMAPE).

sampling approach is unable to sample be�er than basic delta tracking: for a thick medium that
is lit only by distant lights, delta tracking and product sampling produce the same distribution of
sca�ering locations. In this case, product sampling only adds to the overhead of selecting a point
at which to sca�er, without providing any variance reduction. In this case it is still preferable to
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(a) Delta tracking

(b) Equiangular sampling

(c) VDS

Fig. 6. Images corresponding to results in Table 1. Le� to right: Mean-free-path 0.2, 1.0 and 10.0.

use delta tracking. However - for thick volumes lit by light sources near the volume, our method
is still advantageous, as is the case for thin volumes lit by distant lights, since our method is able
to �nd candidate sca�ering locations even when delta tracking may advance through the whole
volume in a single step.

As part of our exploration, we a�empted to incorporate the visibility term for light sources
into the resampling weight Wi by traversing the volume aggregate and using exp(−

∫ s
0 σ̂dt) as

an estimate of exp(−
∫ s

0 σdt) for shadow rays. �is proved to increase variance signi�cantly, as
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(a) Naive sampling

(b) Importance resampling

Fig. 7. Le� to right: Anisotropy 0.75, 0.875 and 0.925.

visibility was consistently under-estimated and samples that returned a higher than estimated
visibility wound up having both a low PDF value and high throughput.

12 CONCLUSIONS AND FUTUREWORK
We have presented a novel method for importance sampling of direct lighting in participating
media that uni�es tracking with other, arbitrary sampling PDFs through the use of virtual density
segments and importance resampling. �e method does not depend on any novel data structures and
can be incorporated into existing volume renderers that provides the ability to perform ray-based
queries for light picking.

Since the proposed method is a framework that allows arbitrary PDFs to be incorporated, there
are several promising areas for future work. One practical example would be to guide sampling
according to the intensity of a projected texture (commonly referred to as a gobo), which can create
artistically pleasing structure in light sources, but which is traditionally impractical to sample. In
the virtual density segment case, we can take advantage of the fact that a linear ray in an orthogonal
space preserves its linearity when undergoing perspective projection, and we �nd a 2D line in
texture space corresponding to the world-space ray. For each ray, we could perform a 2D DDA walk
through the texture in order to create a PDF representing its intensity, which is then integrated
and inverted in order to �nd regions that, when sampled uniformly in importance-space, yields the
relevant segments along the ray to focus samples upon. Similarly, volumetric emission could be
used to drive importance by building a hierarchical data structure for querying the majorant L̂e over
a given domain, which could be used to construct a piece-wise constant PDF. Finally, we believe
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that recent work on learning-based methods [6] for importance sampling could be incorporated as
a replacement for the full I

r2 ·V term in the importance resampling weight.
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