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Figure 1: A series of snap-shot renders from importance sampling our hair reflectance functions. Our model supports efficient and seamless
rendering of fibers with elliptical cross section. This is key to producing time-homogeneous, realistic caustics. We produced these images by
rotating an outdoor IBL gathered in midday, and using a ray tracer with multiple importance sampling. Each image is approximately 64 light
samples and 256 brdf samples per pixel.

Abstract

We present an implementation of the [Marschner et al. 2003] model
for importance sampling light reflected from hair. The implemen-
tation makes use of a version of Adaptive Importance Sampling
(AIS), specialized to fit easily sampled distributions to BCSDFs.
Our model is novel among importance sampling implementations
in that it includes all the features of Marschner such as eccentricity
for elliptical cross-sections, and extends them by adding azimuthal
roughness control, and natural fiber torsion. It is also fully en-
ergy preserving. We compare with the implementations in both
[d’Eon et al. 2013] and [Ou et al. 2012] as well as a ground truth,
physical model which directly evaluates light-cylinder interactions.
Our model well approximates the ground truth, and is significantly
faster than other implementations.
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1 Introduction

A quarter-century after the pioneering work of [Kajiya and Kay
1989], rendering hair and fur in 3D animation remains a challenge.

Hair rendering is computationally expensive. While a uniform
structure is apparent, minute differences in between fibers are what
make the overall picture convincing, especially in todays ever in-
creasing demand for rendering fidelity, such as in cinema. This
requires fiber level detail which can compound render time, as it is
standard to have millions of fibers on a single groom.

Furthermore, each hair can be physically demanding. As a dielec-
tric with eccentric cross-section, hair allows for the possibility of
many internal bounces of light refraction and reflection. The work
of [Marschner et al. 2003] is famous for describing the geometric
equations governing these phenomena for circular cross-sections,
as well as showing that they are not enough to reproduce the charac-
teristic look of hair. It is the elliptic shape which causes the desired
caustics, as seen in figure 1, and also complicates the equations.

We present a hair scattering model and importance sampling
scheme that incorporates features such as elliptic cross-sections and
minor-axis rotation, which help give the hair its distinctive look,
while still optimizing for fast computation times. They key is a
data-centric optimization scheme which fits easily sampled distri-
butions to physically complicated scattering behavior. The result is
an efficient model, capable of rendering physically realistic hair.

While specified to rendering hair, our general approach - fitting
complicated BRDFS through Adaptive Importance Sampling (AIS)
- may be useful in other areas of shading as well.

2 Background and Related Work

In this section we review the Marschner model, set-up mathemat-
ical notation, as well as describe related work. For an excellent,
comprehensive survey of hair modeling see [Ward et al. 2007].



2.1 Scattering theory: the Marschner model

Figure 2: The coordinate system and representation of first 3 in-
ternal bounces. From [Marschner et al. 2003].

Our scattering model is built on the foundation of [Marschner et al.
2003]. In order to properly treat hair torsion (section 4.2), we
extend their spherical coordinate system to be both locally well-
defined and globally consistent. Figure 2 from [Marschner et al.
2003] is a starting diagram. The following section reviews their
approach. Our extensions are noted where relevant.

Three orthonormal vectors form a right handed basis: u - the tan-
gent vector, v - the major axis, bisecting the thickest cross-section,
and w - the minor axis orthogonal to the others. We distinguish v
from w as scattering functions produced by elliptical hair fibers are
not rotationally invariant. Global consistency follows from defining
both u and v from hair geometry, and requiring v to be a smoothly
varying function of its distance from the root of the hair fiber.

Given an incoming light direction, ωi, we want to find an outgo-
ing, or reflected, direction, ωr . Both directions are described by
their longitudinal and azimuthal angles, (θ, φ) ∈ [−π/2, π/2] ×
[−π, π]. The scattering function is defined as differential radi-
ance over differential energy and described by a sum over all inter-
nal bounces resulting in the emission of a light ray - (R)eflection,
(T)ransmission(T)ransmission, TRT, TRRT, and so forth,

S(ωi, ωr) =
dLr(ωr)

dLi(ωi)
=

∑
ρ∈{R,TT,TRT,... }

Sρ(θi, φi, θr, φr).

Any terms after the first three are disregarded as higher bounces are
assumed to be largely attenuated and thus their contribution to total
energy negligible. Note that [d’Eon et al. 2011] has since shown
that for light colored hair, there is non-negligible energy, particu-
larly at grazing angles in higher terms. Extending the approach in
section 3.2 to higher bounces is straightforward, and we leave this
for future work.

The third term is separated into two further terms, TRT and
GLINT , treating the singularities - points of infinite differential
radiance - caused by three bounces separately. This allows at-
tenuation to be treated differently for either term. Hence ρ ∈
{R, TT, TRT,GLINT}.

Each Sρ term is partitioned into the product of a marginal, longitu-
dinal scattering function (M) and a conditional, azimuthal scatter-
ing function (N). Both products are further conditioned on a vector
of user-defined parameters, β. For example,

SR(θi, φi, θr, φr) = MR(θi | θr, φr, β)NR(φi|θi, θr, φr, β)
(1)

A list of the user defined parameters contained in β is available in
the Appendix as Table 2.

The BRDF, S, is premultiplied by Fresnel attenuation and
volume absorption, which we represent by a single term,
Aρ(θi, φi, θr, φr, β), and then integrated over all incoming light
directions to calculated outgoing energy,

Lr(ωr) =

∫
Li(ω)S̃(ω, ωr | β)V (ω) cos(θ)/ cos2(θr)dω

S̃(ω, ωr | β) =
∑
ρ

Aρ(ω, ωr, β)Mρ(θ|ωr, β)Nρ(φ|θ, ωr, β)

(2)

In Equation 2, V is a visibility function, and the cos terms account
for solid angle change of measure.

Additional notation needed from the Marschner model is θd =
(θr − θi)/2, φ = φr − φi, θh = (θi + θr)/2, and e as the ra-
tio of minor to major axis fiber diameters. All units for the sequel
are in centimeters (cm).

2.2 Importance sampling of scattering functions

A standard approach to solve (2) shared by most contemporary hair
rendering models including [Hery and Ramamoorthi 2012], [Ou
et al. 2012], and [d’Eon et al. 2013], is through importance sam-
pling. If we denote the entire integrand by p(ω), and we sample
incoming light directions by ωj ∼ q(ω), j = 1, . . . , n, then the
importance sampled estimate is

Lr(ωr) =

n∑
j=1

p(ωj)
/
q(ωj).

As S̃(ω, ωr | β) is represented by a linear sum of terms, it is eas-
iest to importance sample each term separately and them sum the
resulting estimates.

Efficient importance sampling of scattering functions helps to re-
duce computation time by concentrating sampled rays on high en-
ergy areas. In other words, q(ω) ≈ p(ω). Our model takes a



related view from [Hery and Ramamoorthi 2012] which assumes
p(ω) = f(ω)q(ω) where f denotes scene specific quantities, leav-
ing the estimate as

∑
j f(ωj) now with optimal uniform impor-

tance weights, and pushing errors to model approximations.

Searching for less intensive sampling alternatives, such as [Ou et al.
2012] found for Gaussian lobes, further increases efficiency by re-
ducing the cost of sampling. This idea is explored further, along
with tradeoffs, in section 3.1.

Finally, scattering functions should be energy conserving. With-
out this property, changing model parameters can have unintended
and unforeseen effects. For example, energy loss at grazing angles
for the original formulation of [Marschner et al. 2003] was demon-
strated in [d’Eon et al. 2011]. We apply a white furnace test to all
our lobes to directly observe preservation of energy. This test has
been rigorously justified for microfacet BRDFs in [Heitz 2014].

2.3 Physical properties, simplifying approximations

Figure 3: Scattering functions of [Marschner et al. 2003] reacting
to varying eccentricity. NTRT is in blue, and NGLINT is in red.
Darker colors denote more circular cross-sections e → 1, and are
characterized by more symmetry.

Research into biological and physical properties of hair fibers, usu-
ally with application in cosmetics, has helped to produce more ac-
curate hair renders. In [Robbins 2012] hair fiber shape is described
as depending on the cross-sectional distribution of different types
of cortical cells, causing some hair types to both bow out in an el-
lipse and curl about their tangent axis. Elliptical cross-sections can
have large impacts on the resulting scattering function. Figure 3
shows terms from the scattering function of [Marschner et al. 2003]
changing drastically under varying amounts of eccentricity.

Yet as long as computing time is a scarce resource, a painters illu-
sion [Kajiya and Kay 1989] - implied detail higher than actual res-
olution - is desired over potentially costly modeling of individual
fibers. This often leads to approximation and simplification such
as in [Goldman 1997], [Sadeghi et al. 2010]. These models tend
to experience runtime reductions and have less numerical instabil-
ity, but also may unduly lose accuracy due to subjective choices of
functional forms.

Our approach is to first fully define the physical properties of light
scattering on hair, and then rely on numerical algorithms, such as
AIS (section 5.1), to solve explicit objective functions which re-
tain the most discernible features of light scattering, while reducing

complexity to a space of fast, and stable distributions.

We note that [d’Eon et al. 2013] has a sampling scheme that cir-
cumvents the need for any approximation of the Marschner model,
but their approach does not handle extension to elliptical fibers, and
can be very costly (see section 7).

The rest of the paper proceeds as follows. Section 4 describes note-
worthy features of our model. Section 3 gives details of our scatter-
ing functions. A description of Adaptive Importance Sampling, our
approach to fitting BRDFs, is given in section 5.1. Section 6 gives
implementation details. We compare our model to two others from
the literature, as well as a path traced ground truth, in section 7, and
conclude in section 8.

3 Scattering Functions

3.1 Longitudinal scattering, Mρ

0.01

0.10

1.00

5 10 15 20

Cone Angle (degrees)

L
2
 D

is
ta

n
c
e
 f
ro

m
 G

a
u
s
s
ia

n

0

10

20

30

0 25 50 75 100

Rays Sampled per Primitive

C
o
m

p
u
te

r 
T

im
e
 (

m
in

u
te

s
)

Cauchy

Logistic

Gaussian

Figure 4: We compare three proposals for longitudinal lobes -
Gaussian, Cauchy and Logistic. The left shows minimal L2 dis-
tance of Gaussian from the other two. Note the y-axis is on log
scale. While the right gives estimates of average processor time as
a function of BRDF samples per primitive. We find the logistic dis-
tribution is a closer fit to the Gaussian and has indistinguishable
cost from Cauchy.

It is natural to approximate the aggregate impact of microfacet
roughness by a Gaussian lobe. It is theoretically justifiable by the
Central Limit Theorem; the impact of many small, rough displace-
ments on a system results in a smooth bell curve of outputs. Unfor-
tunately Gaussian sampling is costly, especially in the case of hair
reflectance, as the range of potential longitudinal angles is closed,
depends on the reflected direction, and non symmetric around its
center. Even Box-Muller transforms are unable to efficiently take
advantage of both samples with a non-symmetric range.

We compare two alternative distributions which are symmetric and
have smoothly decaying tails - Cauchy and Logistic. Two tests
determined a winner: a shape analysis finding the closest fit to a
Gaussian, and cost analysis for impact on render time. For the sec-
ond, we ran a small experiment, comparing each distribution on
total CPU time to render a swath of hair across multiple numbers of
samples and cone widths. Results are shown in figure 4.

We find the logistic to have closest match in L2 distance by two or-
ders of magnitude. Using our implementation of either Cauchy or
Logistic decreases initialization cost by roughly 30% over Gaus-
sian, and the per-sample cost of Logistic is slightly less than
Cauchy, which is in turn 25% less than a Box-Muller implemen-
tation of Gaussian sampling. The speed increase of logistic and
Cauchy are due to their invertible, closed form CDFs.



Logistic is therefore used for longitudinal scattering in our model,

Mρ(θ|ωr, β) = l(θh ; αρ, λρ) (3)

where αρ and λρ are the longitudinal offset and cone width. The
logistic functional form is given in the Appendix in Table 3.

3.2 Azimuthal scattering, Nρ

The objective of our model is to find azimuthal scattering functions,
NR, NTT , NTRT , and NGLINT , which closely match their theo-
retical definitions (section 2.1) while still being easily sampled.

Definition 1. A function, f : X ⊆ IR → IR is easily sampled if
it has a bijective, everywhere finite definite integral with a closed-
form inverse, or is a linear combination of such functions.

The following lemma shows why easily sampled scattering func-
tions are useful for ray tracing.

Lemma 1. Easily sampled functions are fast to sample, stable, and
pass the furnace test.

Proof. Let f(x) be an easily sampled function, and F (x) =∫ x
a
f(s)ds, where X = [a, b]. Then Y = F−1((1 − U)F (a) +

UF (b)), has distribution Y ∝ f when U is uniformly distributed
on [0, 1]. The cost to sample depends on the cost to evaluate F−1,
which is low.

Second, since f is integrable, both F and F−1 are continuous since
F is bijective. Hence clamping and numerical overflow produce
expected, stable, results.

Finally, we can rewrite f(x) = (F (b)−F (a)) f(x)
F (b)−F (a)

, the right
part of which can be interpreted as a probability density and has in-
tegral 1, passing the furnace test. The left part can be interpreted as
the total energy of f . Extending the lemma to linear combinations
of such fs is straightforward.

Returning to azimuthal scattering functions, the first term, NR, can
be solved analytically as a cosine. This function is easily sampled,
and an efficient sampling schemes is described in [Hery and Ra-
mamoorthi 2012]. The other terms do not have exact, easily sam-
pled solutions.

The second term, NTT , depends on the longitudinal θ only through
its cone width, and can be shown to be symmetric about −π with
domain [0, 2π]. Following the run time results of the previous sec-
tion, we approximate NTT by a logistic distribution, with cone an-
gle a function of θD found by Taylor approximation (details given
in the Appendix, table 3 ). It is straightforward to show that the
logistic distribution is easily sampled.

The last two scattering functions,NTRT andNGLINT are the most
complex. Besides dependence on θ, they often have multiple lobes,
and sometimes singularities. Scattering is also no longer symmetric
when fibers have elliptical cross-section (e < 1). For example, see
figure 3.

Here we employ our data-centric, numerical optimization approach.

Recall βρ is a parameter vector defining the shape ofNρ. The com-
ponents of βρ for each ρ are listed in table 2. Consider a set of
basis densities, pd(φ; bd), with bd parameters for pd, and ad non-
negative weights, for d = 1, . . . , D, which are easily sampled for
all bd. Then for any sample of azimuthal angles φj , j = 1, . . . , n,

and suitable distance metric h on F , the space of distributions,
h : F × F × [−π, π]→ IR+, we directly solve the optimization

a∗, b∗ ∈ arg min
{a,b}D

d=1

n∑
j=1

h

(
Nρ(φj |βρ)

∣∣∣∣∣∣∣∣ D∑
d=1

adpd(φj ; bd)

)
Nρ(φj |βρ)

s.t. ad ≥ 0 , bd ∈ B,

(4)

with B a possible set of constraints on b.

We use AIS (section 5.1) to solve (4) for ρ = TRT and GLINT .
The basis distributions pd we chose are a combination of skew
logistics and monomials for TRT and solely skew logistics for
GLINT . These distributions are defined in Table 3. Since each ba-
sis distribution we consider is easily sampled, NTRT andNGLINT
are as well.

To summarize the section, we present explicit solutions for Nρ. All
parameter definitions are in the Appendix.

NR(φ | σR) =
1

4σR
cos(

φ

2σR
)

NTT (φ | θd , σTT ) = l (φ ; π , s(θd)σTT )

NTRT (φ | βTRT ) =

5∑
d=1

aTRT,d(βTRT ) pTRT,d (φ|bd(βTRT ))

NGLINT (φ | βG) =

3∑
d=1

aGL,d(βG) pGLI,d (φ | bd(βGLI))

4 Additional Model Features

4.1 Attenuation and volume absorption

As in [Marschner et al. 2003] and [d’Eon et al. 2011], we model
Fresnel attenuation at each internal scattering event, and take the
corresponding product of reflection and refraction terms as Fresnel
for each scattering component. A Fρ for each Sρ term.

Figure 5 shows the effect of Fresnel attenuation on the first term,
FR. We compare two competing approaches - the standard model
of [cite - Cook and Torrence] adapted by [d’Eon et al. 2011] to fit a
cylindrical coordinate system, and a derivation using the Bravais in-
dex developed by [Marschner et al. 2003]. We find that the standard
approach is more sensitive to changes in the longitudinal angle, and
prefer its appearance.

As angles of reflection inside the fiber do not, in general, coincide
with the final scattering direction, wo − wi, there is no obvious
extension to higher order terms. We examined both the Bravais for-
mulation of [Marschner et al. 2003] and a more ad hoc function
used in [d’Eon et al. 2011]. We prefer the softened look of [d’Eon
et al. 2011], after incorporating the suggestion of [Marschner et al.
2003] that Fresnel attenuation for GLINTs should always be calcu-
lated at the exact location of singularity.



Figure 5: Using a Fresnel term accounting for azimuthal angle
correctly attenuates grazing angles. The far left image shows theR
term without Fresnel. The second adds a Fresnel term accounting
for both longitudinal and azimuthal offsets. The third image is an
L2 difference between image rendered with this Fresnel and one
accounting for only longitudinal angles.

Our volume absorption term is a softened exponential decay in the
angel of azimuthal reflectance

Tρ(θ, φ) = e
−ρ#ζ(C)

∣∣∣ cos(γ)
cos(θD)

∣∣∣ (5)

where ρ# accounts for the increasing length of the internal light
pathway in higher terms {R−0, TT −1, TRT −2, GLINT −2},
and γ = γ(φ) an approximation of the internal, azimuthal angle
of reflection given incident and outgoing angles. The term ζ(C)
matches overall wavelength to a user supplied color, C, when the
rest of the exponent is maximized. It is straightforward to show that
the volume absorption in [Marschner et al. 2003] reduces to ours.

We exposeAρ = FρTρ directly for artist manipulation, and sample
from ρ ∼ Aρ for lobe selection.

4.2 Eccentricity and curl

Figure 6: The effect of increasingly elliptical hair fibers, from left
to right, top to bottom: e = 0.85, 0.90, 0.95, 1.00.

The distribution of cortical cells in a hair fiber cross-section affect
how much fibers curl in on themselves. [Robbins 2012] A distribu-

tion of cells in symmetric, concentric circles produces straight hair,
while asymmetric distributions produce curly hair. This distribu-
tion of cell types also creates eccentricity. More asymmetry results
in both curlier and more eccentric fibers. Curl affects light scatter-
ing as the position of fiber axis relative to camera direction rotates
down the length of the hair, and this position matters for elliptical
cross-sections.

We achieve a perception of fiber twisting without modifying hair
geometry by defining φ0(l), the rotation of hair major axis as a
function of distance from the root, l. Our underlying assumption is
that φ0 rotates 360o for every full curl a fiber completes, and any
partial curls induce proportional partial rotation.

It would be onerous to ask an artist to input the number of curls
completed for every hair fiber. We instead estimate reasonable val-
ues from eccentricity. The STAM is a robust classification of human
hair into 8 curl types from over 1,500 subjects spanning 18 differ-
ent racial subgroups. [De La Mettrie et al. 2007] STAM is also very
correlated with eccentricity. Regressed curl type as a function of ec-
centricity, explains over 99.9% of the variation in curl type across
numerous sources [Robbins 2012]. We use these findings and in-
vert STAM to compute a predicted curl diameter from eccentricity,
denoted CD(e).

If we let Cl denote the proportion of curl completed at l, the equa-
tion for φ0 is simply

φ0(l; e) = 2πCl =
2l

CD(e)
(mod 2π).

Further details are in the Appendix, section 9.2.

5 Fitting Azimuhal Scattering for TRT and
GLINT

In this section we describe our AIS algorithm for fitting easily sam-
pled distributions to azimuthal scattering for TRT and GLINT
terms, and detail the following extensions which improve conver-
gence closer to a global optimum: periodicity constraints, alternat-
ing optimization schemes, and early stopping criteria.

5.1 Solving optimization with adaptive importance
sampling

The optimization (4) has many local minima and is sensitive to ini-
tial conditions. We re-purpose an adaptive importance sampling
(AIS) scheme to solve (4). For the rest of this section, we replace
the target function Nρ with a generic g for ease of notation.

AIS mitigates sensitivity to initial conditions as the grid of φi on
which to approximate g is recomputed at every step and focused on
the most important areas of g. We tackle scalability by an explicit
choice of h as L2 distance, which allows us to decouple ads from
bds. To our knowledge, the idea of AIS was first introduced in [Oh
and Berger 1992].

The AIS algorithm consists of 4 steps. We give an overview of
each step with a mathematical description, and general pseudocode.
Each function used below has implementations in a variety of lan-
guages widely available in open source.

I. Given values of {a1, b1, . . . , aD, bD}, set

Pd =

∫
pd(φ; bx)dφ , πd ∝ adPd



1: . Compute total energy, Pd, πd for each d.

II. Sample

φ1, . . . , φm ∼
D∑
d=1

πdpd(φ, bd)/Pd

1: . Sample φ from the mixture distribution.
2: float d = SAMPLEDISCRETE(D, (π1, . . . , πD))
3: float bd = GETPARAMS(β)
4: float φ = SAMPLEFROMP(d, bd)

III. Compute weights

wi =
g(φi)∑D

d=1 adpd(φi; bd)

/ m∑
j=1

g(φj)∑D
d=1 adpd(φj ; bd)

1: for (j = 0; j < n; j+ = 1) do
2: float gj = PDFG(φj)

3: float wj = gi/
∑
d adpdj

/∑
j wj

4: end for

IV. Solve optimization

{a′, b′}Dd=1 ∈ arg min
{a,b}D

d=1

m∑
i=1

h

(
g(φi)

∣∣∣∣∣∣∣∣ D∑
d=1

adpd(φi; bd)

)
wi

s.t. ad ≥ 0 , bd ∈ B.

1: . For h(g||f) = (g − f)2, we decouple ad and bd as follows.
2: . With gi = g(φi), Pij = pi(φj ; bi), dkPij =

(∂kbi)pi(φj ; bi), and A = DIAG(a), G = DIAG(g), etc.
3: . Solve gradient for b
4: array∇b = −2(g − atP )WdPA
5: . Solve Hessian for b
6: matrixHb = 2(dPA)tW (dPA)−2DIAG((g−atP )Wd2PA)
7: float b = NEWTONSTEPS(∇b, Hb)
8: . Weighted regression of g on pd gives a
9: array a′ = (P tGP )−1P tGg

V. Repeat until weighted objective in (4) is below desired thresh-
old, ε.

1: float O = 0
2: for (j = 0; j < n; j+ = 1) do
3: O += (gj −

∑
d adpdj)

2wj
4: end for
5: if O > ε then
6: GOTO(1)
7: end if

A few notes on the above algorithm:

1. When sampling as in step II, each component of the mixture
is chosen according to it’s total energy, πd, and Pd is the nor-
malizing constant required to sample pd. These are also the

exact factors needed to make the sampling distribution equal
to the minimizing mixture distribution.

2. We importance sample the fitted azimuthal scattering func-
tions in the exact same way. The importance weights are con-
stant and all equal to

∑
d adPd to account for the normaliza-

tion of πd above.

3. The solution for b in step IV is purposefully vague. In fact
full optimization at each step is not necessary, and a single
gradient descent step is sufficient. Empirical results show that
taking roughly 10 gradient steps and then resampling achieves
the best global performance.

4. It is also possible to use other functions for h. In particular,
[Cappé et al. 2008] consider h(g||f) = log(g/f), the relative
entropy.

5. The IS in AIS leads to a natural inclusion of algorithm it-
erations in tandem with ray tracing. We allude to an online
solution to (4) in section 9.1.

5.2 Periodicity

As azimuthal radiance, Nρ, has periodicity 2π, we further ensure
the condition

D∑
d=1

adpd(−π; bd) =

D∑
d=1

adpd(π; bd)

by adding a Lagrange term to the objective,

O + τg(π)

(
D∑
d=1

adpd(π)−
D∑
d=1

adpd(−π)

)2

where τ > 0 is a tuning parameter. We have found that τ ≥ 10
works well.

5.3 Optimization Schemes

In the previous section it was noted that it may not be necessary, or
even advantageous to solve the optimization above fully at each AIS
step. Since AIS optimizes on a random sample of domain points,
full optimization may lead to spurious fits that plateau at a local
optimum. Two other optimization schemes designed to “shake up”
the overall solution, and attain fits closer to the global optimum are:

1. Alternate between sequentially optimizing {ad, bd} for each
d, keeping the other d − 1 parameter sets constant, and com-
pletely optimizing all parameters on all D densities at once.
The benefit of sequential optimization is separability and re-
duction in the computational complexity in each step, lead-
ing to local optimization in d. The benefit of complete opti-
mization is full consideration of correlation between the coef-
ficients.

2. Alternate the distribution of φi, the sampled φ grid, between
the target distribution Nρ(φ) and the current proposal, pt.
Sampling from the first is achieved by sampling from the sec-
ond with importance weights Nρ(φ)/pt(φ). This approach
cycles two complementary objectives: ensure good fits where
Nρ has large density, and reduce bad fits where pt has high
density but Nρ does not.



5.4 Early Stopping

Last, we detail a hypothesis test that can stop the AIS procedure at
some time t′ < T , declaring the algorithm converged and further
improvements on the objective, Ot, unlikely.

With varied complexity of distributions to fit, finding a univer-
sal optimal ε for convergence in step V would either limit AIS
from achieving the best fit possible, or waste many computing cy-
cles. Another approach is to look at successive objective ratios,
Ot+1/Ot, but since AIS is stochastic, the objectiveOt is not mono-
tone decreasing. We could have a lull in the objective ratio owing
to an in-favorable sample of φis, rather than actual convergence.
Our solution finds overwhelming evidence for convergence in face
of such noise by borrowing from the hypothesis testing framework.

Let ot = Ot/L be the relative objective value, where L is the L2

norm of the normalized target BRDF,
∥∥g(φ)−

∫
g(φ)

∥∥2, xt =
log(ot), and yt = xt − xt−1. Note that because AIS is allowed
to find arbitrarily god and bad fits, we have yt ∈ (−∞,∞). We
make the following assumptions on yt

1. yt = µt + et with et ∼ N(0, σt).,

2. there exists t′ such that µt ∈ log(1± ε) for t > t′,

3. σt+1 ≤ σt and IE(eiej) = 0 if |i− j| > k.

In other words, we see a noisy version of the true test error, but the
noise does not increase over time, and noise is only correlated for k
lagged observations. We then formulate a null hypothesis for lack
of convergence by time t as

H0t : |eµt − 1| > ε for t ≤ t.

The null hypothesis is rejected, and thus AIS is terminated at the
first time T = Jk when an estimate of the false positive probability
pT falls below a predetermined level α.

The p-value, pT =
∏J
j=1 pjk can be calculated as follows, starting

with the partial sums,

Sjk,t =

t−(j−1)k∑
t−jk+1

yt = xt−(j−1)k − xt−jk (6)

, σ̂2
jk,t as the empirical standard deviation of the jth step back k

terms, µl = log(1 + ε), µh = log(1 + ε),

νi = max
v∈{µl,µh}

µi −
σ̂2
2k,t

σ̂2
2k,t + σ̂2

k,t

(S2k,t/k − v)

with the max replaced by min if i = h, σ2
t = σ̂2

k,t +
σ̂2
3k,tσ̂

2
2k,t

σ̂2
3k,t

+σ̂2
2k,t

,

and finally,

pt = 1−Φ
(√

k(Sk,t/k − νl)/σ2
t

)
+Φ

(√
k(Sk,t/k − νh)/σ2

t

)
.

The following result validates the early stopping approach.

Lemma 2. Under the 3 assumptions above, the sequential test, re-
jecting when pT < α, controls the probability of stopping whileH0

is true at level α for all t.

Proof. First, from multivariate normal calculations, the conditional
distribution of Sk,t|S2k,t is seen to be normal with moments

µt|S2k,t = µt −
σt−k−1

σt + σt−k−1
(S2k,t − µt−k−1)

σ2
t |S2k,t = σt +

σt−k−1σt−2k−1

σt−k−1 + σt−2k−1

Next a test forH0t, t = jk, and test statistics Sjk,t, is characterized
by the rejection region

Sjk,t ∈ Rj = ([r1j ,∞) ∩ {µj ≤ µL})∪((−∞, r2j ] ∩ {µj ≥ µR})

for some values of rij . By our independence assumption we have

Pr(Sj ∈ Rj , j ≤ J |H0) = Pr(S1 ∈ R1|H0)

J∏
j=2

Pr(Sj ∈ Rj |H0 , Sj−1)

We can bound the first term by

Pr(S1 ∈ R1|H0) ≤Pr(S1 ≤ r1j |H0 , µ1 = µL)

+ Pr(S1 ≥ r2j |H0 , µ1 = µH)

and similarly for the other j = 2, . . . , J terms, including an addi-
tional supremum over the mean of the j−1th term. This shows that
a test for H0T , T = Jk, rejects when the product of J probability
bounds are below α. Plug in estimates of these bounds are exactly
pt evaluated at t = jk.

Finally, the sequential test for stopping at the first t = jk such that
H0t is rejected will only proceed to the j + 1st test if all previous
tests have failed to reject. Hence we can have at most 1 false rejec-
tion at any time t, and the overall type 1 error of the sequential test
is preserved.

We have found the values of ε = 0.05 and α = .01 to work well
in practice, and to be reasonably robust. Numerical simulations
suggest setting k between 15 and 20.

6 Implementation Details

In our current implementation, we use AIS to precompute a map
between parameters βρ and those of our optimal mixture distribu-
tion ad and bd, d = 1, . . . , D. The map is stored in a lookup table
for each ρ, and is referenced during render time for every ray sam-
pled. There is one row in the table for each variable in βρ that must
be precomputed. These values are φr ∈ [0, π/2], θD ∈ [0, π/2],
σρ ∈ [10, 25] and e ∈ [0.85, 1], which are taken from a suitably
fine grid. We found that angles in 2 degree increments, σρ in 5 de-
gree increments, and eccentricity in 0.5 increments worked well,
resulting in a total of 25,572 rows, or scatting function fits, for
each TRT and GLINT . All of our lookup tables for TRT and
GLINT combined take up 20.8 MB of disk space.

We select a row of the lookup table by a function of (φr, θD, σρ, e).
Our function first finds an ideal row and then returns the closest



row in the table. All other parameters in βρ, such as hair color, are
defined by the user and evaluated at runtime.

The real time implementation in section 9.1 removes the need for
pre-computation and is the subject of current work.

7 Results and Comparison

7.1 Errors in BRDF Fits

Figure 7: Histogram of L2 errors across all parameters values
evaluates for ρ = TRT azimuthal scattering functions.

To measure the performance of the AIS algorithm we estimate the
relativeL2 error of our algorithm in estimating azimuthal scattering
functions,

err(βρ) =

∫
φ

∥∥∥Nρ(φ|βρ)−∑D
d=1 adpd(φ; bd)

∥∥∥2
2∥∥Nρ(φ|βρ)− ∫ Nρ(s|βρ)ds∥∥22 ,

by evaluating the integrands over a fixed grid of 3601 equally
spaced angles φi. For brevity, we only include results for estimat-
ing ρ = TRT , since they are harder to fit than GLINT scattering
functions across all parameters. As described in section 6, we fit
25,572 total different scattering functions across a range of param-
eters. Figure 7 gives a histogram of relative error, showing that
82% of all fits achieve at least a 10 fold closer fit than a uniform
distribution. Figure 10 shows a heatmap of all fits showing strong
dependence of the performance of the algorithm on parameter re-
gions. Subsequent analysis found that the dark red band of poor
fits coincides with very high GLINT energy, negating the visual
impact of poorer TRT fits for these parameter combinations.

Finally, figure 9 shows a heat map of errors further specifying to
parameters e = 0.85, and σTRT = 10, as well as the fits achieved
by AIS (red) compared to the truth (black) for the minimum, 25th
quantile, 75th quantile, and maximum L2 errors for this parame-
ter range. Fine structure, such as in the center of the fourth image
can produce irregular fits. Further study into the space of appro-
priate basis functions should produce more accurate fits, though we
reiterate that the current fits achieve current demands for visual re-
alism.

7.2 Rendering Results

R TT TRT + GLINT
[dEon et al. 2011] 13.42 14.42 31.22 - 163.13

Ours 13.13 13.49 16.07

Table 1: Render time in minutes using 10 Intel Xeon X5660
2.80Ghz processors. The large range in render time for [dEon et
al. 2011] is due to a requirement for numerical quadrature evalu-
ations of their Gaussian Detector pdf. The lower bound is setting
the number of partitions in the numerical integral to 10, while the
upper bound is setting partitions to 100. As can be seen in 8, the
numerical quadrature approximation is not converged at 10 parti-
tions.

We have implemented the output from our algorithm described
above in commercially available Pixar’s RenderMan ray tracer (
http://renderman.pixar.com/ ). For comparison we also rendered all
example images using two existing shading models, introduced in
[Ou et al. 2012] and [d’Eon et al. 2013] as well as a ground truth
path tracer solving for light bounces directly inside a cylinder.

We created two test grooms with Pixar’s propriatary grooming plu-
gin for Maya which were then exported to RenderMan. These
grooms were designed to be visual approximations of the tests pre-
sented by [Marschner et al. 2003] and [d’Eon et al. 2013]. The curly
lock is composed of 5,513 individual strands and the straight groom
of 19,226 strands. A supplemental turntable movie of the curly lock
under various lighting conditions to demonstrate the ability of our
model to handle smooth variation is also supplied.

We tasked ourselves with reproducing the most similar lighting pos-
sible between our model, [Ou et al. 2012], and [d’Eon et al. 2013],
compared to a ground truth path tracer on the first groom. Figure
11 shows the results of our best efforts, while the following is a log
of our experience.

With the exception of eccentricity, [d’Eon et al. 2013] was very
similar to our model and therefore fairly easy to match. We found
that the longitudinal distribution of [d’Eon et al. 2013] was softer
than both Cauchy and logistic alternatives. We found a cone angle
difference of about 3o worked well for λρ between 5 and 8.

On the other hand, [Ou et al. 2012] was more difficult to set.
Mainly, the model is not normalized and does not natively account
for Fresnel or volume absorption. Because Fresnel is especially
critical to R, we added a common Fresnel term to it. For the other
lobes, we first tweaked the numbers to visually emulate our TT and
TRT without absorption or Fresnel. We then lowered their overall
energy to match energy left after full attenuation.

Table 1 give runtimes comparing our model and [d’Eon et al. 2013].
We find ours outperforms [d’Eon et al. 2013], especially for TRT +
GLINT renders.

The consensus is that our model achieves more realism than [Ou
et al. 2012] with less work required of the animator, and renders
faster than [d’Eon et al. 2013].

8 Conclusion

In this paper, we presented a data-centric approach to building a
light scattering model for hair. We have demonstrated a reasonable
fit to the scattering functions of [Marschner et al. 2003], and renders
using [d’Eon et al. 2011] as well as a ground truth path tracer, while
keeping computation time low. We are also able to account for
individual fiber details, such as eccentricity and curl, which all serve
to enhance the visual perception of hair.



There are a number of extensions and generalizations that could be
addressed in future work. First, the basis of functions we used for
optimization could likely be more general. This poses an interest-
ing research problem as standard Fourier expansions may not yield
easily sampled approximations. Second, it is straightforward to ex-
tend our algorithm to focus on higher order bounces, as [d’Eon et al.
2011] points out that solutions at least exist for the first five. This
would allow for a more accurate representation of light, or white
colored hair. Third, we have not considered multiple scattering in
our model. One direction is to follow the approach of [Zinke et al.
2008]. Fourth, we feel there is room for our model to exist as one of
a sequence of models, allowing a smooth degradation in quality for
shots further from the camera. This principle of rendering complex-
ity proportional to perceived complexity is discussed in [Goldman
1997].

We finally note that our algorithm could be successfully applied to
many other kinds of BRDFs as well, and look forward to extending
stochastic optimization principles more broadly to light scattering.

Figure 8: Two rendered images of TRT/GLINT using [dEon et al.
2013]. The left uses 10 quadrature partitions, while the right uses
100.

Figure 9: A heat map of the optimized objective in (4). We
chose the most peaked, and therefore hardest to fit distributions,
ρ = TRT , e = 0.85, σTRT = 10. Below are four fits achieves by
our algorithm (red) compared to the truth (black) for 1 - minimum,
2 - 25th quantile, 3 - 75th quantile, and 4 - maximum of errors in
the heat map. The 0 radial axis in the bottom images is aligned with
φr from the heat map.
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CAPPÉ, O., DOUC, R., GUILLIN, A., MARIN, J.-M., AND
ROBERT, C. P. 2008. Adaptive importance sampling in gen-
eral mixture classes. Statistics and Computing 18, 4, 447–459.

DE LA METTRIE, R., SAINT-LÉGER, D., LOUSSOUARN, G.,
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9 Appendix

9.1 Real time adaptive importance sampling

Here we motivate an alternate implementation of our algorithm
to compute the mapping, βTRT ↔ {a1, b1, . . . , aD, bD}, on-
the-fly. A key idea is to leverage the information in sampling
wi ∼ S(wi, wr) during ray tracing across the entire scene.

Sampling φ still uses a lookup table for parameter mapping, but
we no longer assume the weights are uniform. Instead explicitly
compute w(φ) ∝ Nρ(φ)/

∑
d adpd(φ; bd). The optimization in

step (3) has a particularly easy solution when M = 1, and h(g||f)
the L2 distance.
1: . Pre-defined variables: ε a small, threshold parameter.
2: if (Nρ(φ)−

∑
d adpd(φ; bd))w(φ) ≥ τ then

3: float b′i ∈ {b : (δb)pi(φ; b) = 0}
4: a′i = (Nρ(φ)−

∑
d adpd(φ; b

′
d))/p(φ; b

′
i)

5: end if
6: . Store the objective value Nρ(φ)−

∑
d a
′
dpd(φ; b

′
d)

Under mild conditions, averaging every new entry in a lookup table
row will converge to the same optimum as we find by iterating the
full algorithm. Once the running average of objective values is be-
low ε, we can consider that row converged, sample any similar rays
with weight 1, and avoid further optimization steps or computation
of g(φ).

9.2 Curl details

We compute curl type, T , from eccentricity using the following
fitted regression from [Robbins 2012]

T (a) = exp {1.105 + 1.977(a−1 − 1.474)

+ 4.032(a−1 − 1.474)2

+ 10.039(a−1 − 1.474)3
}
.

Curl diameter, CD(T ), is then calculated by linearly interpolating
the values in table 4 found from the means of STAM endpoints.

T CD(T)
1.00 45.00
2.00 8.25
3.00 4.40
4.00 2.15
5.00 1.20
8.00 0.20

Table 4: Curl Diameter (cm) end points for hair types (T).



Parameter Description Typical Values
Fiber properties

C RGB hair color vector 0 to 1
e eccentricity, ratio minor to major cross-section axis 0.85 to 1
CD average curl diameter, estimated from e 0.20 to 45
κ gain 1

Scattering function
ρ lobe index T, TT, TRT,GLINT
αρ longitudinal shift. αρ in Marschner
λρ longitudinal width. βρ in Marschner
σρ azimuthal width factor. σTRT = σGLINT 0.5 to 10
β Wrapper for user input parameters.

Basis distributions
µ mean value −π to π

σl, σr left and right side widths (skew logistic) 0 to∞
s monomial exponent 0 to 1

Adaptive importance sampling
h(f ||g) distance function on densities f and g (g − f)2

D number of basis components 3 to 5
pd basis component monomial, skew logistic
ε threshold for numerical optimization 1e− 4

Table 2: All parameters of our shading model

Name Functional Form
Distributions

Logistic l(θh ;µ, σ) = e
θh−µ
σ

/
σ
(

1 + e
θh−µ
σ

)2
Skew Logistic psl(φ ; µ , σl , σr) = σll(φ;µ, σl)1φ≤µ + σrl(φ;µ, σr)1φ>µ

Monomial pw(φ;µ, s) = 1
s+1

(φ− µ)s

Others
Indicator of set A 1A

NTT scale approximation s(θD) = −π
2

(1− η(θD)−1) log(2d− 1− 2
√
d(d− 1))

d = (
√

2− τ)
/

(1− τ)

τ = asin(η(θD)−1)

Table 3: A list of functions and distributions
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Figure 10: L2 relative errors across all parameter values for ρ = TRT azimuthal scattering functions.



Figure 11: Comparison of four models for sampling hair, from top left to bottom right - ground truth path tracer , [Ou et al. 2012] , [dEon
et al. 2013] , and ours.

Figure 12: Our hair model under various IBLs.


