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Figure 1: Example of stylized curly hair simulated with our method. c© Disney/Pixar.

Abstract

Artistic simulation of hair presents many challenges - ranging from
incorporating artistic control to dealing with extreme motions of
characters. Additionally, in a production environment, the simu-
lation needs to be fast and results need to be usable ”out of the
box” (without extensive parameter modifications) in order to pro-
duce content efficiently. These challenges are only increased when
simulating curly, stylized hair.

We present a method for stably simulating stylized curly hair that
addresses these artistic needs and performance demands. To sat-
isfy the artistic requirement of maintaining the curl’s helical shape
during motion, we propose a hair model based upon an extensible
elastic rod. We introduce a method for stably computing a frame
along the hair curve, essential for stable simulation of curly hair.
Our hair model uses a spring for controlling the bending of the curl
and another for maintaining the helical shape during extension. We
also address performance concerns often associated with handling
hair-hair contact interactions by efficiently parallelizing the simu-
lation. To do so, we present a technique for pruning both hair-hair
contact pairs and hair particles.

Our method has been used on two full length feature films and has
proven to be robust and stable over a wide range of animated motion
and on a variety of hair styles, from straight to wavy to curly. It
has proven invaluable in providing controllable, stable and efficient
simulation allowing our artists to achieve their desired performance
even when facing strict scheduling demands.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: Hair simulation, Mass-spring models

1 Introduction

Robustly simulating stylized hair in a production environment is a
challenging problem. Hair styles can range from straight to curly
and often consist of an enormous number of hair-hair interactions,
leading to performance and memory concerns. In an environment
driven by artistic expression, such as feature films, the shape and
motion of the hairs resulting from the simulator are critical, as is
the overall simulation time.

We present a hair model designed for creating specific visual looks
of curly hair that are often non-physical. For example, our artists
want to preserve the helical shape of the hair, regardless of in-
tense forces caused by extreme motion only possible in anima-
tion. With a physical model for hair, such as infinitesimally thin
elastic rods [Bergou et al. 2008], the helical shape would naturally
straighten under such motion unless the material properties are stiff-
ened to maintain the shape, making the hair wire-like. This natural
straightening is an example of a physical motion undesired by our
artists. In addition to behavioral requirements, our hair model must
be robust and stable, able to handle fairly arbitrary hair shapes cre-
ated by artists as depicted in Figure 1. Given the large range of
motion present in an animated feature film, our simulator must be
able to give dependable results without per-shot parameter tuning
while preserving the overall look of the hair.

Given these requirements, we chose to represent hair as a mass-
spring system defined by a piecewise linear curve that captures the
deformation of the hair over time. Using a point representation for
hair has several advantages. It gives artists an intuitive interface
to define and modify finely detailed, complex geometry, as well
as providing straightforward simulation targeting and art direction
and easy integration of external forces. However, mass-spring sys-
tems have inherent limitations, most notably concerns with stability



when faced with stiff systems. We address stability by using a semi-
implicit Euler integration scheme discussed in Section 5.

In addition to the linear springs connecting particles, we introduce
a spring controlling the bending along the curl and another control-
ling the longitudinal stretch of the curls, designed to provide our
artists with the desired visual look. Because we are primarily con-
cerned with simulating stylized curly hair, we propose a novel al-
gorithm for computing a stable frame along the hair curve to retain
the helical shape during motion. Although our method is specif-
ically designed for simulating curly hair, we are able to handle a
wide range of hair styles, as illustrated in Section 6.

Instead of simulating a dense number of hairs, our hair model uses
a large number of guide hairs, each representing multiple hairs that
are rendered. However, even with the reduction of hair complexity,
simulating every hair-hair contact is still expensive on models with
a large number of complex hairs. Instead, we present a novel algo-
rithm for pruning the number of contacts considered by each hair,
improving performance and reducing memory usage. By using this
pruning, we are able to improve performance through parallelism.
Without parallelization, we would be unable to meet production
needs for efficiently simulating a wide range of characters.

1.1 Key Features of our System

We present a system for simulating stylized, curly hair. Our hair
model is specifically designed to achieve artistic goals and perfor-
mance as opposed to strict physical correctness. The key features
of the system are:

• A bending spring formulation using reference vectors posed
in frames computed on a smoothed hair representation.

• A nonlinear core spring formulation for maintaining curly hair
shape under large accelerations.

• An algorithm for pruning both hair-hair contact pairs and hair
particles to efficiently parallelize hair-hair contact computa-
tion.

2 Related Work
Many researchers have developed methods for modeling, dynam-
ics, and rendering of hair in computer graphics, too numerous to
adequately describe here. Instead, we describe the most relevant
work to our method and refer to the survey by Ward et al. [2007]
and the class notes of Bertails et al. [2008] for a broad overview.

Many methods have modeled single elastic rods based on Cosserat
theory [Pai 2002; Grégoire and Schömer 2006]. Bertails et
al. [2006] extended the Kirchhoff model to hair, modeling curls
with a piecewise helical structure. This model contains an implicit
centerline, but subsequent methods were developed with explicit
centerlines for Cosserat [Spillmann and Teschner 2007] and Kirch-
hoff [Bergou et al. 2008; Bergou et al. 2010] models. These rod
methods define material coordinate frames along the hair curve.
Because we have an explicit hair representation without a prede-
fined frame at each segment, our method parallel transports the
natural Bishop frame directly, similar to the reference frame used
in [Bergou et al. 2008]. However, we compute this frame along a
smoothed representation of the hair curve instead of the curve itself,
reducing the sensitivity of the frame to changes in hair positions.

Much previous work has applied mass-spring systems to individ-
ual hairs. One of the first approaches was Rosenblum et al. [1991],
which used a linear spring for stretch and an angular spring between
segments for bend. Petrovic et at. [2005] used a mass-spring sys-
tem for simulating the dynamics of keyhairs that represent multiple

rendered hairs. Selle et al. [2008] presented a mass-spring model
for simulating all individual hairs. They used separate edge, bend,
twist, and altitude springs to form an implied tetrahedron of springs
between points, preventing volume collapse. Similar to these meth-
ods, we use a linear spring for stretch. Our hair model differs with
the usage of two additional springs, designed to give our artists
the visual look described in Section 1. We add a single spring for
controlling bend, using the stably generated frame discussed above
for the hair orientation. We define an additional spring to control
the longitudinal stretch of curls during motion, not present in prior
models.

A variety of methods have been proposed to model hair volume and
hair-hair contacts. Hadap et al. [2001] modeled hair as a serial rigid
multibody chain and incorporated fluid dynamics to model hair col-
lisions and contacts. Plante et al. [2002] constrained a mass-spring
system to a deformable envelope defining a volume of the clus-
ter of hairs (wisp), which was also used for interactions. Bando et
al. [2003] model the hair as a set of particles with density represent-
ing the sampled hair volume. Choe et al. [2005] combined a mass-
spring model with a serial rigid multibody chain to model wisps,
detecting contacts through cylinders. Hadap [2006] further extends
the rigid multibody model to include tree structures by solving with
differential algebraic equations, more easily allowing analytic con-
straints.

Mass-spring models have also been combined with a lattice for de-
formation during hair styling [Gupta et al. 2006] or with an Eule-
rian fluid solver to give volume and provide a better initial position
for the particle contacts [McAdams et al. 2009]. More recently,
hair-body and hair-hair contacts have been more accurately mod-
eled by using a non-smooth Newton solver for the Coulomb friction
law [Bertails-Descoubes et al. 2011]. Daviet et al. [2011] globally
solves for Coulomb friction with a hybrid Gauss-Seidel algorithm,
using an analytic solver to ensure convergence.

Similar to prior work, we chose to detect contacts by surrounding
particles with geometry to preserve volume, in our case spheres,
and use penalty forces to handle interactions. Our method differs
from previous work by introducing a novel algorithm to prune both
hair-hair pairs and hair particles to improve performance by allow-
ing parallelization while still producing good results. We chose the
inaccurate yet efficient penalty force model to locally solve contacts
for performance reasons instead of handling contacts globally, such
as in continuum methods or solving exact Coulomb friction. Al-
though penalty forces can cause instabilities, using a semi-implicit
integration method combined with tapering spring constants during
contact release produces stable results.

3 Hair Model
Our hair model is most similar to mass-spring systems [Rosen-
blum et al. 1991; Petrovic et al. 2005; Selle et al. 2008; McAdams
et al. 2009] and infinitesimally thin elastic rods [Bergou et al. 2008;
Bergou et al. 2010]. Our force model must satisfy three properties
to create our desired visual style. First, we desire relatively inexten-
sible hairs, allowing artistic control over stretch. Second, we want
a hair model that holds a curl’s shape while allowing it to flex with
motion. Finally, we want our curls to reasonably maintain their
initial shape during acceleration, to avoid curl unwinding.

We model a single hair using a mass-spring system. Similar to
previous work, we sequentially connect each hair particle with a
linear spring to control stretch (Section 3.1). Our method differs
from prior work with the formulations of two additional springs.
To control bend along the curl, we use a bending spring by com-
puting frames along a smoothed representation of the curve (Sec-
tion 3.2). We also introduce a spring to limit the longitudinal stretch



Elastic rods model (E = G = 8× 109)

Our bending model (kb = 3× 104, cb = 1.74× 103)

Figure 2: Simple example of a perfect helical curl undergoing
motion from the walk cycle of Figure 12. The elastic rod model (top)
introduces rotation around the helix, apparent in the orientation of
the end of the curl, while our bending model (bottom) does not.

of curls (Section 3.3). These three springs comprise our per hair
force model.

3.1 Stretch Spring

We define our hair model using a set of particle positions connected
by linear springs. Let each hair be defined by a set of current par-
ticle positions P = {p0, . . . ,pN−1} and initial rest pose particles,
P̄ , where ·̄ denotes rest quantities. Let the current velocities for
these particles be V = {v0, . . . ,vN−1} and the polyline edges
connecting hair particles be ei = pi+1 − pi. We compute a stan-
dard damped linear spring force on particle i by

fs(ks, cs)i = ks(‖ ei ‖ − ‖ ēi ‖)êi + cs(∆vi · êi)êi (1)

where ks are the spring and cs the damping coefficients, ∆vi =
vi+1 − vi, ‖ · ‖ denotes vector length and ·̂ vector normalization.
Because springs in our model are connecting two particles, each
of our spring forces is applied equally to both particles in opposite
directions.

Our artists also want to enable bounce during a walk cycle, for ex-
ample, by allowing hair to slightly stretch (see Figure 12 and the
video for an example). To allow this artistic stretch of the hair with-
out using stiff springs, we impose an upper limit on the stretch of
the polyline similar to the biased strain limiting approach presented
in [Selle et al. 2008]. During the spring damping calculation, we
recurse from the root to the tip limiting the velocity of the hair par-
ticle if ∆v2

i exceeds a threshold. After we update positions, we
again recurse from the root of the hair to the tip shortening edges
that exceed the specified stretch allowance. By using this limiter,
artists are able to control the desired amount of stretch allowed by
the system.

3.2 Bending Spring

Our method to control bending is most similar to the elastic rods
model [Bergou et al. 2008; Bergou et al. 2010], which computes
the material frame as the minimizer of elastic energy of the curve.
They use these material frames to compute the bending and twisting
energies along the rod. However, the formulation of Bergou et al.
introduces rotation during simple motion of a curl, such as a walk
cycle, shown in Figure 2 top. This rotation can be removed by
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Figure 4: Example of a stylized curly hair (far left) and the
smoothed curves (blue) computed with α at 2, 4, 6, and∞.

increasing the material’s stiffnesses, but this change leads to wire-
like behavior (see video).

This type of rotation in the curl, while physically accurate, is un-
desirable for our application. Our hair model instead introduces
a method to stably generate the material frame by parallel trans-
porting the root frame of the hair along a smoothed piecewise lin-
ear curve (see Section 3.2.1). The result of using our smoothed
curve is a series of frames that are not highly influenced by small
changes in point positions, avoiding unwanted rotation as illustrated
by Figure 2 bottom. Our bending formulation uses reference vec-
tors posed in the frames from the smoothed curve to compute the
bending force (see Section 3.2.2).

3.2.1 Smoothing Function

Let Λ = {λ0, . . . ,λN−1} be a set of N elements in R3 associated
with a hair, such as particle positions or velocities. We define our
smoothing function, di = ς(Λ, α)i, with an infinite impulse re-
sponse (IIR) Bessel filter (for examples, see [Najim 2006]). These
filters are recursive functions, combining the input and prior results
to produce each new result.

To compute the results, we take as input the smoothing amount,
α ≥ 0, in units of length along the curve. Let β = min(1, 1 −
exp(−l/α)) where l is the average rest length per segment of the
hair being smoothed. We then recursively compute vectors di ∀i ∈
[0 . . . N − 2] with the equation

di = 2(1− β)di−1 − (1− β)2di−2 + β2(λi+1 − λi) . (2)

By choosing these coefficients and initializing d−2 = d−1 = λ1−
λ0, this equation reduces to d0 = λ1 − λ0 at i = 0. Subsequent
di values are weighted towards this initial direction, an important
property for our usage of this function.

When Λ is a set of positions, we can reconstruct the smoothed poly-
line by recursively adding the vectors from the fixed root position.
The new points, p′i ∀i ∈ [1 . . . N − 1], are defined by

p′i = p′i−1 + di−1 (3)

where p′0 = λ0, the root of the polyline. We show the relationship
between an original and smoothed curve in Figure 3.
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The range of input values α = [0,∞] produces well behaved output
from Equation 2. If α = 0, then we set β = 1, meaning that
di = λi+1 − λi and no smoothing occurs. As α → ∞, then
β → 0 and d0 = · · · = dN−2 = λ1−λ0. If this limit case occurs
when Λ is a set of positions, the polyline resulting from Equation 3
is straight and in the direction of the first segment, regardless of
how kinked the input polyline. Figure 4 gives an example curve
from the model depicted in Figure 1 and the resulting smooth curve
with different α values.

3.2.2 Bending Spring Formulation

We implement a bending spring force to stably control the bend
between the rest and current poses of the hair while maintaining the
helical shape of curls. During initialization, we use the rest pose
points to precompute a reference vector, t̄i = F̄ T

i−1ēi, as the edge
ēi expressed in the local frame, F̄i−1, of point p̄i−1. We store the
axes of the frame as the columns of F̄i−1 and use ēi as a column
vector. We compute the local frames, F̄i−1, by parallel transport
of the root rest frame, F̄0, along the smoothed curve defined by
ς(P̄ , αb) with αb bending smoothing amount (see Figure 5 left).

We use the common approach of rooting hair to a planar scalp poly-
gon, which provides the animated motion for the hair and the hair’s
root coordinate frame, F0. At each step of the simulation, we com-
puteF0 from the current root polygon andFi−1 from parallel trans-
port of F0 along ς(P, αb). We use these local frames to stably pose
the stored reference vectors t̄i in the current hair configuration. The
resulting vectors are the target vectors, ti = Fi−1t̄i, that we want
our current pose to match, as illustrated in Figure 5 right. We add a
spring force between the edge in the current pose, ei, and the target
vector, ti, to obtain the bending force

fb(kb, cb)i = kb(ei − ti) + cb(∆vi − (∆vi · êi)êi) (4)

where kb is the spring and cb the damping coefficients. To provide
more flexibility, we allow artists to specify the spring coefficients
for each edge. This bending formulation preserves linear momen-
tum but not angular momentum. We could extend the model to also
preserve angular momentum but have found it unnecessary for our
application.

3.3 Core Spring

Using only stretch and bending springs was insufficient for our
artists’ needs when simulating curly hair over a variety of motions.
A mass-spring model with stiff stretch and bending springs can hold
the curly shape during fast motion, but it reduces the ability for
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Figure 6: We precompute the rest core directions b̄i (left) that we
use to compute the spring force and apply in the current pose, in
the direction −bi (right).

the hair to bend. If we instead reduce the stiffness of the bending
springs to allow flexibility, the curls lose shape and unwind at high
accelerations. Animated characters commonly undergo extreme ac-
celerations (10x or more than that of gravity). The resulting curl
unwinds becoming nearly straight and appears much longer than
the desired look, even though there is minimal stretch. Although
such behavior is physically correct, this curl unwinding is unde-
sired behavior for our artistic needs. To allow flexible curly hair
yet maintain shape, we introduce a third core spring that controls
the longitudinal stretch of the curls without stiffening the bending
springs. See Figure 10 and the accompanying video for examples.

Similar to the bending calculation, we create a smoothed represen-
tation of the hair using the function described in Section 3.2.1. We
precompute the representation of the original core of the curl from
the rest points, b̄i = ς(P̄ , αc)i, where αc is the smoothing amount
for core springs (see Figure 6 left). The resulting piecewise lin-
ear curve represents the direction of the center of the curl, giving
a more natural representation to control its longitudinal stretch, as
illustrated by Figure 3.

During the force calculation, we use the current hair pose to com-
pute bi = ς(P, αc)i (see Figure 6 right). We apply the same
smoothing to the velocities to obtain the vectors νi = ς(V, αc)i

for the spring damping term. We compute the core spring force by
calculating the amount of stretch along the core, giving the force

fc(kc, cc)i = kc(‖ bi ‖ − ‖ b̄i ‖)b̂i + cc(νi · b̂i)b̂i (5)

where kc is the spring and cc the damping coefficients. To maintain
stability, we must keep kc < ks where ks is the spring coefficient
maintaining the connection between hair particles from Equation 1.

Because this spring is intended to control longitudinal stretching,
we avoid adding unnecessary constraints by allowing the core to
compress. We set the spring coefficient kc to zero during compres-
sion, determined from the spring length (‖ bi ‖ − ‖ b̄i ‖). We
blend from zero to its full value upon extension to avoid a large
force introduction using a cubic Hermite blending function. Since
the segments of our hairs are approximately 1 unit in length, we
found that blending over the parametric domain [0, 0.5] is suffi-
cient.

During extreme motion (see Figure 10 and the video), a large core
stiffness value is required to keep curls from unwinding. However,
tuning kc for this extreme motion would undesirably stiffen the
curl’s shape during normal motion, such as a character’s walk cycle.
To balance the artist’s desire for bounce during the walk cycle and
control during extreme motion, we nonlinearly change kc from the
current value to a maximum specified stiffness using a cubic Her-
mite blending function based upon the amount of longitudinal curl
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Figure 7: Each particle p̄i has an associated sphere with radius ri

(left). We prune particles contained in overlapping spheres (right)
to reduce the number of potential contacts.

stretch. We compute the blend weight from the ratio of the total
length of the current curve, b, to the total length of the rest curve,
b̄. By automatically adjusting the core stiffness and damping, we
avoid the need for per-shot parameter tuning.

4 Hair-Hair Contacts

In addition to modeling a single hair, we must also model hair-hair
contacts so that we can capture the interesting interactions when
simulating a mass of hair. If we were to consider every possible
pair of particles for interaction, the algorithm would become quite
expensive. Instead, we reduce the number of interactions consid-
ered by performing two kinds of pruning, enabling us to parallelize
our hair simulation and improve performance.

We prune contact points along the hair, as described in Section 4.1.
We also prune hair pairs allowed to interact during the simulation
based on the observation that for visually palusible complex hair
interaction we often do not need to model every individual inter-
action, only the aggregate effect. This pruning, described in Sec-
tion 4.2, enables us to parallelize our simulation and optimize the
communication pattern between processors.

We could have alternatively used a bounding hierarchy to accurately
handle contacts in all situations. The advantage of our method over
such hierarchies is that we can statically compute the processor
communication pattern; otherwise, we would need to dynamically
update the processor communication or exchange all hair data be-
tween processors. The disadvantage of our algorithm is that the
contacts may be incorrect in certain situations, such as when long
hair is flipped from one side of the scalp to the other. For our pro-
duction needs, we have run into few examples where this limitation
has caused artifacts. In these rare cases, we decrease pruning to
guarantee the correct contacts.

4.1 Pruning Hair Particles

Our hair-hair contact model must account for volume between
guide hairs, each representing several rendered hairs. We use
spheres around individual hair particles to indicate the volume each
particle represents. Increasing these sphere radii increases the vol-
ume of the hair. Because spheres of neighboring particles on the
same hair overlap, we can reduce particles used for contact testing
by pruning those contained inside neighboring spheres (see Fig-
ure 7 left). Even with hair motion, the spheres around neighboring
particles will provide enough contact for hair-hair interactions.

Our pruning test starts at the root of the hair (j = 0), which we
never prune, and compares the sum of the edges ēi to the potentially
overlapping spheres. We set k = 1 and continue to increment k
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Figure 8: By pruning hair pairs (simple example on left), we re-
duce the overall number of edges in the larger contact graph C
(right). This reduction enables us to cluster the graph into proces-
sors with reduced communication cost between P1, P2, and P3.

until the following equation is satisfied:

k−1X
i=j

‖ ēi ‖ > s(rj + rk) (6)

where rj is the radius for the jth particle and s a parameter control-
ling particle sparsity. We then prune all particles between j and k,
set j = k, k = k + 1 and repeat the process until we have reached
the end of the hair. This process controls how much overlap there is
between the contact spheres after pruning. Setting s = 1 means that
spheres would just touch with no overlapping. We have found that
a value of 0.75 provides a good balance between performance and
accuracy. The result is a subset of available particles for handling
contacts, as illustrated in Figure 7 right.

4.2 Pruning Hair Pairs

Hair-hair contact models are used to represent forces such as static
charge and friction among neighboring hairs. We have observed
that when many hairs interact in a complex manner, it is not nec-
essary to capture all of the individual hair-hair interactions in order
to produce a plausible, visually appealing result. In fact, we can ig-
nore certain hair-hair interactions and their effect will often be felt
through similar or indirect interactions with neighboring hairs. For
example, consider three hairs h1, h2 and h3 that are aligned in a
row, as in Figure 8 left. We can prune the interaction < h1, h3 >
and assume that the effect of this interaction will happen through
contacts between < h1, h2 > and < h2, h3 >. As the numbers
of hairs increase, the effects of these individual hair-hair interac-
tion become less important as we mainly see the aggregate effects
of many hair-hair interactions. Using this observation, we have
developed an algorithm to prune hair pairs used for contact test-
ing - effectively sampling the hair-hair interactions. This pruning
allows us to reduce the number of necessary hair-hair contacts, re-
duce interprocessor communication and more efficiently parallelize
the simulation.

To indicate the hairs allowed to interact during simulation, we use a
graph C where each node is a hair and an edge C(hi, hj) indicates
that hairs hi and hj are allowed to interact. Initially a full graph,
we statically prune our contact graph at initialization time as fol-
lows: First, we multiply each ri by a constant, rc, and compute and
sum all contacts between spheres on hair i and hair j, calling the
sum ni,j . We prune edges where ni,j < nt, a threshold indicating
the minimum number of hair contacts required for interaction. We
also stochastically prune graph edges based on our observation that
neighboring hairs will often handle the interactions. It is important
to note that we are pruning hair-hair interactions from the graph;
we are not pruning the hairs themselves.



Once we have pruned our graph, we assign hairs to processors for
parallelization. To optimize performance, we attempt to minimize
the data exchanged between processors by using a greedy graph
clustering algorithm. We initially assign equal numbers of hairs to
each processor, creating a graph clustering. The goal is to reduce
the communication cost, computed as the number of edges between
the processor groups, while maintaining equal workloads. To do so,
we greedily swap hairs between processors if it reduces the commu-
nication cost, iterating until we have reached a minimum, or have
exceeded a maximum number of swaps (see Figure 8, right). This
final clustering allows us to send less information between proces-
sors than if we had simply used all contact pairs, leading to more
efficient parallelization. Note that we could use any algorithm for
constructing the hair adjacency graph as long as it produces good
communication patterns between processors.

4.3 Contact Detection and Response

At each step of our simulation, we spatially subdivide our scene into
a uniform grid structure where we insert the hair particles available
for contact. For each hair particle, we use the grid to retrieve neigh-
boring hair particles for contact testing. We discard potential con-
tacts prior to testing if their is no hair pair edge C(hi, hj) between
the hairs containing the particles.

If the hair pair < hi, hj > has not been discarded, we detect con-
tacts when their spheres overlap, ‖ pi − pj ‖ < ri + rj . Similar
to prior methods [Chang et al. 2002; Bando et al. 2003; Selle et al.
2008], we handle interactions by applying a spring penalty force
and break contacts when particles surpass a distance threshold. Our
method dynamically creates contacts, similar to [Selle et al. 2008].
However, we attach springs between particles instead of edges and
do not directly limit the overall number of allowed contacts. In-
stead, we have already limited our contacts through pruning parti-
cles and hair pairs.

To avoid instabilities often associated with penalty forces, such as
high-frequency bouncing of the objects in contact, we adjust spring
constants when the spring breaks using a method similar to [Chang
et al. 2002] but with some additions. We dynamically increase the
spring stiffness during initial contact while using full damping to
avoid a large spring impulse. As the spring breaks, we first decrease
the stiffness to zero followed by the damping. We allow the spring
constants to reengage if the particle’s distance decreases before the
spring breaks, so that the contacts do not pass through one another.

5 Implementation Details
We integrate our forces using a nested semi-implicit Euler integra-
tion scheme with fixed time steps. Although one could possibly use
adaptive time stepping, we have found it unnecessary in practice.
We detect collisions and contacts in our outer loop. Our first nested
loop (the force loop) integrates the hair model springs, collision and
contact forces, while a further nested loop (the damping loop) inte-
grates the hair model spring damping forces. Our algorithm can be
summarized as follows:

For each outer loop iteration:
Detect Collision and Contacts

For each force loop iteration:
Integrate Internal Hair Forces (Section 3)
Integrate External Forces
Handle Hair-Hair and Hair-Object Collisions

For each damping loop iteration:
Integrate Damping Forces

Update Positions
Exchange Hair Data Between Processors

Figure 9: Example of stylized curly hair. c© Disney/Pixar.

For all models except RedHead, the outer loop time step is
0.00138883 seconds (24 frames per second with 30 outer loop steps
per frame), the first nested loop time step is 9.25887e-05 (15 force
steps per outer step), and second nested loop time step is 9.25887e-
06 (10 damping steps per force step). For RedHead, we cut the outer
time step in half to 0.000694416 (60 outer steps per frame) to han-
dle the higher spring stiffnesses and used the same number of force
and damping steps given above (force loop: 15 steps, 4.62944e-05
seconds per step; damping loop: 10 steps, 4.62944e-06 seconds per
step). After determining the time steps for the models, no addi-
tional time step tuning was needed during production shots as this
integration scheme provided consistent and stable results.

In our implementation, we use MPI for inter-processor communica-
tion. For hair-object collision detection, we spatially subdivide the
scene into a uniform grid using a method similar to [Teschner et al.
2003]. Our simulator uses penalty forces for collision response,
a commonly used approach [Plante et al. 2002; Choe et al. 2005;
Bertails et al. 2006; McAdams et al. 2009] that is fast to compute.
However, our contributions do not rely on which collision model
we use and an alternative method could be substituted.

6 Results and Discussion

Our simulator has been used on two feature films with a variety of
characters and hair styles. By creating a stable simulator, we are
able to generate most simulations using our default character pa-
rameters (examples of the default parameters for our RedHead and
Horse characters are given in Table 1). These parameters are tuned
once per character, starting from the appropriate default. Elimi-
nating per-shot parameter tweaking provides a dramatic benefit to
production schedules and can have a great impact on the production
budget. Although most of the shots (approximately 80%) are “out
of the box”, our simulator provides additional controls and supports
external forces for artistic direction (a common use is to keep the
characters’ hair from blocking their face).

Effects of Bending Smoothing: Figure 2 and the accompanying
video shows the importance of using our smoothed hair for bending
frame propagation on a simple helical curl example. Our method
avoids unwanted rotations in the curl present in physically accu-
rate models such as elastic rods. We actively chose the physical



Symbol RedHead Horse

ks 5× 106 − 1× 107 3× 105

cs 4472− 4743 6025

αb 10 0− 1

kb 100− 7.2× 104 300− 4.7× 104

cb 40− 2495 22− 1083

αc 3 0

kc 1.5× 104 − 6× 105 0

cc 100− 1.0× 104 0

ri 0.23− 1.65 1.0− 2.5

rc 5 3− 4

nt 1 3− 20

Table 1: Typical Parameters Ranges for the Models

inaccuracy of our smoothed bending model specifically to provide
a smooth and consistent motion and orientation of the curl, desired
for our artistic setting.

Effects of Core Springs: The accompanying video shows the im-
portance of core springs. Even in a simple walk cycle, without core
springs the hair sags unnaturally. This sag can be removed by in-
creasing the bending springs, but this results in an unnaturally stiff
looking hair style. Core springs allow us to maintain the curl shape
without making the hair unnecessarily stiff.

The need for core springs is even greater during fast motions and
large accelerations as shown in Figure 10 and the video. With-
out core springs, when the character stops abruptly, the large ac-
celeration causes the curls to unwind. It is important to note that
the length of the hair segments themselves are not extending much
here, rather the curls are unwinding, resulting in a visually longer
hair. Using core springs, the curls maintain the shape much bet-
ter. These extreme, non-physical accelerations are not uncommon
when dealing with animated films.

Parallelization: Table 2 shows the average seconds per frame for
different simulations using our system. Notice that our system
achieves good speedups as we increase the number of processors
(from around 4.5x - 6x on 10 processors). For some examples, the
performance gains reduce or even become negative around 12 pro-
cessors. This is due to the communication cost beginning to exceed
the gains of using more cores - usually because there are not enough
hair points on each processor. Communication costs are even more
dominant if we do not use our hair-hair contact pruning. When not
using our pruning, performance drops by a factor of 1.4x - 4.1x de-
pending on the example. With simulation times of 9.5 seconds per
frame for our RedHead hero character and her complex hair, our
simulator has proved to be extremely efficient in our production
process.

Production results: Our system was initially designed to deal with
the challenges of our RedHead hero character and her complex,
stylized curly hair (as seen in Figures 1 and 9). Figure 12 and the
video show the character during a walk cycle, while Figure 13 and
the video show the character performing different head rotations
from a calisthenic set. Notice how the hair motion achieves a nice
bounce and has complex hair-hair interactions with a natural tum-
bling and flow as desired by our artists.

Although our simulator was designed to handle the challenges of
RedHead’s curly hair, it is more than capable of simulating other
styles. Figure 11 and the video shows our system applied to the
various lengths of straight hair for a horse (mane, tail, fetlocks, etc.)
during a walk cycle. Figure 14 and the video shows the horse during
a more agitated side-stepping motion. Figure 15 and the remainder
of the video show the wide range of hairstyles simulated with our
system - from curly, to wispy, to straight.

Without core springs With core springs
Figure 10: Maximum extension of curls without core springs (left)
and with core springs (right). Because the hair without core springs
is unable to maintain the curl and continues to unwind, that pose
occurs 3 frames later (at 24 fps) than the example on the right. c©
Disney/Pixar.

Figure 11: Example of various lengths of straight hair styles for a
horse (mane, tail, fetlocks, body). c© Disney/Pixar.

7 Conclusions and Future Work

We have developed a system that provides efficient simulation of
curly hair while being able to realize our artistic goals. This was
achieved through several key features. Our smoothed bending for-
mulation produces visually pleasing bends and twists while remov-
ing unwanted twist discontinuities present in physical rods. Our
nonlinear core spring force resists unwinding and maintains curl
shape, without making the hair unnecessarily stiff, even during ex-
treme motion. The hair-hair contact pruning allows us to efficiently
parallelize the simulation by reducing the interprocessor communi-
cation while still achieving plausible dynamics. Our simulator is
in use on two full-length feature films on a range of characters and
hair styles and has proven to be an efficient and indispensable part
of our production process.

Limitations: The main limitation of our work is due to our hair-hair
contact pruning, we may actually miss contacts between the hairs.
In all but a few extreme cases (such as when a character flips all of
the hair from one side of their head to another), we have not seen
any artifacts from this as the effect of this contact is usually han-
dled by one of the contact pairs that have not been pruned. In the
cases where pruning will cause a problem (such as the aforemen-
tioned hair flip), we use our pruning controls to reduce the amount
of pruning, trading speed for accuracy.

Although our simulator is quite efficient, we hope to find ways to
improve its performance. In future work, we plan to look at other
schemes for processor assignment from the contact graph. This
may be even more important as we also plan to examine the ef-
fects of implementing our system in a heterogeneous environment
(across several CPUs, GPUs, etc.) as the communication costs be-
tween those devices will vary. We are also interested in improving
the performance of our collision detection as it still occupies a large
portion of the simulation time.



Number of Processors
Model Hairs Points 1 2 4 6 8 10 12

RedHead 579 44,552 61.1 30.7 17.8 13.5 11.3 11.0 9.5
Horse (total) 9,700 117,607 112.6 64.9 43.4 36.8 26.2 23.6 20.9

Mane 2,604 43,591 39.1 25.2 18.5 16.6 8.8 9.1 7.0
Tail 425 18,275 31.0 17.3 12.0 10.1 9.1 7.4 7.1
Fetlocks (Front) 996 17,928 14.2 7.7 4.3 3.4 2.7 2.3 2.1
Fetlocks (Rear) 726 13,068 9.7 5.2 3.1 2.5 2.1 1.7 1.8
Body 4,949 24,745 18.6 9.5 5.5 4.2 3.5 3.1 2.9

Table 2: Average frame time (in seconds) for the walk cycle of our RedHead character (averaged over 232 frames) and Horse character
(averaged over 119 frames). Simulations and timings were performed on a dual X5660 2.80GHz processor machine with 12 cores and 24 GB
memory.

Figure 12: Example of a walk cycle of our stylized curly hair character. c© Disney/Pixar.

Figure 13: Example of volume preservation during head rotation. c© Disney/Pixar.

Figure 14: Example of horse hair with large side stepping motion. c© Disney/Pixar.

Figure 15: Examples of various hair styles simulated with our method. c© Disney/Pixar.
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