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Figure 1: Caustic Connection strategies enable the bidirectional path tracer to render complex indirect caustics as we can observe in the
right eye of this digital character. In this setup, the entire ligthting is indirect, first bouncing on the wall before illuminating the character

Abstract

We propose a new type of sampling strategy for connection-based
path tracing algorithms such as bidirectional path tracing. Classi-
cal bidirectional path tracing generally exhibits poor performance
when sampling light paths involving specular transport (e.g. refrac-
tion through dielectrics). We therefore introduce specialized con-
nection strategies that connect through chains of specular events.
By applying mechanisms such as manifold exploration, we propose
an efficient solution for connecting two points in the scene where a
sequence of refractive specular surfaces lies between them. We also
introduce a lightweight scheme for recursively computing multiple
importance sampling weights during path creation. The resulting
algorithm is easy to implement and leads to significant improve-
ments in constructing complex caustic paths.

1 Introduction

While today modern rendering systems are very efficient at simulat-
ing complex light paths in complex environments, rendering refrac-
tive caustics still often takes too much time for production renders
due to the low probability of sampling such paths.

Caustics are light subpaths composed of a chain of reflective or
refractive specular events. Due to the sharp density distribution of
these specular events, rendering algorithms mostly rely on directly
sampling the BSDF at these surfaces to build these paths.

Bidirectional path tracing combines many different ways of con-
structing paths via a random walk from both endpoints that are then
combined using a deterministic connection. In a state-of-the-art
implementation of a bidirectional path tracer, each step is generally
implemented using an ideal or close to ideal importance sampling
scheme that reproduces the associated portion of the underlying in-
tegrand. Unfortunately, specular paths imply complex dependen-
cies in path space that are impossible to capture by such an iterative
manner. In practice, this means that the generated light and camera
subpaths cannot be connected because little or no transport occurs
over the connection segment.

Specular-diffuse-specular (SDS) path contains sequences alternat-
ing diffuse and specular events. The construction of such path has
to statisfy multiple half-vector contraints [Kaplanyan et al. 2014]
simultaneously. As described on Figure 2, the current set of deter-
ministic connection schemes will fail at constructing SDS paths.
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Figure 2: Different connection strategies

Hanika et al. [2015] introduced an extension to the Next Event Es-
timation [Veach 1997] method to find refractive caustic connecting
end of path to a light source. Their algorithm uses manifold explo-
ration [Jakob and Marschner 2012] to construct a caustic subpath
that satisfies the half-vector constraints. In practice, caustic sub-
paths can occur anywhere along the light path, while this method
only construct caustic subpath at the end of the camera path.

In this paper, we extend the set of strategies of the bidirectional path
tracing algorithm to correctly and efficiently handle caustic sub-
paths exclusively composed of refractive specular events, called re-
fractive caustics. We present sampling strategies that use the man-
ifold exploration during vertex connection in a bidirectional path
tracer to sample caustic subpaths anywhere along the full path. This
will allow the bidirectional path tracer to deal with any type of re-
fractive caustic subpaths anywhere along the complete path, even if
the path contains multiple refractive caustic subpaths which greatly
improves the number of cases where the bidirectional path tracer is
successful.

When combining a large variety of sampling strategies, efficient
computation of multiple importance sampling weights is crucial.
For instance, a naive computation that loops over all possible strate-
gies results in a prohibitively expensive O(N4) implementation.
Therefore, we also derive a lightweight scheme based on the work



of Antwerpen [2011] to recursively compute the multiple impor-
tance sampling weights for the different strategies. The recursive
mechanism of these computations can easily be implemented in
modern rendering system.

The remainder of this paper is organized as follows: Section 2 looks
at different methods addressing the rendering of refractive caustic
paths, their strength and their faults. Section 3 discusses our new
sampling strategies in detail and Section 3.3 describes a recursive
scheme to efficiently compute the MIS weights. Finally, Section 4
presents some results and comparisons.

2 Previous work

Over the years, many groups have investigated techniques for better
handling and sampling refractive caustic paths.

Bidirectional Path Tracing Bidirectional path tracing introduced
by Veach [1997] uses a large set of sampling strategies to connect
any two vertices on two subpath, one strating at the camera and
one starting on a light source. Even with all the different sampling
strategies used in the bidirectional path tracing, this method cannot
properly handle paths containing an SDS sequence. This is mainly
due to the specular and near-specular vertices, where it is highly
unlikely that a connection satisfies their half-vector constraints.

Photon mapping Density estimation methods like [Georgiev
et al. 2012; Hachisuka and Jensen 2009] create a data structure
called photon map and store a large number of photons shot from
the light sources in a pre-rendering phase. Later, at render-time,
the renderer can query this map to estimate the density of incoming
energy at a specific point on a surface in the scene.

Density estimation techniques unfortunately suffer from intensive
memory usage and are biased. Furthermore, if the refractive caus-
tics only lie on a small portion of the scene, it will be a waste of
computations to trace millions of photons onto the entire scene,
while only a small fraction of them will end up near these caus-
tic regions.

Markov Chain Monte Carlo techniques Based on Markov
chains, MCMC techniques like [Hachisuka et al. 2014; Bitterli et al.
2017; Šik et al. 2016], provide an elegant procedure to explore the
path space based on previous iterations. At every iteration, they use
mutations to change the structure of the path and perturbations to
move vertices by small distances. The drawback of using Markov
Chains in this context is their lack of temporal coherence, and the
fact that the integrator relies on exploration, therefore making judg-
ing a non fully converged image impossible. The goal of this pa-
per is to pursue methods that are suitable for industrial applications
where MCMC is not traditionally used, hence the need for a scheme
that works in a pure Monte Carlo context.

The manifold exploration framework, [Jakob and Marschner 2012],
introduces mutation strategies in the MLT context, efficient at ren-
dering indirect caustics. Using an iterative process similar to New-
ton’s method that is informed by the differential geometry of the
light path, it computes a new path that satifies all the physical con-
straints sequence of specular events.

Manifold Next Event Estimation - MNEE Hanika et al. [2015]
introduced an extension of the Next Event Estimation technique, us-
ing manifold exploration to connect surfaces to light sources across
a sequence of refractive events. It doesn’t suffer from intense mem-
ory usage, neither from temporal stability issues, which makes it

suitable in a production context.

The downside of this method is that it only handles refractive caus-
tic subpaths in direct illumination with the light sources. Often,
a large amount of the energy coming into the scene results from
several bounces, illuminating the scene indirectly. Unfortunately,
MNEE is of no help in this case.

3 Caustic Connection strategies

Our method introduces new sampling strategies in the context of
bidirectional path tracing, exploiting similar mechanisms as in the
MNEE method to determistically connect vertices across refractive
surfaces. Given the very low probability of a connection to satisfy
the half-vector contraints at specular surfaces, these new strategies
help finding refractive caustic subpaths where other strategies often
fail.

As described in Algorithm 1, our strategies can easily be added
to the already existing set of strategies in any implementation of
a bidirectional path tracer. Whenever the connection fails due to
obstruction, our method is more persistent and attempts a manifold
exploration to resolve any refractive caustic subpath between the
two vertices if the obstruction was due to refractive objects. We
then compute the appropriate MIS weight and add the contribution
of the computed path.

Algorithm 1 Connection procedure

1: procedure CONNECTION
2: for i = 1 to C.length do
3: for j = 1 to L.length do
4: if InvalidConnection(i, j) then
5: continue
6: if VisibilityCheck(i, j) then
7: res← RegularConnection(C,L, i, j)
8: else
9: res←ManifoldWalkConnection(C,L, i, j)

10: w ← ComputeMISWeight(C,L, i, j, res)
11: AddContribution(res, w)

3.1 Throughput computation

It is important to define how to compute the contribution of a path
sampled by these strategies. Given the camera subpath

p̄t = p0, p1, ..., pt−1,

and the light subpath

q̄s = q0, q1, ..., qs−1,

Veach [1997] describes the contribution of a path sampled using a
regular connection as

P (q̄sc̄np̄t) =LeT (q̄s)T (p̄t)We

× f(qs−2 → qs−1 → pt−1)f(qs−1 → pt−1 → pt−2)

×G(qs−1 ↔ pt−1),

where T (p̄t) and T (q̄s) are the throughput of the camera subpath
and light subpath respectively.

In the case of caustic connection strategies, we also need to account
for the extra refractive interfaces along the connection. With a con-
nection subpath

c̄n = c0, ..., cn−1 where c−1 = pt−1 and cn = qs1 ,



and based on Jakob [2013], we can extend this equation using the
generalized geometry term:

P (q̄sc̄np̄t) =LeT (q̄s)T (p̄t)We

× f(qs−2 → qs−1 → cn−1)f(c0 → pt−1 → pt−2)

× Ḡ(qs−1 ↔ ...↔ pt−1)︸ ︷︷ ︸
generalized geometry term

×
n−1∏
i=0

f(ci+1 → ci → cc−1)︸ ︷︷ ︸
throughput along the specular chain

3.2 Direct Geometry Term

If a connection involves a vertex with a Dirac delta BSDF such as
a specular event, it will never succeed since there is zero proba-
bility of sampling the direction where this delta distribution is not
zero. In practice, a bidirectional path tracer will not attempt any
connections with specular vertices and will not account for these
delta dirac terms during the MIS weight computation for numerical
stability reasons since they will always occur both in the numerator
and the denominator.

We can see a specular event as light path router which doesn’t bring
any additional ”sampling entropy” but simply re-orient the light
rays. Therefore, the sampled direction at a diffuse vertex, following
by a sequence of specular events, deterministically defines the po-
sition where the ray hits on the next diffuse surface along this path.
Since we are dealing with probability in area unit, we need a way
to relate the solid angle at the first diffuse vertex to an area at the
diffuse vertex at the end of the specular chain. The geometry term
describes this change of variables, computing the derivative of pro-
jected solid angle at the first diffuse vertex with respect to area at
the following diffuse vertex. However, it is not taking the sampling
densities of the specular vertices in the MIS weights computations
into account.

Jakob [2013] introduces a so called generalized geometry term
which directly links two diffuse surfaces across a sequence of spec-
ular events. This generalized geometry term represents the ”deriva-
tive of solid angle at one end of the specular chain with respect to
area at the other end of the chain, considering the path as a function
of the positions of the endpoints.”. However, its computation is not
trivial and can result in a significant drop of performance since it
involves inversion of large matrices and will need to be computed
frequently.

Figure 3: Representation of a direct geometry term across a single
refractive interface

Therefore, we propose to approximate this term with a new ge-
ometry term called the direct geometry term, which is easier to
compute and still accounts for most of the density ratio along the
specular chain.

For a path p̄t composed of t vertices, including the specular vertices

p̄t = p0, p1, ..., pt−1

we define two functions that link a vertex index to the index of the
closest diffuse vertices along the path:

D−i = index of the last diffuse vertex before pi along p̄t

D+
i = index of the next diffuse vertex after pi along p̄t

The direct geometry term between two consecutive diffuse vertices
along a path is given by:

G(pi ↔ p
D+

i
) =
| cos(θi)|| cos(θ

D+
i

)|
‖pi − pD+

i
‖2

G(p
D−i
↔ pi) =

| cos(θ
D−i

)|| cos(θi)|
‖p

D−i
− pi‖2

Notice that in the case where the two consecutive vertices are not
seperated by any specular vertices, the direct geometry term be-
comes the regular geometry term. Figure 3 illustrates the different
angles used to compute a direct geometry term across a single re-
fractive interface.

When dealing with rough dielectric surfaces, since their density
functions are not delta dirac functions, it makes perfect sense to use
the standard geometry term and attempt regular connection involv-
ing these surfaces. However, it is still unlikely to correctly connect
”near-specular” surfaces and therefore, in our implementation, we
decided to have a clear separation between connectable vertices and
non-connectable vertices by adding a attribute to the surface prop-
erties. Specular vertices are always non-connectable and the rough
dielectric might be depending on their roughness.

Our implementation of the manifold exploration used for the caustic
connection strategies only explores chains of connectable vertices.
Since connections never start or end at a non-connectable vertex,
we ensure that for a given specular chain, there won’t be any other
estimators constructing the same path by connecting two vertices
accross a sub-chain of this specular chain, which greatly simplifies
the MIS weight computations. We can say that for a given path,
every specular vertex belongs to a unique specular chain and there
exists a unique caustic connection strategy that can find a connec-
tion accross this specular chain.

3.3 Multiple Importance Sampling

Multiple importance sampling is a variance reduction technique in-
troduced by Veach [1997] and is highly used in rendering systems.
It allows one to efficiently combine multiple sampling strategies
in a Monte Carlo context, while keeping the results unbiased and
getting the best from each strategy. Bidirectional path tracing ex-
tensively takes advantage of this method to combine its different
estimators.

In the interest of reducing the computational cost of such computa-
tions, there has been a lot of effort put into computing these weights
more efficiently, such as the work from [Antwerpen 2011] where
the authors propose a framework for recursively computing the MIS



weights during the path construction. In this section, we will elab-
orate on an extention of this framework which accounts for the new
sampling strategies.

3.3.1 Balance heuristic formulation

In the same way that Jakob [2013] reduces the dimensionality of
the path space by taking out specular events along the path, we are
going to abstract the specular vertices along our path during the
MIS weights computations and link the diffuse vertices with direct
geometry terms instead for MIS weights computations.

Using the same notation as in Section 3.2, we can approximate the
sampling area densities at the vertices using direct geometry terms:

p−→
A

(pi) = pw(p
(D−i +1)

− p
D−i

)
| cos(

←−
θi )|

||p
D−i
− pi||2

p←−
A

(pi) = pw(p
(D+

i −1)
− p

D+
i

)
| cos(

−→
θi )|

||p
D+

i
− pi||2

Moreover, if pi is not connectable, then

p−→
A

(pi) = p←−
A

(pi) = 1

since we use direct geometry terms and consider nonconnectable
vertices as light path routers.

The approximation of the probability of sampling a path p̄t connect-
ing ps and p

D+
s

using either a regular connection if D+
s = s+ 1 or

a caustic connection otherwise is given by the following equation:

ps(X) =

s−1∏
i=−1

p−→
A

(pi+1)︸ ︷︷ ︸
camera subpath

×
k+1∏

i=D+
s +1

p←−
A

(pi−1)

︸ ︷︷ ︸
light subpath

As we know, multiple importance sampling can be applied using a
multitude of different heuristics to compute its weights. Results will
stay unbaised while the weights are computed in a consistent way
for all the different estimators. Therefore, the algorithm will still
converge if we use an approximation of the sampling probability
density function of a path for the balance heuristic introduced by
Veach [1997].

Antwerpen [2011] introduces a recursive scheme for computing the
balance heuristic weights, which greatly improves the effiency these
computations and only requires information at the last vertex on
both camera and light subpath. We have demonstrated that we can
use the same recursive scheme with our approximate area sampling
densities to compute MIS weights that account for our new strate-
gies. The recursive terms are computed as follow:

dEs =


1

p−→
A

(p1)
s = 1

p←−
A

(ps−1)d
E
s−1

p−→
A

(ps)
ps is not connectable

1+p←−
A

(ps−1)d
E
s−1

p−→
A

(ps)
otherwise

and

dLs =


1

p←−
A

(pk)
s = k − 1

p−→
A

(ps+2)d
L
s+1

p←−
A

(ps+1)
ps+1 is not connectable

1+p−→
A

(ps+2)d
L
s+1

p←−
A

(ps+1)
otherwise

We can finally compute the inverse MIS weight for a strategy start-
ing a connection at ps:

1

ws(X)
= 1 + p←−

A
(ps)× dEs + p−→

A
(p

D+
s

)× dL
(D+

s −1)

In these formulations, when the camera or light subpath contains a
sequence of specular vertices, we assume that there exists a caustic
connection strategy that could sample this path across that specular
chain. However, it is not always true in practice due to the com-
plexity of the manifold exploration when dealing with total internal
reflection, complex geometries, or a long sequence of specular in-
terfaces. For this method to stay unbaised, whenever we account for
caustic connection strategy in the MIS recursive term, we should
test if this connection could have happened in pratice. Therefore,
we run a manifold exploration for only a few iterations and compare
the found caustic subpath with the specular chain we have sam-
pled during the random walk. If these subpaths are close enough,
then we can account for this caustic connection strategy in the MIS
weight.

3.4 Optimizations

Russian roulette

Computing a caustic connection using the manifold exploration al-
gorithm is relatively expensive due to the many shader evaluations
at each iteration before finding the correct path. Therefore, as an
optimization, we propose to apply the concept of russian roulette
to our strategies in order to reduce the amount of manifold explo-
rations at render time while keeping the method unbiased.

We have tried different heuristics to determine the threshold to use
for the russian roulette, such as the length of the camera and light
subpaths, their throughput, and combination of these two. The sim-
ple heuristic based on the length of the two subpaths works rela-
tively well in general and requires less user adjustment. In practise,
it reduces the amount of time spent in manifold exploration by 30%.

The efficiency-optimized russian roulette from [Veach 1997] com-
putes the roulette threshold value based on the efficiency metric of
the estimator so as to maximize the efficienty of the resulting esti-
mator. This should perform better than the standard russian roulette
and remove the burden of having to choose the threshold value our-
self. However, this method requires the integrator to keep track of
the average variance and cost of a given estimator (per pixel). In
practice, the overhead cost and complexity of using this method
proved not to be beneficial compared to our heuristic.

Manifold exploration caching

Another way to reduce the cost of running many manifold explo-
rations is to use some caching mechanism, exploiting the similari-
ties of different caustic subpaths and reuse the solution of previous
manifold explorations. The idea is to use those cached solutions as
initial state for the current manifold exploration rather than using
the seed path. This should lead to an initial caustic subpath closer
to the true solution and therefore reduce the total number of itera-
tions.

This raises the questions of how to best represent a connection con-
figuration, its solution, and what distance metric should we use to
evaluate the fitness of a cached solution given the current configura-
tion. The caustic subpath is enterly determined by the position of its
two endpoints and the orientations of the specular surfaces. More-
over, the curvatures of those surfaces define the condition number



(a) Indirect lighting from area light
32 samples

(b) Indirect lighting from an area light in a bulb
32 samples

(c) Indirect lighting through a droplet of water
32 samples

Figure 4: The Caustic Connection strategies efficiently handle any types of refractive caustic subpaths, anywhere along the full light path
and clearly outpass a regular bidirectional path tracer.

of this configuration, a crutial information defining the reliability of
a cached solution.

After rendering scenes of various complexity, we made the observa-
tion that the manifold exploration was taking 4 iterations in average,
where each iteration involves shadow tests and shader evaluations.

In the manifold exploration, each iteration assumes constant curva-
ture at the specular surfaces. In a similar way, our caching mech-
anism uses a distance metric that only relies on local information,
and therefore, also assumes constant properties on the surfaces. We
obeserve that in the best case, our caching mechanism would play
a similar role as the first iteration of the manifold exploration.

In conclusion, the manifold exploration is too ill-conditioned to be
compatible with such caching mechanism. On top of the overhead
costs of this caching mechanism, the reduction in the number of
iterations for the manifold explorations was minimal.

4 Results

Figure 4 shows equal sample per pixel comparisons of the regular
BDPT and BDPT with our new strategies under different lighting
conditions. In Figure 4a, all the light illuminating the scene first
bounces on diffuse panel. BDPT properly handles this situation of
indirect lighting for diffuse-diffuse interactions but struggles find-
ing the refractive caustic path since it cannot do any connections on
the specular hemisphere. Moreover, the MNEE method in this case
would be of no help since it can only connect diffuse surfaces across
specular chains directly to the light sources. On the other hand, the
caustic connection strategies easily find the refractive caustics, by
connecting the diffuse floor to the diffuse panel across the refrac-
tive hemisphere. As we can see, even with only a few samples, with
our method, the caustic regions are almost as converged as the non-
caustic regions. Figure 4b compares another case where all the light
paths contain at least one specular event. This time, the BDPT can
only rely on the strategies that sample most of the path, either from
the camera or the light, since it can’t connect anything in between.
The caustic connection strategies add many ways to construct the
path in this case, which greatly help the renderer. Finally, Figure
4c shows a case where all the light paths end with a SDS subpath.
While this is a complex scenario for any rendering algorithm, our
connection strategies can find this path in many ways: either by
connecting the diffuse floor to the diffuse panel across some re-

fractive interfaces, or by connecting the diffuse panel directly to the
light source across the refractive hemisphere. Once more, even with
a small number of samples, our method finds most of the refractive
caustic paths and clearly outpass the regular BDPT.

Figure 1 demonstrates a use case of the new connection strategies
introduced in this paper in a production setup. Thanks to the caustic
connections strategies, the bidirectional path tracer properly renders
indirect caustics on the irises of the digital character.

5 Conclusion

In this paper, we presented a novel set of sampling strategies for
bidirectional path tracer. These strategies are specialized in con-
necting diffuse vertices across a sequence of refractive interfaces
and help the BDPT to sample paths containing complex refractive
caustic subpath. Our method solves the problem of rendering in-
direct refractive caustics, where state-of-the-art techniques such a
Manifold Next Event Estimation fail. It also doesn’t suffer from
temporal uncoherency, and runs with a very low memory impact
which makes it really suitable for rendering in the industry.

Our new strategies could easily be integrated in other connection-
based rendering algorithms such as VCM. We leave this for future
study.
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