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Fig. 1. Dynamic Kelvinlets: A punch animation is augmented with impact waves generated by dynamic Kelvinlets, a novel approach for computing volumetric
deformations with real-time feedback based on analytical solutions of linear elastodynamics. Top row shows elastic waves propagated across the character’s
fist and forearm after impact with an imaginary wall. Bottom row shows a close-up of the animation sequence. ©Disney/Pixar

We introduce Dynamic Kelvinlets, a new analytical technique for real-time
physically based animation of virtual elastic materials. Our formulation is
based on the dynamic response to time-varying force distributions applied
to an infinite elastic medium. The resulting displacements provide the plausi-
bility of volumetric elasticity, the dynamics of compressive and shear waves,
and the interactivity of closed-form expressions. Our approach builds upon
the work of de Goes and James [2017] by presenting an extension of the reg-
ularized Kelvinlet solutions from elastostatics to the elastodynamic regime.
To finely control our elastic deformations, we also describe the construction
of compound solutions that resolve pointwise and keyframe constraints. We
demonstrate the versatility and efficiency of our method with a series of
examples in a production grade implementation.
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1 INTRODUCTION
Physically based simulation is a mainstay of computer graphics
widely used to animate virtual characters and natural phenomena.
Despite their success, existing physics-driven techniques still have
several downsides that interrupt the animation process. For instance,
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the dynamics computations are cumbersome due to numerical solves
and time-stepping conditions. Another major impediment is the
tedious setup phase which often involves volumetric meshing. These
limitationsmotivate digital artists to use simpler models that capture
the visual cues at interactive rates, especially for small-scale and
secondary deformations where approximated solutions may suffice.

In this paper, we introduce a new interactive tool for the genera-
tion of physically based dynamics with elastic deformations. Our
approach is based on the extension of the elastostatic regularized
Kelvinlets [de Goes and James 2017] to dynamics. This is achieved by
deriving novel fundamental solutions of elastodynamics for spatially
regularized and time-varying forces applied to an infinite contin-
uum. The resulting dynamic Kelvinlets lead to analytical closed-form
expressions that define wave-like volumetric displacements. Conse-
quently, we can animate deformable models free of any geometric
discretization, computationally intensive solve, or stability restric-
tion. Instead, our elastic deformations can be evaluated rapidly both
in space and time, with interactive control of wave speed and vol-
ume compression. While not intended for general simulation tasks,
dynamic Kelvinlets are well-suited to procedural visual effects such
as jiggling, ripples, denting, and blasts (Figure 1).

Our contributions encompass several types of dynamic Kelvinlets.
The first and most fundamental solution is the impulse dynamic
Kelvinlet, which describes volumetric waves caused by an impulse
load. Based on this solution, we derive the elastic response to steady
push-like forces, which we call the push dynamic Kelvinlet. The latter
produces permanent deformations that converge in the quasi-static
regime to the regularized Kelvinlets [de Goes and James 2017]. We
also present time-varying deformations generated by affine loads
such as twist, scale, and pinch, and the construction of constrained
and compounded elastic waves.
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2 RELATED WORK
The dynamics of deformable models have been studied extensively
in computer graphics, see survey [Nealen et al. 2006]. Since simu-
lation techniques are laborious, many practitioners prefer simpler
approaches that are easy to setup and interactive. This has mo-
tivated several approximations of physical models especially for
small-scale dynamics. Examples include ad hoc simulation of ropes
and springs [Barzel 1997], contact modeling [Pauly et al. 2004],
shape matching [Müller et al. 2005], and oriented particles [Müller
and Chentanez 2011], to cite a few. Our work exploits linear elasto-
dynamics to generate setup-free and interactive animations with
elastic wave-like deformations.
Mass-spring systems are widely used in computer animation

for jiggling motions and can be found in many commercial pack-
ages, e.g., [Autodesk 2016; Side Effects 2018]. Unfortunately, these
solvers are subject to time-stepping restrictions that depend on
mesh resolution and model stiffness. Recent efforts have improved
the robustness to large time-steps at the cost of degrading numerical
convergence [Bouaziz et al. 2014; Liu et al. 2013]. In contrast, we
provide analytical elastodynamic solutions that can be evaluated
for any point and at any time. We thus circumvent time-stepping
restrictions, geometric discretization, or numerical solves.

The work of von Funck et al. [2007] employed mass-spring sets to
steer volume-preserving deformations that create secondary dynam-
ics by advecting points along user-crafted vector fields. Similarly, An-
gelidis and Singh [2007] used the kinematics of a character skeleton
to trigger analytical swirling displacements. Our approach shares
similar properties with these techniques, in particular, it guarantees
foldover-free deformations guided by time-varying displacements.
Instead of using motion controllers, we rely on analytical solutions
to the elastic wave equation to produce physically based animations.
Moreover, we address a wider family of deformations that incorpo-
rates volumetric responses to elastic materials with compression.
Consequently, our method can capture the propagation of elastic
waves caused by shearing and volume compression.

Surface water waves are commonly animated using height-field
procedural methods. They range from simple ripple effects based on
a scalar wave equation [Kass andMiller 1990] to spectral methods for
ocean waves [Tessendorf 2001], Lagrangian wave particles [Yuksel
et al. 2007], wavefront tracking [Jeschke and Wojtan 2015], disper-
sive kernels [Canabal et al. 2016], and water wave packets [Jeschke
and Wojtan 2017]. We instead address elastic waves that are not
height-field deformations but rather volumetric fields. Our solu-
tions also account for dipole-driven and shear waves, which are not
present in fluid scenarios.
Model reduction techniques, such as linear modal analysis, can

accelerate elastic simulations based on precomputed deformation
modes [Pentland and Williams 1989]. The work of James and Pai
[2002], for instance, used linear modal analysis augmented with
rigid motion transfer functions in order to produce elastodynamic
response textures for character animations. However, these meth-
ods require significant object-specific preprocessing work and ex-
hibit linearization artifacts. Improved model reduction techniques
can alleviate linearization artifacts by accounting for material non-
linearities [An et al. 2008], or by defining better motion subspaces

such as those spanned by animation rigs [Hahn et al. 2012]. One re-
maining issue is that low-rank approximations to bulk deformation
are still unable to reproduce elastic wave solutions.
Oscillatory motions can be authored using wiggly splines [Kass

and Anderson 2008], or by replicating and time-shifting a root an-
imation to subsequent rig elements [Shen et al. 2015]. The work
of Schulz et al. [2014] combined wiggly splines with modal anal-
ysis for animating deformable objects with spacetime constraints.
Our method also supports pointwise and keyframe constraints, but
bypasses any expensive precomputation or memory overhead.

Our work introduces a dynamics version of the regularized Kelvin-
lets [de Goes and James 2017]. In the incompressible regime, it corre-
sponds to a temporal extension of the regularized Stokeslets [Cortez
2001]. Our formulation provides closed-form expressions for the
elastodynamic response to regularized loads in an unbounded space.
This removes the singularities to the classical elastodynamic solu-
tion due to point impulses, which is often referred to as the Stokes’s
problem [Stokes 1849] and serves as the basis for quantitative tech-
niques in seismology [Kausel 2006]. Seismic inversion methods, for
example, leverage these singular solutions to detect and estimate the
magnitude, location, and moments of seismic events from measured
elastic waves [Aki and Richards 1980]. In contrast to seismology
where singular sources are used to characterize far-field effects,
dynamic Kelvinlets are suitable for deformations near the source
centers such as secondary-wave animations around impact points.

Finally, we point out that the singular elastodynamic solutions are
the foundation for boundary element methods (BEM) [Dominguez
1993]. However, these techniques depend on the discretization of 3D
solid shapes and require costly dense linear solves per time-step. We
instead investigate the use of regularized free-space deformations
as a new artistic tool for animating elastic effects.

3 BACKGROUND
We begin by reviewing key concepts of linear elastodynamics upon
which our formulation is based. Here we consider time-varying
deformations of an infinite 3D medium formed by an isotropic and
homogenous elastic material. For a thorough introduction to linear
elastodynamics, we point the reader to [Kausel 2006].

Elastodynamics: In linear elasticity, the dynamics of an infinite
3D continuum is determined by the time-varying displacement field
u :R3×R→R3 corresponding to the solution of:

m ∂t tu = µ∆u +
µ

(1 − 2ν )
∇(∇ · u) + b, (1)

where b is a time-varying external body force,m is the mass density,
µ is the the elastic shear modulus indicating the material stiffness,
and ν is the Poisson ratio that controls the material compressibility.
The mass density is a constant that scales both µ and b. We can thus
setm=1 without loss of generality. The equation of motion in (1) is
known as the elastic wave equation, since it resembles a 3D wave
equation with an additional divergence term that penalizes infinites-
imal volume changes. Note that the displacements are defined over
the infinite space and therefore no boundary conditions are needed,
except for the Sommerfeld radiation condition which requires that
the forces act as sources of elastic waves that radiate outward to
infinity (see, e.g., [Aki and Richards 1980]).
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Elastic Waves: We can analyze the displacement field u and the
body force b using the scalar and vector potentials associated with
their Helmholtz decomposition, i.e.,u =∇ϕ+∇×Φ andb =∇ψ +∇×Ψ.
By substituting these potentials into (1), the elastic wave equation
is decoupled into the following wave equations:{

∂t tϕ = α2∆ϕ +ψ ,

∂t tΦ = β2∆Φ + Ψ,

(2a)

(2b)

with constant wave speeds β =
√
µ and α =β

√
1 + 1/(1 − 2ν ), and sub-

ject to Sommerfeld radiation conditions for out-going waves. Both
potentials ϕ and Φ are now described by inhomogeneous wave equa-
tions, but with different wave speeds set to α and β respectively.
Therefore, elastic waves can be seen as the result of two kinds of
waves. First, we have the pressure waves (or P-waves) associated
with the solution of (2a), which determines the volume oscillation
in space and time generated by ∇ϕ in response to ∇ψ . Note that the
resulting volume changes are contingent on the Poisson ratio ν used
by the P-wave speed α . In addition, we have the shear waves (or
S-waves) that produce divergence-free displacements ∇×Φ via (2b)
in response to ∇×Ψ, with speed β dependent solely on the elastic
shear modulus µ. Figure 3 illustrates the deformations caused by
P- and S-waves separately in response to a localized translational
body force. We also point out that P-waves are always faster than
S-waves for any elastic material ν ∈ [0, 1/2), and these waves can only
coincide when setting the unphysical value of ν =−∞.

Incompressibility: In the limit of ν =1/2, the divergence term in
(1) becomes a hard constraint ∇ · u =0 that ensures incompressible
displacements. The corresponding elastic wave equation is then:

∂t tu = µ∆u + b − ∇p subject to ∇·u = 0, (3)

where p is the pressure scalar field acting as a time-varying La-
grangian multiplier that enforces the divergence-free constraint. In
this case, the scalar potential ϕ reduces to a trivial solution since
∇ · u =∆ϕ =0. One can further verify that the pressure field p can-
cels the scalar potential ψ of the body forces b, i.e., ∇p=∇ψ . As a
consequence, the contribution of ϕ to the displacements u is zero,
and only the S-waves are observable in the resulting dynamics.

Fundamental Solution: When the body force is a concentrated
load due to a force vector f applied to a point c and at time zero, i.e.,
b(x , t )= f δ (x−c)δ (t ), the solution of (1) defines the fundamental
solution of linear elastodynamics, which can be written as a linear
combination of Dirac δ and Heaviside H functions [Kausel 2006]:

u(r , t )=
[
A(r , t ) I + B(r , t )rr⊤

]
f ≡ D(r , t ) f ,

A(r , t )=
1

4πr

{
δ (r−βt )
β2 +

t

r2

[
H (r−αt )−H (r−βt )

]}
,

B(r , t )=
1

4πr3

{
δ (r−αt )
α2 −

δ (r−βt )
β2 −

3t
r2

[
H (r−αt )−H (r−βt )

]}
.

(4a)

(4b)

(4c)

where r =x−c is the relative position vector from the load center c
to an observation point x at rest, and r = ∥r ∥ is its norm. We refer
to D(r , t ) as the Green’s function for linear elastodynamics, which
determines a 3×3 matrix mapping the force vector f at c to the
displacement vectoru at the relative position r and time t . Note that
the first term in D(r , t ) is a radial scaling factor, while the second
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Fig. 2. Regularization: The plots show the displacement norm ∥u (r , t )∥
as a function of time t at a fixed position r = e1, with ν = 1/3, µ = 1, and
f =e1. The impulse dynamic Kelvinlet converges to the singular solution as
ε→0 (see [Kausel 2006] p.51 for additional plots of the singular solution).

term modifies the elastic response based on the alignment of the
relative position vector r to the force vector f . We also point out
that u(r , t ) is zero for any t < 0, since it precedes the activation of
the impulse load b. Importantly, notice the presence of singularities
demarcating the elastic wave crests and the load center c . Figure 2
(left) illustrates a time slice of (4a) at a fixed point r .

4 DYNAMIC KELVINLETS
The singularities introduced by the point load makes the funda-
mental solution of elastodynamics (4) unstable for numerical com-
putations. To address this issue, we describe next a regularization
scheme that generates finite and differentiable elastic deformations.
First, we present a volumetric regularization of the body load and
compute its Helmholtz decomposition. We then derive the analyt-
ical solutions of (2) in response to these load potentials. Finally,
we construct dynamic Kelvinlets in closed-form by combining the
elastic wave potentials and their derivatives.

4.1 Regularized Impulse Response
In order to form finite and localized elastic waves, we propose to
replace the concentrated point load by a spatially smooth impulse

ε = 7

ε = 8

ε = 9
ε = 10

b(r , t ) = f ρ(r )δ (t ) with force vector f and
normalized density function ρ(r ) distributed
around the load center c by a radial scale ε >0.
Similar to [Cortez et al. 2005], we define a reg-
ularization function (·)ε ≡

[
(·)2+ε2] 1/2. Using

the regularized distance rε , we set the normal-
ized density function to (see inset)

ρ(r ) =
15ε4

8π
1
r7
ε
. (5)

Note that this regularized load b(r , t ) is a simple time extension of
the elastostatic load f ρ(r ) used in [de Goes and James 2017].

Due to the radial symmetry of the density function ρ, theHelmholtz
decomposition of the impulse load b simplifies to:{

∆ψ = ∇ · b ⇒ ψ (r , t ) = −V(r )δ (t ) f ⊤r ,

∆Ψ = −∇ × b ⇒ Ψ(r , t ) = −V(r )δ (t ) f × r .

(6a)
(6b)

Here, the function V corresponds to a scalar potential field derived
from ρ. As detailed in Appendix A, the displacement potentials ϕ
and Φ generated by (6) via (2) present a similar form:{

ϕ(r , t ) = ℧α (r , t ) f ⊤r ,

Φ(r , t ) = ℧β (r , t ) f × r ,

(7a)
(7b)
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ν = 0 ν = 0.4
Fig. 3. ElasticWaves:Dynamic Kelvinlets offer deformations with elastic waves and interactive volume control. Top row shows animation sequences generated
by a single impulse dynamic Kelvinlet with vertical force vector and different Poisson ratios. Pseudo-colors display a heat map of the time evolution of the
displacement norm on two orthogonal planes. Observe that the plane aligned to the force vector depicts only texture deformations, while the perpendicular
plane contains ripple-like dynamics. Middle row shows the contribution of the S-wave, which is incompressible and thus independent of the Poisson ratio.
Bottom row indicates the contribution of the P-wave, which produces spherical blasts with speed and intensity proportional to the Poisson ratio.

where ℧γ (with γ =α or β) is a scalar pseudo-potential that quan-
tifies the difference of an auxiliary function W evaluated at the
radius r traveled forward and backwards by γt (see Appendix B):

℧γ (r , t ) =
1

16πγr3

[
W(r , r +γt ) −W(r , r−γt )

]
,

W(r , s) =
1
sε

(
2s2+ε2−3rs

)
+

1
s3
ε
r s3.

(8a)

(8b)

Equipped with the potentials ϕ and Φ in (7), the solution of elas-
todynamics (1) associated with a regularized impulse load (5) can
be expressed in closed-form by:

u(r , t ) =
[
A(r , t ) I + B(r , t )rr⊤

]
f ≡ D(r , t )f ,

A(r , t ) = ℧α (r , t )+2℧β (r , t ) + r ∂r℧β (r , t ),

B(r , t ) =
(
∂r℧α (r , t ) − ∂r℧β (r , t )

)
/r .

(9a)

(9b)

(9c)

We point the reader to Appendix C for the closed-form expression
of ∂r℧γ . The solution in (9) is the building block of our method,
and we name it the impulse dynamic Kelvinlet.
Figure 2 shows the influence of the regularizer ε to the impulse

dynamic Kelvinlet by plotting a time-slice ofu for a wedge of values
of ε . Observe that our regularized solution removes the undesirable
singularities at the wave crests, while reproducing the singular case
as the radial scale ε approaches zero. Near the load center c , (9) may
seem problematic due to the 1/r terms, however, the asymptotic
analysis of u as r→0 reveals that

lim
r→0

u(r , t ) =
5tε4

8π

(
1

(αt)7ε
+

2
(βt)7ε

)
f , (10)

where (αt)ε and (βt)ε indicate the regularization of αt and βt re-
spectively. Therefore, our regularized displacementsu(r , t ) are finite
and differentiable for any time t and for any relative position r . We
further point out that our solution is feasible even in the incom-
pressible regime (ν =1/2), with the P-wave contribution collapsing
to zero, thus ensuring a divergence-free deformation.

As illustrated in Figure 3, a single impulse dynamic Kelvinlet is
sufficient to create a volumetric ripple dynamics emanated from
the load center c , starting at time zero, and with a load support of
size ε . Given a force vector f , we can compute this temporal elastic
deformation analytically by simply evaluating the displacements
u(x−c, t ) for every point x ∈ R3 and at any time t . By doing so,
our formulation bypasses the need of any time-stepping, spatial
discretization, or numerical solve.

4.2 Regularized Push Response
The impulse dynamic Kelvinlets generate elastic deformations that
settle back to rest as time progresses, similar to ripples. However,
some tasks may require dynamics with permanent deformations,
such as in animation editing or dynamic sculpts. To address these
cases, we introduce a steady version of the dynamic Kelvinlet that
constructs elastic waves while converging to a finite displacement.
The key idea is to replace the temporal Dirac δ (t ) in the regular-
ized impulse load b(r , t ) by a temporal Heaviside profile H (t ), thus
forming a regularized push load b̂(r , t )= f ρ(r )H (t ). Intuitively, this
modificationmakes the regularized push load drag the region nearby
the load center c steadily, while the regularized impulse load drags
and releases the region around c instantaneously.

Since the Heaviside function is the integral of Dirac functions, we
can exploit the linearity of the elastic wave equation with respect
to integration and compute the solution of (1) associated with b̂ via
the time integral of the impulse dynamic Kelvinlet:

û(r , t ) =
∫ t

0
u(r ,τ )dτ

=
[(∫ t

0
A(r ,τ )dτ

)
I +

(∫ t

0
B(r ,τ )dτ

)
rr⊤

]
f

=
[
Â(r , t ) I + B̂(r , t )rr⊤

]
f ≡D̂(r , t )f .

(11)
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Fig. 4. Affine-Impulse Dynamic Kelvinlets: These examples show animation sequences of image deformations with elastic waves computed using tri-scale
affine-impulse dynamic Kelvinlets, with force matrices assigned to a twist (top), a pinch (middle), and a uniform scale (bottom). We set the image size to
10×10, the Poisson ratio to ν =0.45, the stiffness to µ =3.5, and the radial scale to ε =4.

We refer to the resulting displacement field û as the push dynamic
Kelvinlet. In order to evaluate the scalar functions Â and B̂ in (11),
we reuse (9b) and (9c), respectively, but with the pseudo-potential
℧γ now substituted by its time integral, which yields

℧̂γ (r , t ) =
1

16πγ 2r3 Q (r , r +γt , r−γt) ,

Q(r , s,w) = 2
r3

rε
−sw

(
s

sε
+
w

wε

)
+ε2(s − r )

(
1
sε

−
1
wε

)
,

(12a)

(12b)

where Q is a new auxiliary function that rearranges and simplifies
the time integral of ℧γ . Similar to the impulse dynamic Kelvin-
let, we can employ asymptotic analysis to confirm that the push
displacements are finite and differentiable as r→0, yielding

lim
r→0

û(r , t )=
ε4

8π

[
1
α2

(
1
ε5 −

1
(αt)5ε

)
+

2
β2

(
1
ε5 −

1
(βt)5ε

)]
f . (13)

We also show in the supplemental material that the quasi-static
state of the push dynamic Kelvinlet (i.e., the limit of û(r , t ) as t→∞)
reduces to the 3D regularized Kelvinlet introduced in [de Goes and
James 2017]. Therefore, our result enriches volume sculpting tools
with time-varying physically based deformations (see Figure 9).

4.3 Regularized Affine Response
So far we showed how to compute regularized elastic waves guided
by a force vector that translates the load center. However, important
physical phenomena, especially seismic blasts, are modelled via tor-
sional and scaling loads (see, e.g., [Kausel 2006]). In order to capture

these scenarios, we propose to extend the formulation of dynamic
Kelvinlets to affine loads. Our approach follows the derivation of the
locally affine regularized Kelvinlets [de Goes and James 2017], but
now augmented with dynamics. Therefore, our deformations can
be interpreted as a regularized version of dynamic elastic dipoles.
We first consider the affine extension of the impulse dynamic

Kelvinlets. To this end, let the vectors {e1,e2,e3} form an orthonor-
mal bases spanningR3 and F =

[
Fi j

]
be a 3×3 matrix.We then define

a regularized affine-impulse load b̃ as a linear combination of the
spatial derivative of regularized impulse loads, i.e.,

b̃(r , t ) = δ (t ) F ∇ρ(r ) =
∑

i j Fi j e
⊤

j ∇[δ (t ) ρ(r )ei ] . (14)

Since the elastic wave equation is linear with respect to differentia-
tion, the solution of (1) associated with b̃ is

ũ(r , t )=
∑

i j Fi j e
⊤

j [ ∇D(r , t )ei ] . (15)

By computing the derivatives of D (see Appendix C), we obtain the
displacement field ũ in terms of the force matrix F :

ũ(r , t )=
[

1
r
∂rA(r , t ) − B(r , t )

]
Fr

+B(r , t )
[
F + F⊤+ tr(F ) I

]
r +

1
r
∂rB(r , t ) (r⊤Fr )r .

(16)

We name this matrix-based solution of elastodynamics the affine-
impulse dynamic Kelvinlet. Note that the first term in (16) is simply
the affine transformation Fr scaled by a time-varying radial factor,
while the other two terms involve symmetric affine transformations.
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We also point out that the resulting displacements are finite and
differentiable, collapsing to zero as r→0. We can further construct
specialized versions of the affine-impulse dynamic Kelvinlet by
setting F to different types of matrices, as displayed in Figure 4.

Twisting: In the case of a skew-symmetric matrix, we can asso-
ciate F to a vector q via the cross product matrix, i.e., F ≡ [q]×
where [q]×r =q×r , then (16) simplifies to a twist deformation

t (r , t ) =
[

1
r
∂rA(r , t ) − B(r , t )

]
q × r . (17)

By analyzing the gradient of (17), one can verify that its symmetric
part is trivial for any (r , t ). Consequently, this displacement field
has zero divergence and defines a volume preserving deformation.

Scaling: Another type of affine-impulse dynamic Kelvinlet can be
generated by a force matrix of the form F =s I , where s is a scalar.
In this case, (16) reduces to a scaling deformation

s(r , t ) =
[
4B(r , t ) +

1
r
∂rA(r , t ) + r∂rB(r , t )

]
s r , (18)

where positive values of s represent dilations, and negative values
depict contractions. After some algebraic manipulation, we can also
verify that s(r , t )=0 for incompressible elastic materials.

Pinching: The last type of affine-impulse dynamic Kelvinlet is
constructed using a symmetric matrix F with zero trace, yielding

p(r , t )=
[

1
r
∂rA(r , t )+B(r , t )

]
Fr +

1
r
∂rB(r , t ) (r⊤Fr )r . (19)

Similar to [de Goes and James 2017], the deformation generated
by p(r , t ) compensates infinitesimal stretching in one direction by
contractions in the other directions, thus resembling a pinch.

At last, we can repeat the approach used in Sec. 4.2 and compute
the time integral of the affine-impulse dynamic Kelvinlets. The re-
sulting displacements offer elastic waves combined with permanent
affine deformations nearby the load center c . We thus refer to them
as affine-push dynamic Kelvinlets. The closed-form expressions for
these solutions mimic (16)-(19), but with the terms A and B re-
placed by Â and B̂ respectively. Since the limit and the gradient

Fig. 5. Denting: We used a time series of bi-scale push dynamic Kelvinlets
to animate the formation of denting with elastic waves on a car model made
of multiple disconnected parts. Forces, radial scales, and wave speeds were
set procedurally by painting masks over the car shell. ©Disney/Pixar

Fig. 6. Time Series: Multiple dynamic Kelvinlets can be combined to form
a time series of elastic waves. This example shows a deformation sequence
generated by displace- and affine-impulse dynamic Kelvinlets with various
radial scale, volume compression, and wave speed set procedurally. The
magenta shades indicate the elastic wavefronts propagated in time over the
dome model and the planar ground.

operator commute, we can also show that the locally affine regular-
ized Kelvinlets introduced in [de Goes and James 2017] correspond
to the quasi-static state of the affine-push dynamic Kelvinlets. The
accompanying video shows a side-by-side comparison of affine-push
versus affine-impulse dynamic Kelvinlets.

5 COMPOUND ELASTIC WAVES
In this section, we describe the generation of elastic waves by multi-
ple dynamic Kelvinlets. These compound deformations are of partic-
ular interest for imposing keyframe or pointwise constraints onto
elastodynamics. For conciseness, we use u to denote any dynamic
Kelvinlet, be it an impulse or push, with translational or affine load.

Superposition: We first consider the case with n regularized loads
placed at {c1, . . . ,cn } and applied simultaneously. Due to the lin-
earity of (1), the resulting displacement field is simply the super-
position of dynamic Kelvinlets, i.e.,

∑
i ui (x−ci , t ). Therefore, the

compound deformations can be evaluated for any point x and at
any time t in parallel. When the loads are colocated at c1 but with
different scales {ε1, . . . , εn }, the superposed displacements define
multi-scale solutions, which can be used to design deformations
with high-order spatial decay similar to the extrapolation scheme
presented in [de Goes and James 2017]. Since dynamic Kelvinlets
are linear in terms of force vectors f and matrices F , we can fur-
ther employ compound deformations to resolve displacement and
gradient constraints. To this end, we include a vector/matrix-based
dynamic Kelvinlet for each displacement/gradient constraint, and
then precompute the load necessary to reproduce these pointwise
constraints via a single linear solve.

Time Series: In order to construct a time series of elastic waves,
we assign an activation timestamp ti to each regularized load bi .
The contribution of bi to the net load applied to a point x is then
defined with respect to a material point xi representing the location
of x at timestamp ti , i.e., bi (xi−ci , t−ti ). Using the linearity of (1)
once more, the outcoming compound deformation is formed by the
superposition of time-shifted dynamic Kelvinlets

x (t ) = x0 +u(x0, t ) = x0 +
∑

i ui (xi−ci , t−ti ) , (20)
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Original Deformed

Fig. 7. Impact Response: Dynamic Kelvinlets are suitable to augment
animations with secondary motions induced by impacts. This example
shows the original frame of a foot-ground impact in a dinosaur walking cycle
(left), versus the volume squashing generated by a pinch-impulse dynamic
Kelvinlet applied at the point of impact (center). We also show close-ups of
the foot before and after applying our method (right). ©Disney/Pixar

where x0 denotes the initial undeformed position of x . Observe
that the evaluation of (20) depends on the material points {xi }
corresponding to the position of x0 for every timestamp {ti }. Given
increasing timestamps {t1< t2< . . . < tn }, we also notice that each
material point xi is the accumulated displacement of the dynamic
Kelvinlets precedent to ti . For efficiency, we propose to precompute
these material points sequentially via xi =x0+u(x0, ti ). As a result,
we can evaluate the displacement in (20) for multiple time values t
in parallel. Figures 5 and 6 show compound deformations generated
by a time series of superposed push and impulse dynamic Kelvinlets.

Transient Motions: In keyframed animation, it is often desirable to
specify posesyi at a few frames ti and later add dynamics inbetween
frames. We can achieve similar results by approaching keyframes as
quasi-static constraints. More concretely, we consider keyframes yi
sculpted by regularized Kelvinlets [de Goes and James 2017], and use
a compound of push dynamic Kelvinlets with keyframes yi set to
the material points xi at their respective timestamps ti . We can then
compute the animated point x (t ) at time t ∈ [ti , ti+1] by including the
transient motion determined by the difference between the dynamic
Kelvinlets and their quasi-static solution, i.e.,

x (t )=yi +
∑

j≤i

[
uj

(
yj−c j , t−tj

)
− lim
τ→∞

uj
(
yj−c j ,τ

) ]
. (21)

Note that the transient motion in (21) reduces to zero as time pro-
gresses, thus reproducing the keyframes. Figure 9 displays a few
frames generated by our keyframing approach.

6 RESULTS
We now detail our implementation of dynamic Kelvinlets, and dis-
cuss their performance and visual quality in a variety of scenarios.
Please see the accompanying video for all wave animations, since
these are particularly hard to depict in print.

Implementation: We implemented the dynamic Kelvinlets as a
C++ plugin to Houdini [Side Effects 2018]. Our tool expects two
inputs: a list of points x0 to be deformed and the specification of
(possibly multiple) dynamic Kelvinlets. The latter can be set either
procedurally or interactively, and includes the load center ci , radial
scale εi , activation time ti , force vector fi and/or matrix Fi , and
the physical variables µi and νi that control wave speed and com-
pressibility. We also support point constraints as an alternative to
set the force parameters, and multi-scale extrapolation in order to
refine the spatial falloff of the displacements. At any given time

t , the resulting deformation is obtained by advecting each input
point x through the displacement field u(x , t ) determined by the
dynamic Kelvinlet. We compute this point advection using a fourth-
order Runge-Kutta method, similar to [de Goes and James 2017; von
Funck et al. 2006]. We avoid numerical issues by reverting to (10)
and (13) when r <10−4, otherwise we use (9) and (11). Our imple-
mentation exploits multi-threading via Intel TBB [Reinders 2007],
and takes an average of 3 ms per frame for scenes with a single
dynamic Kelvinlet and 100k points, timed on a 2.3 GHz Intel Xeon
E5-2699 with 18 cores. We point out that our elastic deformations
can be performed at different frames simultaneously, with no time-
stepping restriction, thus offering parallelization both in space and
in time. To validate this feature, we deployed the dynamic Kelvin-
lets as a displacement shader using the VEX language supported
by the Mantra renderer in Houdini. This is particularly desirable to
deform subdivision surfaces, since the displacement evaluation can
be executed per micropolygon in rendering time.

Examples: Figure 3 displays orthogonal slices of elastic waves as-
sociated with a single impulse dynamic Kelvinlet for distinct Poisson
ratios. Observe that the vertical slice aligned to the force vector has
deformations within the plane, which is visualized by the moving
texture, while the deformations in the horizontal slice perpendicu-
lar to the force vector form ripples. This indicates the volumetric
nature of elastic waves, in contrast to height-field water waves. Fig-
ure 4 illustrates animation sequences produced by different types
of affine-impulse dynamic Kelvinlets. The results corresponding to
affine-push dynamic Kelvinlets can be found in the supplemental
video. Dynamic Kelvinlets are especially suitable to create volume
blasts simulating impacts in animations. For instance, Figure 7 shows
the jiggling caused by the feet impacts of a dinosaur in a walking
cycle. For each impact point, we inserted a pinch-impulse dynamic
Kelvinlet using (19) with compression along the direction of impact
and uniform stretching on its perpendicular plane. Similarly, we
combined a pinch-impulse and a displace-impulse dynamic Kelvin-
let in Figure 1 to enrich a punch animation with volume oscillations
resembling a shock wave. We also include in the accompanying
video a simple rigid-body simulation augmented with impact waves
produced by near-incompressible pinch-impulse dynamic Kelvinlets.
The example in Figure 8 shows how to superpose dynamic Kelvinlets
in order to conform loads to colliding geometries. In this case, we
sampled each input curve with push dynamic Kelvinlets activated

Fig. 8. Superposition:By superposing dynamic Kelvinlets, we can compute
deformations that conform to body loads of arbitrary spatial distributions. In
this example, we constructed push dynamic Kelvinlets by sampling two input
curves with radial scale set to the curve thickness and force vector aligned
to the curve normals. Notice the localized squeezing caused by activating
the curves at different timestamps. Model courtesy of Side Effects.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 81. Publication date: August 2018.



81:8 • F. de Goes and D. L. James

Fig. 9. Keyframing: Dynamic Kelvinlets can be used to create transient motions that interpolate keyframes. In this example, the right column shows keyframe
poses sculpted via a series of regularized Kelvinlets [de Goes and James 2017]. The first two sculpts displace the center and the tip of the tentacle model, while
the third and fourth poses pushes and rotates the base of the model respectively. The animation sequence with elastodynamic effects is then computed using
a compound of incompressible push dynamic Kelvinlets with the keyframes set to quasi-static constraints, as described in § 5. ©Disney/Pixar

simultaneously and with radial scale set to the curve thickness. We
present in Figure 6 a time series of vector- and matrix-based impulse
dynamic Kelvinlets, and indicate the wavefronts with pseudo-colors.
In Figure 5, we used a time series of bi-scale push dynamic Kelvin-
lets in order to create a denting effect in a car model with multiple
disconnected pieces. In Figure 9, we keyframed poses of a tentacle
model using regularized Kelvinlets [de Goes and James 2017], and
then added transient dynamics inbetween frames via (21). We point
the reader to the supplemental video for the animations of all these
examples, in addition to interactive editing sessions.

Limitations: The simplicity of the dynamic Kelvinlets comes at
the cost of several limitations. Our approach inherits the same trade-
offs presented by regularized Kelvinlets [de Goes and James 2017].
In particular, our analytical solutions deform surfaces as if they
were embedded in an infinite continuum. Therefore, the resulting
dynamics is agnostic to any surface traction or boundary condition.
This implies that the regularized elas-
tic waves can only propagate spher-
ically, with no knowledge of surface
distances or boundary reflections. As
an example, the inset shows elastic
waves deforming a concave shape ra-
dially in response to a vertical force.
The use of Dirac and Heaviside func-
tions is also limiting, especially for
loads with high-order temporal profiles. While multi-scale extrapo-
lation provides control of the spatial falloff, we have not considered
faster temporal falloffs computed, e.g., via damping. We finally note
that our method is primarily useful for relatively modest dynamic
effects to be added to preexisting animations, and it is not intended
to replace advanced methods for physically based simulation.

Large Deformations: The linearized displacement model produced
by dynamic Kelvinlets may cause distortion artifacts, especially for
large rotational deformations. In previous works, linear-model ar-
tifacts have been addressed using mesh-based techniques such as
warped stiffness [Müller and Gross 2004], modal warping [Choi
and Ko 2005], or rotation-strain coordinates [Huang et al. 2011].
We instead alleviate linearization artifacts by adopting a mesh-
independent line tracing approach that advects points along the

analytical displacement field via a fourth-order Runge-Kuttamethod,
similar to [de Goes and James 2017]. For large rotations, the results
can be further improved using high-order line integral schemes [Niel-
son et al. 1997]. Figure 10 compares the point advection of an ex-
treme twist-impulse dynamic Kelvinlet produced by a forward Euler
advection versus line tracing with 20 substeps. The latter reproduces
volume-preserving deformations with no visual artifacts.

No Substeps 20 Substeps
Fig. 10. High-order Point Advection: We avoid linearization artifacts
by advecting points x through the dynamic Kelvinlet displacement field
u (x , t ) evaluated at a given time t using multiple line tracing substeps. A
twist deformation with no substeps shows visible rotational distortion (left),
whereas 20 substeps virtually eliminates the artifact (right).

7 CONCLUSION
Wehave introduced dynamic Kelvinlets, a simple and interactive tool
that allows animators to design elastic wave effects. Our approach
is based on novel analytical solutions to the linear elastodynamic
equations in the case of spatially regularized loads (such as impulses
and steady forces) in infinite elastic domains. Since the solutions are
expressed in closed form, we are able to compute mesh-independent
deformations, without time-stepping restrictions, in a highly par-
allel manner. We have presented a number of practical animation
applications in a production setting.

As future work, we are interested in the elastic response to more
complex time profiles such as harmonic and ramp functions. We are
also investigating the extension of our formulation to viscoelastic-
ity by incorporating damping terms. While damping for impulse
dynamic Kelvinlets is easily achieved with a temporal exponential
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decay, the derivation of damped push solutions seems more intricate.
Regularized fundamental solutions for strata and plates as well as
restrictions to 2D domains are also of interest. Finally, we point
out that dynamic Kelvinlets are well-suited to high-rate procedural
applications in virtual and augmented reality.
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A POTENTIAL FIELDS
We now detail the derivation of the potential fields used in § 4.1. We
start with an auxiliary potential field R induced by ρ:

−∆R =ρ ⇒ R(r ) =
∫
R

ρ(s)
4π |r − s |

ds =
1

4πrε

[
1 +

ε2

2r2
ε

]
.

This integral is equivalent to “ψε (r )” from [de Goes and James 2017].
We now define the potentialV in (6) based on the gradient of R:

∇R(r )=
[

1
r
∂rR(r )

]
r =−V(r )r ⇒ V(r )=

1
4πr3

ε

[
1+

3ε2

2r2
ε

]
.

Using the Laplacian Green’s function, we can verify (6a):

ψ (r , t )=
∫
R3

∇·b(s, t )
4π ∥r − s ∥

ds =δ (t ) f ⊤∇R(r )=−V(r )δ (t ) f ⊤r .

We can then verify (7a) by rewriting (2a) as an integral with the
Green’s function of the wave equation:

ϕ(r , t )=
∫
R3

∫
R
ψ (s, t − τ )

δ (τ − ∥r − s ∥/α)

4πα2∥r − s ∥
dτds

=
−1

4πα2

∫
R3

V(s)δ (t−∥r−s ∥/α) f ⊤s

∥r−s ∥
ds =℧α (r , t )f ⊤r .

A similar derivation can also be used to compute the expressions of
Ψ in (6b) and Φ in (7b).

B PSEUDO-POTENTIAL
In this section, we describe how the closed-form expression of
pseudo-potential ℧α in (8a) was derived (c.f. the singular case
in [Aki and Richards 1980]). We begin with the definition of the
pseudo-potential ℧α presented in the end of Appendix A:

℧α (r , t ) r =
−1

4πα2

∫
R3

δ (t−∥r−s ∥/α)V(s) s
∥r−s ∥

ds .
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Fig. 11. Spherical shell: Notation for spherical shells in the case of r >αt .

We can compute this integral by expanding it over spherical shells
S(r ,τ )= {s ∈ R3 : ατ = ∥r−s ∥}. Since ds =α dS dτ , we have for t >0:

℧α (r , t ) r =
−1

4πα2

∫∞

0

∫
S (r ,τ )

(
δ (t − τ )
ατ

V(s) s
)
α dS dτ

=
−1

4πα2 t

(∫
S (r ,t )

V(s) s dS
)
.

With the potential R from Appendix A, we can rewrite the spherical
shell integral as the gradient of an auxiliary function h(r , t ):

−

∫
S
V(s) s dS =

∫
S
∇R(s)dS = ∇

∫
S
R(s)dS = ∇h(r , t ),

where we have used the fact that s≡r+const on S for fixed t . Using
spherical coordinates θ and φ, we can integrate R through circular
strips of width α t dθ and circle radius α t sinθ . Since the circle is
at a constant distance s(θ ) from the origin, the axial φ-integral is
trivially 2π (see Figure 11). Therefore, the h-integral becomes

h(r , t )=
∫
S
R(s)dS =2πα2t2

∫π

0
R(s) sinθ dθ .

It follows from the law of cosines s2 =r2+α2t2−2rαt cosθ that
taking differentials on a shell of constant t gives rαt sinθ dθ =s ds .
As a consequence, we obtain:

h(r , t ) =
2παt
r

∫s (π )

s (0)
R(s) s ds,

which we can evaluate using the indefinite integral identity:∫
R(s) s ds =

4s2 + 3ε2

16πsε
.

One last wrinkle is that the minimum s(0) and maximum s(π ) inte-
gral limits are nonsmoothly dependent on r and t , i.e., s(π )=r +αt
and s(0)= |r−αt |. However, the integral only involves quadratic
terms and then the derivative discontinuity disappears, yielding:

h(r , t )=
αt

8r

[
4(r +αt )2 + 3ε2

(r +αt )ε
−

4(r−αt )2 + 3ε2

(r−αt )ε

]
.

Putting it all together, we can write ℧α (r , t ) for t > 0 as:

℧α (r , t ) r =
1

4πα2 t
∇h(r , t )=

1
16πα r3

[
4r2

αt
∂rh(r , t )

]
r ,

and, after algebraic simplification, we obtain (8a).

C DERIVATIVES
The affine-impulse dynamic Kelvinlets require the radial derivatives
of the terms A and B. Via direct differentiation, we have

∂rA(r , t ) = ∂r℧α (r , t ) + 3∂r℧β (r , t ) + r∂r r℧β (r , t ),

∂rB(r , t ) =
1
r

[
∂r r℧α (r , t ) − ∂r r℧β (r , t ) − B(r , t )

]
.

These expressions depend on the derivatives of the pseudo-potential
℧α . For conciseness, we denote r+ =r +αt and r- =r−αt . The first
and second radial derivatives of ℧α can then be written as:

∂r℧α (r , t ) =
1

16παr3

[
∂r −

3
r

] (
W(r , r+)−W(r , r-)

)
,

∂r r℧α (r , t ) =
1

16παr3

[
∂r r −

6
r
∂r +

12
r
∂r r

] (
W(r , r+)−W(r , r-)

)
.

Therefore, we need the derivatives of the auxiliary function W.
Note that ∂rW(r , s)=∂1W(r , s)+∂2W(r , s), where s =r±αt and ∂i
is the partial derivative with respect to the i-th argument. After
algebraic manipulation, we obtain:

∂rW(r , s)=−3ε4
(
r

s5
ε

)
, ∂r rW(r , s)=−3ε4

(
s2
ε − 5rs
s7
ε

)
.

For the affine-push dynamic Kelvinlets, we can take a similar ap-
proach and evaluate the radial derivatives of Â and B̂ by computing
the derivatives of ℧̂α .

∂r ℧̂α (r , t ) =
1

16πα2r3

[
∂r −

3
r

]
Q(r , r+, r-),

∂r r ℧̂α (r , t ) =
1

16πα2r3

[
∂r r −

6
r
∂r +

12
r
∂r r

]
Q(r , r+, r-).

The derivatives of the auxiliary function Q can be computed using

∂rQ(r , s,w)=∂1Q(r , s,w)+∂2Q(r , s,w)+∂3Q(r , s,w),

with s =r+ andw =r-, which produces

∂rQ(r , s,w)=2r2
(

3
rε

−
r2

r3
ε

)
−2r

(
s

sε
+
w

wε

)
−ε2r

(
s

s3
ε

+
w

w3
ε

)
,

∂r rQ(r , s,w)=2
(
2r
rε

−
s

sε
−
w

wε

)
+ε2

(
2r
r3
ε
−

s

s3
ε
−
w

w3
ε

)
+3rε4

(
2
r5
ε
−

1
s5
ε
−

1
w5
ε

)
.
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