
Example-based Turbulence Style Transfer

SYUHEI SATO, DWANGO Co., Ltd., Dwango CG Research
YOSHINORI DOBASHI, Hokkaido University and Dwango CG Research
THEODORE KIM, Pixar Animation Studios
TOMOYUKI NISHITA, Dwango CG Research and Hiroshima Shudo University

Fig. 1. Example of smoke interacting with obstacles. On the left is the original, low-resolution smoke (“target”). On the right, we transferred high-resolution
turbulent motion from the middle image onto the low-resolution original. Closeups of the red square regions are shown in the insets.

Generating realistic fluid simulations remains computationally expensive,
and animators can expend enormous effort trying to achieve a desiredmotion.
To reduce such costs, several methods have been developed in which high-
resolution turbulence is synthesized as a post process. Since global motion
can then be obtained using a fast, low-resolution simulation, less effort is
needed to create a realistic animation with the desired behavior. While much
research has focused on accelerating the low-resolution simulation, the
problem controlling the behavior of the turbulent, high-resolution motion
has received little attention. In this paper, we show that style transfermethods
from image editing can be adapted to transfer the turbulent style of an
existing fluid simulation onto a new one. We do this by extending example-
based image synthesis methods to handle velocity fields using a combination
of patch-based and optimization-based texture synthesis. This approach
allows us to take into account the incompressibility condition, which we

Authors’ addresses: Syuhei Sato, DWANGO Co., Ltd., Dwango CG Research, syuhei_
sato@dwango.co.jp; Yoshinori Dobashi, Hokkaido University, Dwango CG Research,
doba@ime.ist.hokudai.ac.jp; Theodore Kim, Pixar Animation Studios, tkim@pixar.
com; Tomoyuki Nishita, Dwango CG Research, Hiroshima Shudo University, nishita@
shudo-u.ac.jp.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
0730-0301/2018/8-ART84 $15.00
https://doi.org/10.1145/3197517.3201398

have found to be a important factor during synthesis. Using our method, a
user can easily and intuitively create high-resolution fluid animations that
have a desired turbulent motion.

CCS Concepts: • Computing methodologies → Animation; Physical
simulation;

Additional Key Words and Phrases: fluid simulation, reusing existing fluid
animations, incompressibility, texture synthesis, patch-based synthesis

ACM Reference Format:
Syuhei Sato, Yoshinori Dobashi, Theodore Kim, and Tomoyuki Nishita. 2018.
Example-based Turbulence Style Transfer.ACMTrans. Graph. 37, 4, Article 84
(August 2018), 9 pages. https://doi.org/10.1145/3197517.3201398

1 INTRODUCTION
Physically-based fluid simulation is used extensively in many pro-
duction environments, such as movies. However, they remain com-
putationally expensive, and animators must tediously repeat sim-
ulations multiple times in order to find parameter settings that
produce a desired motion. In order to accelerate these design iter-
ations, post-processing approaches have been proposed that add
plausible turbulence [Kim et al. 2008; Narain et al. 2008; Schechter
and Bridson 2008] and utilize guide-based formulations [Nielsen
and Christensen 2010; Nielsen et al. 2009].
These methods all follow the same workflow: the overall mo-

tion is first efficiently authored at a low-resolution, and small-scale,
high-frequency details are then synthesized as a post-process. While

ACM Transactions on Graphics, Vol. 37, No. 4, Article 84. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201398
https://doi.org/10.1145/3197517.3201398

84:2 • Sato, Dobashi, Kim, and Nishita

much effort has been invested in accelerating low-resolution simu-
lations, surprisingly little research exists that addresses the problem
of designing the small-scale detail. Most existing methods simply
use existing procedural noise functions [Lagae et al. 2010].

However, the appearance of the final fluid motion can be consid-
erably different depending on the representation of the small-scale
details, even while the overall input motion remains the same. Unfor-
tunately, since the small-scale details are generated entirely during
the post-process, its overall appearance will not be clear to the user
until after this lengthier process has completed.
In this paper, we present turbulence style transfer, an approach

that allows the small-scale details of high-resolution simulation
to be added to a low-resolution flow. While previous approaches
allowed the user to design a low-resolution flow without having
to consider the high-resolution features, our approach enables the
reverse. The user can design a high-resolution flow with the desired
turbulence characteristics once, and then repeatedly transfer these
details onto low-resolution flows. Fig. 1 shows an example of smoke
designed by our method.

We enable this new transfer-based approach by extending existing
example-based image synthesis approaches [Kwatra et al. 2005] to
handle vector fields. Our approach proceeds in two stages (see Fig. 2).
First, we use patch-based synthesis to transfer high-frequency tur-
bulent motion in a way that preserves the low-frequency content.
Second, we apply optimization-based texture synthesis to resolve
discontinuities between patch boundaries in a way that incorporates
incompressibility. Full incompressibility is not necessary to achieve
a plausible result, so we provide a user parameter that controls its
amount.

2 RELATED WORK
Stam [1999] introduced the first unconditionally stable solver for
the Navier-Stokes equations to computer graphics. Since then, many
methods have been proposed for simulating fluid phenomena, which
are summarized in many excellent texts [Bridson 2015; Kim 2017].
Realistic animations can be produced with these methods, but users
must still run repeated simulations and search for good parameter
settings in order to obtain a desired motion.
Several post-processing approaches for synthesizing turbulence

have been proposed [Thuerey et al. 2013]. Kim et al. [2008], Narain
et al. [2008] and Schechter and Bridson [2008] synthesized detailed
turbulent motion on top of low-resolution simulations using a va-
riety of procedural noise functions. Nielsen et al. [2009] took a
variational approach and controlled a high-resolution fluid simula-
tion using a user-designed low-resolution simulation. Later work
accelerated the method [Nielsen and Christensen 2010]. Precompu-
tation was explored by Pfaff et al. [2009], who synthesized object-
induced turbulence by precomputing artificial boundary layer data.
In contrast, Sato et al. [2012] used a precomputed database of high-
resolution 2D velocity fields to synthesize high-resolution velocity
fields in 3D.
Previous synthetic turbulence models use procedural methods

such as Curl Noise [Bridson et al. 2007] as their high-resolution
model. Chu and Thuerey [2017] instead learned a more sophisticated
model by training a convolutional neural network (CNN). In contrast,

we allow a user to design a velocity field that contains the turbulence
characteristics they desire using whatever existing tools they prefer,
and transfer the details of this design onto a new simulation. With
CNN training, the learning algorithm must be re-run for a new high-
resolution flow is introduced. While Chu and Thuerey [2017] do not
report any timing for this stage, machine learning training times are
generally quite long. Our method does not require any training; the
user simply re-runs the source simulation with different parameters.

Many optimization-based methods have been proposed in texture
synthesis [Barnes and Zhang 2017; Wei et al. 2009]. One popular
method is that of Kwatra et al. [2005], where by successively per-
forming a nearest neighbor search and solving a linear system, a
texture that is sufficiently similar to an exemplar is synthesized.
Kwatra et al. [2007] and Bargteil [2006] proposed two similar meth-
ods for synthesizing a texture on a water surface, and Narain et al.
[2007] extended the method to add feature-guided details to the sur-
face from example images. When images of water, foam or lava, are
given to this system, an appropriate image is automatically selected
according to the local features of the water surface. We instead
focus on smoke on a grid, so these liquid surface-based methods
are orthogonal to our approach. Jamriska et al. [2015] proposed
an appearance transfer method for 2D fluid animations based on
Kwatra et al. [2005], where the boundary and interior of the fluid
are specified with an alpha mask. However, this method is intended
for 2D animation and does not take into account incompressibility,
so it is again orthogonal to the current work.

Ma et al. [2009] synthesized the small-scale detail in a motion field
from an example image using the method of Kwatra et al. [2005].
The motion field is then added to a low-resolution motion field,
but is uniform over the entire field. The turbulence in most fluid
animations is heterogeneous in both space and scale, so this method
is not suitable for the current task.We instead take into account local
features of the input velocity and density fields and use a similarity
measure to synthesize plausible turbulence.
The two stage Expectation-Maximization approach from Kwa-

tra et al. [2005] has basic connections to the Alternating Direction
Method of Multipliers (ADMM), which has been used for fluid re-
construction [Gregson et al. 2014], as well as primal-dual methods,
which were used to accelerate the guided shapes approach of Nielsen
et al. [2009] in Inglis et al. [2017]. However, none of these previous
approaches applied these methods to the problem of style transfer.

3 OVERVIEW AND DEFINITIONS
In this section, we will give an overview of our algorithm, and
define the symbols and terminology we will use throughout this
paper. We use unbolded letters (d) to denote scalar quantities such as
density, and boldface (u) to denote vector quantities such as velocity.
Additionally, we use lower case (u or d) to denote low-resolution
grids, and upper case (U orD) for high-resolution grids. For purposes
of exposition, we assume 2D grids.

Our goal is to transfer small-scale turbulence from a high-resolution
simulation onto a low-resolution velocity field. We use texture syn-
thesis to achieve this goal, but since these techniques do not take
incompressibility into account, their direct application does not
yield plausible results. Fig. 2 summarizes this process.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 84. Publication date: August 2018.

Example-based Turbulence Style Transfer • 84:3

i
i i

Fig. 2. Our method takes low- and high-resolution fields as input, which
we denote as “target” and “source”, respectively. Our patch-based synthesis
stage first creates an intermediate high-resolution field. The final output is
computed by applying optimization-based synthesis to this intermediate
field to remove discontinuities between patches.

Table 1. Symbol definitions.

ut ,dt input target velocity field, density mask
Ut ,Dt upsampled version of ut ,dt
Us ,Ds source velocity field, density mask
us ,ds downsampled version of Us ,Ds

Ush ,Usl high/low-frequency components of Us
U∗h intermediate high-frequency components
Uh boundary-smoothed high-frequency components
Ûh advected version of Uh

Uf inal final output velocity field (= Uh + Ut)

Φn (x, f) n × n size patch at point x on field f

We take as input low-resolution velocity (ut) and density mask
(dt) fields, as well as equivalent high-resolution fields (Us and Ds).
As indicated by the subscripts, we refer to these as the “target” and
“source” fields. We assume that the number of frames in the two
input simulations is the same, and if a frame number i needs to be
specified, we use the indexing notation ut (i).

In the first stage of our algorithm, we decompose a low-resolution
velocity field into square patches, and use patch-based texture syn-
thesis to add high-resolution details to each patch. This stage in-
volves both a spatial and frequency-based decomposition.

The spatial decomposition is the aforementioned square patches,
and we label each patch as Φn (x, f). This indicates that the patch
lives in field f , is centered at point x, and is composed of n × n grid
cells. The patches are additionally defined on two spatial scales,
broad and narrow, respectively on the low and high resolution grids
(see Fig. 3). These patches can be defined on both the target and the
source fields. The broad patches are composed of b × b grid cells,
while the narrow patches contain B×B cells. For example, Φb (p, ut)
denotes a broad patch centered at point p on ut (see Fig. 3).

sh

l

h

Fig. 3. A two-level search is performed, first over broad patches (blue
squares) and then narrow patches (orange squares). A global search is
first performed over all broad patches to find the best match, and then a
narrower, local search is performed inside the best broad patch (red dotted
square). The result of this stage is the intermediate velocity field U∗h , which
is created by copying the most similar patch in Ush to U∗h .

The frequency decomposition is obtained by downsampling the
source velocity field, upsampling it, and then taking the difference
with respect to the original. The downsampled versions of the source
fields are denoted by us and ds , and the low- and high-frequency
components of the source velocity field are denoted by Usl and Ush ,
respectively. Linearly upsampled versions of the target velocity and
density fields are denoted Ut and Dt .
In the second stage of our algorithm, we take the result of the

patch-based synthesis, U∗h , and optimize for smooth velocities across
patch boundaries. This takes the form of a constrained optimization
that takes into account incompressibility. We denote the boundary-
smoothed result as Uh . We use an advection version of Uh , denoted
Ûh , to maintain temporal coherence in the patch-based synthesis
stage. The final velocity field is computed as Uf inal = Uh +Ut , and
used to advect the density field that is shown in the final animation.

For convenience, all the symbols are summarized in Table 1.

4 PATCH-BASED TURBULENCE SYNTHESIS
In this first stage of our algorithm, we synthesize a preliminary
high-resolution velocity field U∗h that contains high-frequency com-
ponents from the source field. This is done in a patch-based manner,
so discontinuities will exist across patch boundaries that will be
addressed in the next section.
We start by regularly subdividing the upsampled target field Ut

into narrow patches of size B × B (see Fig. 3, top left). For each of
these patches, the goal is then to find the patch in the source field
that best matches it. The high-frequency component from this best
patch will then be copied into the preliminary field U∗h .
A naïve approach would be to look for the best patch using an

exhaustive, brute-force search. We instead elect to use a two-level
algorithm that consists of a global and local stage. A global search is
first performed over all the broad patches on the low resolution grids
(see Fig. 3, bottom left), and once a promising patch has been found,

ACM Transactions on Graphics, Vol. 37, No. 4, Article 84. Publication date: August 2018.

84:4 • Sato, Dobashi, Kim, and Nishita

ALGORITHM 1: Patch-based turbulence synthesis

for each patch center p on target do
if smoke initially appears in the patch then

// global search

Etmp ←∞

for each patch center q on downsampled source do
Compute energy: El (p, q) by Eq. (1)
if Etmp > El (p, q) then

Etmp ← El (p, q), ql ← q

else
ql ← qh in (i − 1)-th frame

// local search

Emin ←∞

for each patch center q around ql on source do
Compute energy: Eh (p, q) by Eq. (2)
if Emin > Eh (p, q) then

Emin ← Eh (p, q), qh ← q

ΦB (p, U∗h) ← ΦB (qh, Ush)

a fine-grained local search is performed at the higher resolution. A
global search over the full high-resolution data is thus avoided.
During the global search, each patch in the target field (ut ,dt),

must find a closest match in the downsampled, low-resolution source
field (us ,ds). For each patch with center p in the target field, we
search for the best matching position ql in the source field by solving
the following minimization problem.

ql = arg min
q

El (p, q),

where

El (p, q) = | |Φb (p, ut) − Φb (q, us)| |
2

+ α | |Φb (p,dt) − Φb (q,ds)| |
2. (1)

Here, α is a regularization coefficient for the second term, which
measures the differences in densities.

Next, we take the best broad patch found using Eq. (1) and perform
a high-resolution local search along its interior to find the most
similar narrow patch inside the broad patch (Fig. 3, top left). We
search the source field (Fig. 3, red dotted square) for qh , the patch
center that satisfies the following minimization:

qh = arg min
q

Eh (p, q),

where

Eh (p, q) = | |ΦB (p,Ut) − ΦB (q,Usl)| |
2

+ α | |ΦB (p,Dt) − ΦB (q,Ds)| |
2

+ β | |ΦB (p, Ûh) − ΦB (q,Ush)| |
2. (2)

Here, α takes into account density differences in the same way as
Eq. (1), and β is a regularization coefficient that adjusts the influence
of previous frame. The intermediate turbulent velocity field is then
synthesized by copying the high frequency component of the best
patch from Ush to the corresponding position in U∗h .

Ω

Ω

Fig. 4. Closeup around most similar narrow patches at p and qh found in
the patch-based synthesis. A processing region Ω (the green grid) and a
boundary patch (the green square) are shown. The patch at sk in Ush on
the right is the closest patch to the boundary patch at rk in Uh on the left.
The search region for sk in the first iteration of the optimization process is
defined by using the most similar narrow patch at qh (the orange square
on the right).

ALGORITHM 2: Smoothing velocities between patches

U0
h ← U∗h

for n ← 0 to Nmax do
for each patch center rk do

snk ← center of nearest neighbor of ΦC (rk , Un
h) in Ush

Un+1
h ← arg min

Uh
Eb (Uh, sn1 , sn2 , · · · , snNΩ

)

if Eb is small enough then
Uh ← Un+1

h
Break

Two factors must be taken into account to maintain temporal
coherence. First, we only perform the global search when smoke
initially appears in a patch. In subsequent frames, the broad patch
is translated so that its center coincides with that of the best narrow
patch computed at the previous frame. Second, we advect the high-
frequency components from the previous (i−1)-th frame, Uh (i−1),
using the upsampled target velocity field Ut (i−1). The resulting
field is labelled Ûh (see Fig. 3).
Finally, we additionally accelerate the search by leveraging the

density fields. The dt andDs field we use are not the original density
fields, but indicator functions that are set to 1 when the smoke
density exceeds a threshold, and 0 otherwise. The search is only
performed for patches with non-zero indicator values, and thus
avoids spurious computation in regions of zero density.

Algorithm 1 summarizes the patch-based synthesis stage.

5 SMOOTHING VELOCITIES BETWEEN PATCHES
In the previous section, we synthesized a high-resolution veloc-
ity field U∗h . However, we have ignored the boundaries between
patches, so velocity discontinuities can appear along these seams.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 84. Publication date: August 2018.

Example-based Turbulence Style Transfer • 84:5

In this section, we will propose an optimization method based on
the texture synthesis approach of Kwatra et al. [2005] that addresses
these discontinuities. The output will be the final velocity field Uh .

The optimization only needs to occur along patch boundaries, so
we define a lattice-structured region Ω that is the union of all the
patch boundaries in Uh (see the green grid in Fig. 4). The width of
the boundary region is specified by the user, but we found that a
width of 4 worked fine in all of our experiments.

We want to make the velocity field in Ω as smooth as possible, but
also preserve the high-frequency details of the source field. Thus,
we propose to use vorticity to measure the similarity of the current
solution and the source field. We define a C ×C patch at every grid
point rk in Ω, where k ∈ 1, 2, · · · ,NΩ and NΩ is the total number of
grid points in Ω. We call this a boundary patch (Fig. 4, green square).
Using the boundary patches, we minimize the following energy over
the Ω region in Uh :

Eb (Uh , s1, s2, · · · , sNΩ) =

NΩ∑
k=1
{| |∇ × ΦC (rk ,Uh) − ∇ × ΦC (sk ,Ush)| |

2

+ γ (∇ · ΦC (rk ,Uh))
2}. (3)

This energy is minimized with respect to two primary variables: Uh
and sk , where k ∈ 1, · · · ,NΩ . The patch centers rk and sk refer to
the patches whose vorticities are most similar. The corresponding
patch ΦC (rk ,Uh) is centered at rk on the synthesized field Uh ,
while ΦC (sk ,Ush) is centered at sk on the high-frequency field Ush
(see Fig. 4). The first term in this energy compares the vorticity
between the synthesized flow and the source flow, and the second
term incorporates the incompressibility condition, which measures
the divergence of the current velocity field. The γ parameter allows
the weight for the incompressibility condition to be adjusted.
The energy is minimized using an Expectation-Maximization

approach that is similar to Kwatra et al. [2005]. The algorithm begins
by initializing Uh to U∗h . It then proceeds to alternately optimize Eb
with respect to two variables: sk and Uh . In the first sk optimization
phase, it finds themost similar patch onUsh for every patch centered
at rk (see Fig. 4). In the second phase, the algorithm minimizes Eb
with respect to Uh . This is accomplished by setting the derivative of
Eq. (3) with respect to Uh equal to zero and by solving the resulting
linear system:

−∇ × (∇ × Uh (rk)) + γ∇(∇ · Uh (rk)) =

−
1
N

NΩ∑
l=1

дkl∇ × (∇ × Ush (sl)), (4)

where Uh (rk) and Ush (sl) are point-sampled velocities from Uh and
Ush at locations rk and sl . The variable дkl is an indicator function
that is equal to one if the boundary patch at rk overlaps the nearby
boundary patch at rl , and is zero otherwise. Since we only minimize
Eb over the region Ω, the linear system is relatively small. The linear
system is similar to those from previous methods [Sato et al. 2016]
so we use a conjugate gradient (CG) solver. After solving for Uh , the
set of closest patch centers sk may also change. Hence we iteratively
apply the sk and Uh optimization phases until the change in Eb
becomes sufficiently small.

Fig. 5. Convergence of optimization energy over three different search
ranges for smoothing: 9 × 9, 17 × 17, and 33 × 33. The images on the top
show the synthesized 2D smoke with the energies corresponding to the
points in the plot at the bottom, (Left: 9 × 9, 1 iteration) and (Right: 33 × 33,
10 iterations). The target and source are shown on the left.

For efficiency, we limit the search range for each sk using the
results of the patch-based synthesis stage. Let us assume that the
center of a boundary patch, rk , is located within the narrow patch
at p (see Fig. 4). The most similar patch in Ush , centered at qh , was
already found during the patch-based synthesis process. The search
is thus centered at qh + (rk − p) (see the red dashed square in Fig. 4).
After the first iteration, we update the search center to sk .

The computational cost of the algorithm grows as we increase
the search range, so we ran experiments to determine when further
error reduction becomes visually negligible. Along the top of Fig. 5,
we compare smoke synthesized with two different settings. On the
left is a single iteration with an 9×9 search range and on the right is
ten iterations with a 33 × 33 search range. The size of the boundary
patch is 5 × 5. From these experiments, we concluded that a single
iteration with a 9× 9 search range provided sufficient visual quality,
so we used these settings for all the examples in this paper.

The fact that most error reduction occurs in the first iteration is
consistent with the behavior of local/global solvers in other areas of
graphics [Rabinovich et al. 2017]. The energy is almost converged
after just five or six iterations, and becomes smaller when using
larger search ranges.

6 ACCELERATION
Although our method can successfully synthesize small scale tur-
bulence, the search process associated with Eq. (2) can make com-
putation times prohibitively long. If an exhaustive search is used,
our method can be slower than running a direct simulation on a
high-resolution grid.
The most straightforward solution is to use a hierarchical data

structure such as a kd-tree. However, our experiments yielded
unattractive precomputation times for clustering and populating
such a tree, and the storage costs for 3D fields become an issue.
We instead opted for a fast, simple, approximate method that

requires no precomputation. Our approach leverages the fact that
the velocity fields in neighboring patches are usually very similar.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 84. Publication date: August 2018.

84:6 • Sato, Dobashi, Kim, and Nishita

Fig. 6. Results using our adaptive search algorithm. (a) and (b) are target
and source fields, respectively. (c) is synthesized by the exhaustive search
and (d) is by our adaptive search. The boundary smoothing process is not
applied.

b B b B b B

Fig. 7. Comparison of results with different patch sizes. (a) through (c)
show results obtained by different broad and narrow patch sizes, b and B ,
indicated by the captions. The source and the target fields are the same as
those in Fig. 5. The red circles indicate the regions where our method fails
to transfer turbulent motion due to an inappropriate patch size.

Fig. 8. Divergence observed with different γ = 0.1, 1.0, 10.0, and 100.

In lieu of an exhaustive search, we compute Eq. (2) over a subset of
regularly distributed patches. The neighborhood around the best
patch is then searched at more closely spaced intervals. This process
repeats until the interval becomes a single voxel.

More specifically, let us assume that there arem×m patches in the
search region. We first set an initial sampling interval ofm0, extract
m/m0 ×m/m0 patches, and determine which patch in this subset is
most similar to the query patch. Next, a new subset of patches is
constructed near the most similar patch according to the sampling
interval m1 = m0/2. These processes are repeated until mj = 1,
where j is the number of iterations. Using this adaptive approach
dramatically accelerated the search process without introducing
any significant artifacts. The adaptive approach was applied to both
Eqs. (2) and (3).

We confirmed that this adaptive, approximate search process does
not compromise the quality of the final results. In Figs. 6(a) and (b),
we show a 16 × 24 target and 128 × 192 source field. We applied the
adaptive search method to the local search stage, where the sizes
of the narrow and broad patches, B and b, are 17 and 5, and m0
was set to 8. Compared to the results of the exhaustive search, the
average relative error of the patches found by our adaptive algorithm
was 1%. The computation times of the adaptive and the exhaustive
algorithms running on the CPU were 0.0125 and 0.115 seconds,
respectively. Our method is 9.2× faster, and the quality in Figs. 6 (c)
and (d) are comparable. In order to facilitate the comparison, the
smoothing search (Eq. (3)) was deactivated for this example.

7 RESULTS
This section shows examples that demonstrate the effectiveness of
our method. For all examples, the target velocity field was computed
by using a Stam [1999] solver, and the turbulent source velocity
field is generated using vorticity confinement [Fedkiw et al. 2001].
We used a desktop PC with an Intel Core i7-6700K CPU to compute
all examples. The grid sizes, parameters, and computation times
are summarized in Table 2. The computation time of our method
is almost the same as or faster than that of the source simulation.
In our method, more than 95% of the computation time was spent
smoothing patch boundaries. If the acceleration method from §6 is
not used, then patch search dominates. The rightmost column in
Table 2 shows the time needed to compute full simulations at the
same resolution as our final results. Running theses full-resolution
simulations takes 1.5×-3.5× longer than our method (source simu-
lation + synthesis process). The video including these examples can
be found in the supplementary material.

7.1 Experiments Using 2D Flows
We investigate the behavior of our method for 2D smoke simula-
tions. The first experiment compares the results obtained by using
different sizes for broad and narrow patches, b and B. We tested
three combinations of patch sizes: (b,B) = (3, 9), (5, 17), and (17, 65).
The source and the target fields are the same as those in Fig. 5. The
results are shown in Fig. 7. This experiment indicates that small
patches are inappropriate for successfully transferring turbulent
motion (e.g., see the region indicated by the red circle in(a)). Using
patches that are too large also fails to transfer turbulent motion
as shown in the red circles in (c). Based on these experiments, we
decided to use (b,B) = (5, 17) for creating the 3D examples in the
next section.
Next, we investigated the effects of the varying parameter γ

from Eq. (3), which controls the amount of incompressibility in the
synthesized flow. We computed the average absolute divergence,
and plotted the results for γ = 0.1, 1.0, 10.0, and 100.0 in Fig. 8. As
expected, the divergence becomes smaller as γ grows larger.

7.2 Experiments Using 3D Flows
We applied our method to several practical 3D examples. The sizes
of the broad and narrow patches were set to 173 and 53 in all the
3D examples. All the images in this section were rendered by the
Mitsuba renderer [Jakob 2010]

ACM Transactions on Graphics, Vol. 37, No. 4, Article 84. Publication date: August 2018.

Example-based Turbulence Style Transfer • 84:7

Table 2. Simulation statistics. The rightmost column indicates the computation times for full simulations using the same resolution as our final results.

Figure grid size parameters computation time/frame [sec]
target source final α β γ target source synthesis full

Fig. 7(a) 16 × 24 128 × 192 192 × 256 0.001 0.5 2.5 0.001 0.31 0.083 0.83
Fig. 7(b) 16 × 24 128 × 192 192 × 256 0.001 0.5 2.5 0.001 0.31 0.057 0.83
Fig. 7(c) 16 × 24 128 × 192 192 × 256 0.001 0.5 2.5 0.001 0.31 0.039 0.83
Fig. 9(b) 24 × 24 × 32 192 × 192 × 128 192 × 192 × 256 0.001 0.5 2.5 0.03 56 51 166
Fig. 9(c) 24 × 24 × 32 128 × 128 × 192 192 × 192 × 256 0.0003 0.5 2.5 0.03 34 50 166
Fig. 11(a) 32 × 32 × 48 256 × 256 × 256 256 × 256 × 384 0.0005 0.5 2.5 0.11 260 169 615
Fig. 11(b) 48 × 32 × 32 256 × 256 × 256 384 × 256 × 256 0.0005 0.5 2.5 0.11 260 163 615
Fig. 1 64 × 32 × 64 256 × 256 × 256 512 × 256 × 512 0.0005 0.5 2.5 0.45 260 338 2170

Fig. 9. Example of rising smoke. Image (a) shows a target low resolution smoke. The images on the right in (b) and (c) show our results created by transferring
high resolution turbulent motions in the left images to the low resolution target smoke. Images (d) and (e) show results obtained by using Wavelet Turbulence
and the method of Pfaff et al. [2009].

The first example shows rising smoke synthesized using source
fields with different turbulent motions (Fig. 9). We prepared two
source fields with different grid sizes for Fig. 9(b) and (c) (see Table 2).
The smoke is generated by placing a spherical smoke source at the
bottom-center of the simulation domain. The radius of the smoke
source for the target is 2× the grid interval. The radii for the source
fields in (b) and (c) are 10× and 5×, respectively. These settings were
chosen experimentally. Within the smoke source, a random vertical
upward velocity and a constant density were specified. Our method
successfully transferred the turbulent motion from the source fields
to the target field, resulting in different small scale details. Figs. 9(d)
and (e) show results of using Wavelet Turbulence [Kim et al. 2008]
and the Artificial Boundary Layer (ABL) method of Pfaff et al. [2009],
respectively. Wavelet Turbulence successfully adds small-scale de-
tails, but the results look noisy. ABL produces better results, but
for both methods, parameter tweaking is needed to obtain plausible
results. Our results are more realistic because the small-scale details
have been transferred from a high-resolution simulation.

In the second example, shown in Fig. 1, we applied our method to
a scene where smoke interacts with multiple cylinders. The target is
shown in the left. In Fig. 1, we prepared a source field by simulating
smoke interacting with only three cylinders (bottom middle), on a
grid with half the size of the final simulation. The high-resolution
turbulent smoke synthesized by our method is shown in the right.
Even though the source field only has half of the grid size of the
final result, the small scale details are transferred effectively.
Fig. 10 investigates the ability of our method to use different

source and target fields in the same scene as Fig. 1. Fig. 10(a) uses

the same source field as Fig. 1 but vorticity confinement has been
changed to reduce turbulence. In Fig. 10(b), the source field shown
in Fig. 9(c) is directly used, so no cylinders exist in the source field.
In Fig. 10(c), the cylinders in the target were replaced with the large
flat slab shown in the top left corner. These experiments show that
our method can transfer high-resolution details even if the source
and the target simulations are fairly different. Finally, in Fig. 10(d),
we simulated smoke with the same resolution as our result in Fig. 1.
Although realistic high-resolution details are obtained, the overall
motion is completely different from the target simulation, and the
computation time is much longer (see Table 2).
Finally, we applied our method to more complicated scenarios

where smoke interacts with moving objects (Fig. 11). In the target
low-resolution simulation in Fig. 11(a), a sphere moves up and down
dynamically. However, the source field was created by simulating
smoke interacting with a static sphere. In Fig. 11(b), the cylinders
move from left to right, while the same static source animation from
Fig. 1 is used. Our method synthesizes plausible high-resolution
flows, even in these difficult situations.

8 DISCUSSION
Our method combines patch-based and optimization-based texture
synthesis. When using such techniques, selecting a good patch size
is an important factor in determining the quality of the final result.
Although we have not encountered a case where choosing an appro-
priate patch size is difficult, it is possible that such scenarios could
arise. In such situations, the issue could be resolved by incorporating
a hierarchical texture synthesis approach.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 84. Publication date: August 2018.

84:8 • Sato, Dobashi, Kim, and Nishita

Fig. 10. Scenario from Fig. 1, but with different source/target combinations. The source for (a) is shown at the bottom right corner, and created by reducing the
turbulence from Fig. 1. Image (b) uses the source shown in Fig. 9(c). In image (c), the target is replaced with the large flat slab shown in the upper left corner.
The source is the same as Fig. 1. Image (d) is the result of a direct simulation, where the resolution is the same as our result from (a).

Fig. 11. Smoke interacting with moving obstacles. The target low-resolution smoke interacts with dynamic obstacles. The results are created by transferring
high-resolution turbulent motions smoke interacting with static obstacles (see insets). In image (a), a sphere moves up and down, and in (b), cylinders move
left and right. In (b), the source field is the same as Fig. 1.

Fig. 12. Different source velocity fields with different buoyancy directions. The source fields are shown in the insets, and the buoyancy directions are listed as
well. The target field is the same as Fig. 9(a).

One limitation is that we assume the source animation is at least
as long as the target animation. There are many possible solutions
to this problem, including the infinite “Video Textures” approach
from Schödl et al. [2000]. No new component needs to be needed to
address this limitation.
One possible alternative that we discarded was the direct appli-

cation of the texture synthesis technique of Kwatra et al. [2005] to
the velocity field. We found that the computational cost was very
large, particularly for 3D cases, and the results were not visually
convincing. The entire simulation domain would suffer from exces-
sive overuse of low-frequency patches, similar to the observations

in Jamriska et al. [2015]. We instead only apply this technique across
boundary patches, so the artifacts are minimal.
If the gross motion of the target and source velocity fields differ

greatly, i.e. the lowest frequency components are totallymismatched,
our method can produce unintuitive results. Figs. 12 through 14
explore the sensitivity of our method to these differences.
Fig. 12, shows seven source velocity fields with buoyancy direc-

tions that differ by 15 degrees. The target velocity field is the same
as Fig. 9. Our method begins to fail when the buoyancy direction
deviates from the purely vertical direction by over 30 degrees.

Next, in Fig. 13, two target velocity fields are generated with small
(left) and large (right) horizontal velocities, and the source is the

ACM Transactions on Graphics, Vol. 37, No. 4, Article 84. Publication date: August 2018.

Example-based Turbulence Style Transfer • 84:9

Fig. 13. Experiments using target fields with small (left) and large (right)
initial horizontal velocities. The source field is the same as Fig. 9(c). The
synthesis quality can degrade if the horizontal velocity becomes very large.

Fig. 14. Experiments in temporal similarity. The inset images show the
target smoke simulation, and the source field is the same as Fig. 9(c). Even
though smoke is injected intermittently in the target simulation, turbulent
detail is transferred successfully.

same as Fig. 9(c). The turbulent detail is successfully transferred
when the initial velocity is small, but is less successful for large
velocities. This limitation could be addressed by making our method
rotation- and translation-invariant, and robust to normalized flows.
Finally, we investigate the necessity of temporal similarity in

Fig. 14. In the source, smoke is added continuously, while in the
target, smoke is added intermittently. We use the same source as
Fig. 9(c), and our method successfully transfers the turbulent detail.

9 CONCLUSIONS
We have proposed a method for synthesizing turbulent motion by
reusing existing velocity fields in an incompressibility-aware man-
ner. Our method used patches to synthesize turbulent motion that
preserves the overall character and structure of the flow, and uses
optimization-based texture synthesis to remove artifacts along the
boundary of each patch. In the future, we want to explore acceler-
ating our method by implementing the whole process on the GPU.
Our preliminary studies indicate that it can accelerate the plume
example by up to 30×. We also plan to extend our method to other
types of fluid, such as fire, clouds, and water.

ACKNOWLEDGEMENTS
The authors would like to thank Prof. Hiroyuki Ochiai at Kyushu
University for his valuable comments. The authors would also like to
thank the reviewers for their constructive comments to improve our
paper. This work was supported by JSPS KAKENHI Grant Numbers
JP15H05924 and JP15K21742.

REFERENCES
Adam Wade Bargteil. 2006. Tracking and texturing liquid surfaces. Ph.D. Dissertation.

University of California, Berkeley.
Connelly Barnes and Fang-Lue Zhang. 2017. A survey of the state-of-the-art in patch-

based synthesis. Computational Visual Media 3, 1 (2017), 3–20.
Robert Bridson. 2015. Fluid simulation for computer graphics. CRC Press.
Robert Bridson, Jim Hourihan, andMarcus Nordenstam. 2007. Curl-noise for procedural

fluid flow. ACM Transactions on Graphics 26, 3 (2007), Article 46.
M. Chu and N. Thuerey. 2017. Data-Driven Synthesis of Smoke Flows with CNN-based

Feature Descriptors. ACM Transactions on Graphics 36, 4 (2017), Article 14.
R. Fedkiw, J. Stam, and H. W. Jansen. 2001. Visual Simulation of Smoke. In Proceedings

of ACM SIGGRAPH 2001. 15–22.
James Gregson, Ivo Ihrke, Nils Thuerey, and Wolfgang Heidrich. 2014. From Capture

to Simulation: Connecting Forward and Inverse Problems in Fluids. ACM Trans.
Graph. 33, 4, Article 139 (July 2014), 11 pages.

T. Inglis, M.-L. Eckert, J. Gregson, and N. Thuerey. 2017. Primal-Dual Optimization for
Fluids. Computer Graphics Forum 36, 8 (2017), 354–368.

Wenzel Jakob. 2010. Mitsuba renderer. (2010). http://www.mitsuba-renderer.org.
O. Jamriska, J. Fiser, P. Asente, J. Lu, E. Shechtman, and D. Sykora. 2015. LazyFluids:

appearance transfer for fluid animations. ACM Transactions on Graphics 34, 4 (2015),
Article 92.

Doyub Kim. 2017. Fluid Engine Development. CRC Press.
Theodore Kim, Nils Thurey, Doug James, and Markus Gross. 2008. Wavelet turbulence

for fluid simulation. ACM Transactions on Graphics 27, 3 (2008), Article 3.
Vivek Kwatra, David Adalsteinsson, Theodore Kim, Nipun Kwatra, Mark Carlson, and

Ming C. Lin. 2007. Texturing fluids. IEEE Transactions on Visualization and Computer
Graphics 13, 5 (2007), 939–952.

Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. 2005. Texture optimization
for example-based synthesis. ACM Transactions on Graphics 24, 3 (2005), 795–802.

Ares Lagae, Sylvain Lefebvre, Rob Cook, Tony DeRose, George Drettakis, David S Ebert,
John P Lewis, Ken Perlin, and Matthias Zwicker. 2010. A survey of procedural noise
functions. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 2579–2600.

C. Ma, L. Wei, B. Guo, and K. Zhou. 2009. Motion field texture synthesis. ACM
Transactions on Graphics 28, 5 (2009), Article 110.

Rahul Narain, Vivek Kwatra, Huai-Ping Lee, Theodore Kim, Mark Carlson, and Ming C.
Lin. 2007. Feature-guided dynamic texture synthesis on continuous flows. In Pro-
ceedings of the 18th Eurographics conference on Rendering Techniques. 361–370.

R. Narain, J. Sewall, M. Carlson, and M. C. Lin. 2008. Fast animation of turbulence
using energy transport and procedural synthesis. ACM Transactions on Graphics 27,
5 (2008), Article 166.

Michael B. Nielsen and Brian B. Christensen. 2010. Improved Variational Guiding of
Smoke Animations. Computer Graphics Forum 29, 2 (2010), 705–712.

Michael B. Nielsen, Brian B. Christensen, Nafees Bin Zafar, Doug Roble, and KenMuseth.
2009. Guiding of smoke animations through variational coupling of simulations
at different resolutions. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. 217–226.

T. Pfaff, N. Thuerey, A. Selle, and M. Gross. 2009. Synthetic turbulence using artificial
boundary layers. ACM Transactions on Graphics 28, 5 (2009), Article 121.

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.
Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 2, Article 16 (April
2017), 16 pages.

S. Sato, Y. Dobashi, and T. Nishita. 2016. A combining method of fluid animations by
interpolating flow fields. In Proceedings of SIGGRAPH Asia 2016 Technical Briefs.
Article 4.

S. Sato, T. Morita, Y. Dobashi, , and T. Yamamoto. 2012. A data-driven approach
for synthesizing high-resolution animation of fire. In Proceedings of the Digital
Production Symposium 2012. 37–42.

H. Schechter and R. Bridson. 2008. Evolving sub-grid turbulence for smoke animation.
In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. 1–7.

Arno Schödl, Richard Szeliski, David H. Salesin, and Irfan Essa. 2000. Video Textures.
In Proceedings of ACM SIGGRAPH 2000. 489–498.

Jos Stam. 1999. Stable Fluids. In Proceedings of ACM SIGGRAPH 1999, Annual Conference
Series. 121–128.

Nils Thuerey, Theodore Kim, and Tobias Pfaff. 2013. Turbulent Fluids. In Proceedings of
SIGGRAPH ’13 ACM SIGGRAPH 2013 Courses. Article No. 6.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. 2009. State of the Art
in Example-based Texture Synthesis. In Eurographics 2009, State of the Art Report,
EG-STAR. Eurographics Association. http://www-sop.inria.fr/reves/Basilic/2009/
WLKT09

ACM Transactions on Graphics, Vol. 37, No. 4, Article 84. Publication date: August 2018.

http://www-sop.inria.fr/reves/Basilic/2009/WLKT09
http://www-sop.inria.fr/reves/Basilic/2009/WLKT09

	Abstract
	1 Introduction
	2 Related Work
	3 Overview and Definitions
	4 Patch-based Turbulence Synthesis
	5 Smoothing Velocities between Patches
	6 Acceleration
	7 Results
	7.1 Experiments Using 2D Flows
	7.2 Experiments Using 3D Flows

	8 Discussion
	9 Conclusions
	References

