Metaball Madness: Look Development For A Shapeshifting, Implicit Surface

Character On Pixar’s Elio

CATHERINE LUO, TRENT CROW, FERNANDO DE GOES, and FERDI SCHEEPERS, Pixar Animation
Studios, USA

How do you shade a liquid supercomputer created as an implicit surface? Elio’s OOOOQO is Pixar’s first character made and rigged
entirely as a controllable series of metaball-like signed distance functions, rendered for interaction with a GLSL shader [Lykkegaard
et al. 2025] in our animation software, Presto. Although this novel approach facilitates incredible animation, it does not provide a
stable mesh for shading, rendering, and deformation purposes. OOOOO is made of a body and blobs, all capable of separating and
merging at any time, filled with “nests” of moving circuits that are concentrated at the core. This talk addresses the accompanying set

of challenges these factors created for look development past the model/rig stage, resulting in a per-frame process.

Fig. 1. Elio’s OOOOO has an implicit surface rig that can take many shapes ©Pixar

1 From Math to Mesh

Since the animated character is represented only as implicit functions,
we need a mesh representation of those functions to integrate her

into the rest of the pipeline so she can be shaded, lit, and rendered.

To do this, we use the implicit functions as signed distance functions
to define a density volume in Houdini, converting the GLSL code defining OOOOO into equivalent Houdini VEX code.
This code defines the volume that is then converted into a polygonal mesh along its zero-density isosurface.

While this provides a mesh to use, it is topologically inconsistent frame to frame, which presents a few challenges.
One is how to calculate motion blur, which uses vector offsets between corresponding mesh points. Without a consistent
mesh, we instead use proxy geometry that is consistent between frames. We create spheres at the center of each implicit
shape and then calculate their offsets between frames before transferring them to the closest points on the inconsistent
mesh. This provides consistent vectors frame to frame that approximate the motion direction of the character.

00000’s look depends on her circuit geometry correctly orienting to her newly meshed body as it moves, so without

a consistent mesh nor standard rig, we instead use a modified version of our custom tool Geomt Wrapper [de Goes

Authors’ Contact Information: Catherine Luo, catluo@pixar.com; Trent Crow, tcrow@pixar.com; Fernando de Goes, fernando@pixar.com; Ferdi Scheepers,

ferdi@pixar.com, Pixar Animation Studios, USA.



2 Luo et al.

and Martinez 2019]. Geomt Wrapper is an iterative method that wraps a source mesh to a target shape by alternating
closest-point projections and a detail-preserving relax. For OOOOO, we introduce a new mode to this tool that replaces
the relax solver with a fitting step, thus returning the best global affine transformation, mapping the source model
to the latest projected points. By repeating these iterative steps, we get a deformation of the source model (the proxy

mesh) that orients it towards the target shape (the VDB-generated posed mesh) free of any input correspondences.

2 Circuitry And Shapeshifting

000O0Q’s circuit nest involves distance-maximized point pairs scattered on her surface that are run through a shortest
path calculation, creating a dense grid of curves that are offset into her body and carved according to frame calcu-
lations. This initial system for OOOOO was developed on a stable body mesh with no blobs, and does not account
for extreme shapeshifting poses. Because the system uses a static float value per curve to offset along the reverse
normal of OOOOO’s body, it does not compensate well for varying thickness, resulting in penetration of the body or
lack of the core nest effect. To address this while keeping the integrity of the original look and system, we created
the idea of a dynamic, ray distance multiplier (RDM). The RDM is created per frame by sending rays from each
point on the body mesh inwards along the reverse normal, measuring
distance to first hit. Outlier values are cut off, and the point data
is then blurred across the mesh and normalized. After a nearpoint
operation is used to transfer the RDM to the circuitry curves, it is

then applied to the original offset per curve point, resulting in neat

circuitry with a clear nest in all shapes (see inset).

3 Primvar Creation For Shading and Lighting

To meet the artistic direction of OOOOQO, it is necessary to create primvars within Houdini to target our character’s
color, specular, etc., in specified areas. To make these primvars, we split the initial meshing process of OOOQOO at the
sparse volume stage into several parts: mouth, eyes, smooth body without face nor arms, and full resolution mesh with
face and arms. Using these components, we complete a series of boolean and volume operations to create new isolated
meshes of desired parts from OOOOO, which we can attach attributes to that are then transferred to her final render

mesh. These are referenced in our shading software Flow, and used to create a much more appealing character shader.

References

Fernando de Goes and Alonso Martinez. 2019. Mesh wrap based on affine-invariant coordinates. In ACM SIGGRAPH 2019 Talks (SIGGRAPH ’19). Association
for Computing Machinery, Article 4, 2 pages. doi:10.1145/3306307.3328162
Anna-Christine Lykkegaard, Andrew Butts, and Julian Teo. 2025. Metaball Madness - The Rigging Of An Implicit Surface Character. In under review.


https://doi.org/10.1145/3306307.3328162

	Abstract
	1 From Math to Mesh
	2 Circuitry And Shapeshifting
	3 Primvar Creation For Shading and Lighting
	References

