
Volume Rendering for Pixar’s Elemental
Julian Fong

jfong@pixar.com
Pixar Animation Studios

Two scenes from Elemental showing a wide variety of volumetric characters. ©Disney/Pixar.

ABSTRACT
This work presents recent updates to volume rendering in Render-
Man, the production renderer used at Pixar. With the advent of
increasingly complicated volumetric assets such as those seen in
Pixar’s films Soul and Elemental, our aggregate volume renderer
required changes to handle complex water based characters; op-
timizations for complicated scenes; better handling of transform
blur; and improved support for volumetric matte holdouts. These
changes allowed us to render an immense number of complicated
and detailed volumetric characters in Elemental.
ACM Reference Format:
Julian Fong. 2023. Volume Rendering for Pixar’s Elemental. In Special Interest
Group on Computer Graphics and Interactive Techniques Conference Talks
(SIGGRAPH ’23 Talks), August 06–10, 2023, Los Angeles, CA, USA. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3587421.3595433

1 INTRODUCTION
The current generation of RenderMan, first used in Pixar’s Finding
Dory [Christensen et al. 2018], has deployed two full implementa-
tions of volume rendering. The first implementation was designed
for the requirements of Finding Dory: many nested dielectric sur-
faces with subsurface and single scattering. While this system was
fully general and capable of rendering any volumetric setup, it was
not optimal for more common production cases: large numbers
of overlapping volumes (clouds) not bound to the interior of di-
electric objects. A second implementation was designed to tackle
these cases, which we call aggregate volumes. Both of these systems
are described in more detail in the 2017 volume rendering course

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’23 Talks, August 06–10, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0143-6/23/08.
https://doi.org/10.1145/3587421.3595433

notes [Fong et al. 2017]. Over time, aggregate volumes has become
the primary volume rendering system used at Pixar, but with the
advent of increasingly complicated volumetric sets and characters,
work was needed to extend this system.

The data structure behind aggregate volumes is an octree en-
compassing all volumes. Each node stores a list of volumes that
partially or fully overlap the region, as well as relevant precom-
puted metadata (typically the extinction extrema) gathered over
such volumes. Nodes are recursively subdivided as long as a given
heuristic is true. Any ray that integrates the volumes in the scene
performs an optimal line walk of the nodes until a scattering event
is determined; determination of this event freely makes use of the
available metadata from traversed nodes. Key to the efficiency is
that the boundary behavior of the volume containers is not relevant
to the render: rays will not bend. This allows construction of an
acceleration structure that facilitates traversal algorithms using the
node metadata to entirely skip over volumes without needing to
interrogate their properties, minimizing the need to expensively
query individual volumes during traversal.

2 CONTRIBUTIONS
For the production of Pixar’s films Onward, Soul, Luca, Lightyear,
and culminating with Elemental, we developed extensions to ag-
gregate volumes that met the requirements of production while
maintaining the efficiency of the system.

Binding volumes to dielectric interiors: the initial design of aggre-
gate volumes did not permit heterogeneous participating media
constrained to the interior of a dielectric object precisely because
the boundary behavior of such an object could not be taken into
account. Thus we developed a hybrid approach that adopted ideas
from the older volume rendering implementation. First, we allow
the construction of any number of aggregates, going beyond the
usual single global aggregate. Each such aggregate is named with
a unique string. Second, materials bound to dielectric materials
may specify an interior aggregate by name. When a ray transmits

https://orcid.org/0009-0006-9455-9105
https://doi.org/10.1145/3587421.3595433
https://doi.org/10.1145/3587421.3595433


SIGGRAPH ’23 Talks, August 06–10, 2023, Los Angeles, CA, USA J. Fong

through such a material, the integrator switches from traversing
the default global aggregate to only the named interior aggregate
bound to the surface. With the aid of a small stack maintained per
ray, we revert to the global aggregate when the ray exits the same
surface. Key to this scheme is separation of the specifications of
the volume geometry and its material properties from the surface
geometry and material: both sets are specified independently from
each other, which was not possible prior to this scheme. This sys-
tem was first deployed successfully to render a translucent monster
in Onward, used extensively for the oceans in Luca, and was used
to create all the water characters in Elemental.

Octree optimization: The astral plane in Soul proved to be a chal-
lenge for the scalability of our aggregate volumes; in particular, the
Hall of Everything contained a vast number of volumetric objects,
requiring optimization. Most of this was focused on tweaking the
octree subdivision heuristic by adjusting the arbitrary cutoff value
𝑇 in (max(𝑅) − min(𝑅)) · diag(𝑅) > 𝑇 to be 1/𝑙𝑜𝑔(0.5) = 1.442.
Our rationale for adjusting this value is to better approach the
theoretical ideal of one density evaluation per aggregate segment.
This greatly increased the number of nodes, which in turn required
a restructuring of the data structures in order to improve cache
occupancy. By changing the octree to being implicit, eliminating
pointers, and disallowing threads from traversing and updating
the octree simultaneously, we were able to reduce our memory
consumption by more than 2x, which was more than enough to
offset the widened branch factor. This work was sufficient to speed
up complex shots by more than 30 percent in overall runtime.

Temporal extensions: the initial implementation of aggregate
volumes did not handle transformation motion blur. We initially
avoided this issue by converting to deformation motion blur; how-
ever, the requirement of baking velocity data for every asset became
untenable. We solved this problem by extending our octree nodes
with temporal occupancy data. Extending the octree to a four-
dimensional analog (where every node has 16 children) would have
increased the memory constraints unacceptably. We chose a com-
promise: each node was extended with two values, minTime and
maxTime, the minimum and maximum time when the summed max-
imum extinction was non-zero. This required extending the octree
build stage to compute metadata over the full range of motion of all
overlapping volumes. During ray traversal, the time associated with
the ray was compared against the time extents to quickly accept or
reject a scattering event. It also proved critical to adjust the octree
node split criterion by adding a compensating factor of time occu-
pancy: (𝑚𝑎𝑥𝑇𝑖𝑚𝑒 −𝑚𝑖𝑛𝑇𝑖𝑚𝑒) · (max(𝑅) −min(𝑅)) · diag(𝑅) > 𝑇 .
Further work was also required to better handle cases where fast
motion blur of camera cancelled out fast moving volumes, including
changing the native transformation space of the octree.

Visibility extensions: RenderMan supports a flexible systemwhich
not only includes visibility of geometry to three categories of rays
(camera, shadow, and indirect), but also allows any geometry subset
to be specified as visible to any light subset, separately for direct
lighting and shadows. We cannot hope to build metadata for all
such possible scene subsets. As a compromise, we extended nodes
to include three sets of metadata: one each for camera, shadow,
and indirect visibility. This provided enough flexibility for lighting
on Elemental. More complicated visibility queries were handled by
querying individual volumes during scattering events, which was

suboptimal but not common.With these changes, the core metadata
stored in our octree node became three pairs of floats (per-visibility
extinction ranges) and two bytes (time interval), along with the
list of volumes. This was an acceptable balance between artistic
flexibility and memory required for the aggregate volume octree.

Alpha channel handling: generating a clean alpha channel from
volumes is important for any compositing work. Our volume light
sampling techniques run the gamut from density sampling to prod-
uct importance sampling using virtual density segments [Wren-
ninge and Villemin 2020]. Unfortunately, any such technique whose
importance is not proportional to density produces suboptimal al-
pha results. Our approach to generating cleaner alpha channels is to
integrate our camera rays twice. The first pass performs all lighting
calculations as usual, but with alpha channel output disabled. In the
second pass, camera rays up to the first hit are integrated without
any light calculations, with alpha channel enabled. Only delta track-
ing (or other sampling technique with importance proportional to
volume transmittance) is allowed on this second integration.

Matte holdout workflow: the possibility of volumes holding out
other volumes increases the complexity of alpha channel output.
Initial implementations of this workflowwere only correct when the
matte and non-matte volumes did not overlap. In order to correctly
resolve these setups, we augment the second alpha-only volume
integration pass to simultaneously compute an estimate for the
matte correction factor 𝛼𝑚 =

∑(1−𝜏𝑚) ·𝑇𝑛−1 alongside the estimate
for the transmittance𝑇𝑛 =

∏𝑛
𝑖=1 (𝜏);𝛼𝑚 can then be subtracted from

the final alpha to correctly account for held out volumes.

3 FUTUREWORK
Volumetric light sources [Villemin and Hery 2013] were initially
used on Elemental. Unfortunately, we were not able to converge
renders quickly enough because of stylistic choices made for the fire
characters — their volumes had very high extinction coefficients.
Importance sampling for next event estimation of points within the
flames did not take into account the visibility term, which often
meant that sampled light positions ended up being shadowed by
the rest of the character. Future improvements to light sampling
to deal with such cases will need to incorporate a precomputed
visibility term.

Our aggregate volume implementation has recently been im-
plemented on GPU hardware for the next-generation RenderMan
XPU renderer. We have found that it works well there, with certain
design tweaks necessitated by the very large ray batch size that is
needed in order to take full advantage of GPU compute units.

REFERENCES
Per Christensen, Julian Fong, Jonathan Shade, et al. 2018. RenderMan: An Advanced

Path-Tracing Architecture for Movie Rendering. ACM Transactions on Graphics 37
(08 2018), 1–21. https://doi.org/10.1145/3182162

Julian Fong, Magnus Wrenninge, Christopher Kulla, and Ralf Habel. 2017. Production
Volume Rendering: Siggraph 2017 Course. In ACM SIGGRAPH 2017 Courses. 1–79.

Ryusuke Villemin and Christophe Hery. 2013. Practical Illumination from Flames.
Journal of Computer Graphics Techniques (JCGT) 2, 2 (31 December 2013), 142–155.

Magnus Wrenninge and Ryusuke Villemin. 2020. Product Importance Sampling of the
Volume Rendering Equation using Virtual Density Segments. Technical Note 20-01.
Pixar Animation Studios. https://graphics.pixar.com/library/CandidateSampling/
paper.pdf

https://doi.org/10.1145/3182162
https://graphics.pixar.com/library/CandidateSampling/paper.pdf
https://graphics.pixar.com/library/CandidateSampling/paper.pdf

	Abstract
	1 Introduction
	2 Contributions
	3 Future Work
	References

