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Figure 1: A character posed using using harmonic coordinates. (a) The character and cage (shown in black) at bind-time; (b) and (c) are
two poses from an animated clip. All images c© Disney/Pixar.

Abstract

In this paper we consider the problem of creating and controlling
volume deformations used to articulate characters for use in high-
end applications such as computer generated feature films. We in-
troduce a method we call harmonic coordinates that significantly
improves upon existing volume deformation techniques. Our de-
formations are controlled using a topologically flexible structure,
called a cage, that consists of a closed three dimensional mesh. The
cage can optionally be augmented with additional interior vertices,
edges, and faces to more precisely control the interior behavior of
the deformation. We show that harmonic coordinates are general-
ized barycentric coordinates that can be extended to any dimension.
Moreover, they are the first system of generalized barycentric coor-
dinates that are non-negative even in strongly concave situations,
and their magnitude falls off with distance as measured within the
cage.

CR Categories: I.3.5 [Computational Geometry and Object Mod-
eling]: Geometric algorithms, languages, and systems.

Keywords: Barycentric coordinates, mean value coordinates, free
form deformations, rigging.

1 Introduction

Character articulation, sometimes called rigging, is an important
component of high-end animation systems of the kind used in fea-
ture film production. Modern high-end systems, most notably Sof-
tImage XSI R© and Maya R©, offer a variety of articulation methods
such as enveloping [Lewis et al. 2000], blend shapes [Joshi et al.
2006], and chains of arbitrary deformations. In the realm of de-
formations, free-form deformations as introduced by Sederberg and
Parry [1986] are particularly popular for a number of reasons. First,
they offer smooth and intuitive control over the motion of the char-
acter using only a few parameters, namely, the locations of the free-
form lattice control points. Second, there are virtually no restric-
tions on the three-dimensional model of the character — the only
requirement is that the character model is completely enclosed by
the control lattice.

However, free-form deformation has some drawbacks. Articulat-
ing a multi-limbed character is best accomplished using a lattice
that conforms to the geometry of the character. However, given
the topological rigidity of a lattice, it is often necessary to combine
several overlapping lattices, and each of the lattices possess interior
points that can be difficult and annoying to articulate. The prob-
lem of multiple overlapping lattices was addressed by MacCracken
and Joy [1996] where lattices were generalized to arbitrary volume
meshes, but their method still requires the introduction and articu-
lation of numerous interior control points.

Ju et al [2005] introduced a promising new approach that is even
more topologically flexible, wherein the character to be deformed
(henceforth called the object) is positioned relative to a coarse
closed triangular surface mesh (henceforth called the cage). The
object is then “bound” to the cage by computing a weight gi(p) of
each cage vertex Ci evaluated at the position of every object point p.
As the cage vertices are moved to new locations C′i , the deformed
points p′ are computed from

p′ = ∑
i

gi(p)C′i . (1)

An example is shown in Figure 2(b). The weight functions gi(p)
used by Ju et al. are known as mean value coordinates [Floater
2003; Floater et al. 2005; Ju et al. 2005]. Mean value coordinates
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Figure 2: A comparison between deformations based on mean value and harmonic coordinates. The first row shows a torso bend and the
second row shows a leg bend for a typical character. The left column shows the cage (shown in black) and object (shown in beige). The middle
column shows modified cages and the corresponding deformed objects using mean value coordinates. The right column shows modified cages
and deformed objects using harmonic coordinates. Notice that the two methods perform similarly for the torso bend. However, in strongly
concave situations such as the legs, harmonic coordinates produced significantly more pleasing results.

are a form of generalized barycentric coordinates that have a num-
ber of uses, but they are particularly interesting in the context of
character articulation because:

• The cage that controls the deformation can be any closed tri-
angular surface mesh, so there is a great deal of topological
and geometric flexibility when designing the cage.

• The coordinates are smooth, so the deformation is smooth.

• The coordinates reproduce linear functions, so the object
doesn’t “pop” when it is bound. That is, the coordinates are
such that setting C′i to Ci in Equation 1 results in p′ reducing
to p.

However, mean value coordinates have a drawback for use in char-
acter articulation, as illustrated by the bipedal character shown in
Figure 2. Notice how the modified cage vertices for the leg on
the left in Figure 2(e) significantly influence the position of object
points in the leg on the right. This occurs because mean value co-
ordinates are based on Euclidean (straight-line) distances between
cage vertices and object points. Since the distance between the
modified cage vertices and the object points in the leg on the right
are relatively small in the bind pose, the influence is relatively large.
Notice too that the displacement of those object points is in a direc-
tion opposite to the displacement of the cage vertices. This occurs
because the mean value coordinates are negative, as shown in Fig-
ure 4(b). This undesirable movement is particularly striking in in-
teractive use, as demonstrated in accompanying video (see [Joshi
et al. 2007]). Such behavior is unacceptable for the articulation of

characters in feature film production.

The undesirable behavior illustrated above occurs because mean
value coordinates lack two properties that are essential for high-end
character articulation; namely:

• Interior locality: Informally, the coordinates should fall off as
a function of the distance between cage vertices and object
points, where distance is measured within the cage.

• Non-negativity: As illustrated in Figures 2(e) and 4(b), if an
object point whose coordinate relative to a cage vertex is neg-
ative, the object point and cage vertex will move in opposite
directions. To prevent this unintuitive behavior, we seek coor-
dinates that are guaranteed to be non-negative on the interior
of the cage, even in strongly concave situations.

In this paper, we show that coordinates possessing the these two
critical properties can be produced as solutions to Laplace’s equa-
tion. Since solutions to Laplace’s equation are generically referred
to as harmonic functions, we therefore call these coordinates har-
monic coordinates, and the deformations they generate harmonic
deformations.1

Unlike mean value coordinates, harmonic coordinates do not, in

1Since each component of a harmonic deformation is a harmonic func-
tion, many texts refer to such deformations as harmonic maps. We prefer
the term harmonic deformation because of the context in which they’re used
in this paper.



general, possess a closed form expression. Instead, they must be
approximated using a numerical solver. There are two potential
drawbacks of a numerical solution: time and accuracy. For charac-
ter articulation, as the animator moves the cage vertices, the object
must deform in real-time. For such fully interactive deformations
the coordinates should be computed as a pre-process, prior to any
user interaction. This precomputation is necessary even if a closed
form exists, as noted by Ju et al. [2005]. Given that coordinates
must be precomputed whether or not a closed form exists, the time
required to run the harmonic coordinate solver is acceptable (see
Sections 6 and 7). The key issue regarding accuracy is whether it
is possible to reproduce linear functions using reasonable time and
space. For harmonic coordinates this is in fact the case, again as
shown in Section 6.

To put our analysis of previous work and contributions in context,
we reiterate the problem we are trying to solve and why. Our goal is
to develop a topologically flexible “cage-based” method of control-
ling volume deformations. We specifically do not seek a direct ma-
nipulation method, such as methods based on local differential co-
ordinates (c.f. Sorkine [2006] and Sumner et al. [2005]), though we
share some of the same mathematical underpinnings. While such
direct manipulation methods have produced impressive results, par-
ticularly under exteme deformations, cage-based methods allow us
to decouple the geometry being articulated (the cage) from the ge-
ometry of the character. This decoupling is desirable for several
reasons. First, our character models generally do not consist of a
single mesh. Rather, they are typically described using a rather
large collection of modeling primitives, including separate meshes
for skin, teeth, and clothing, as well as non-mesh primitives such as
spheres for eyeballs. Cage-based methods are ideal for coherently
deforming such large and diverse collections of primitives, whereas
direct manipulation mesh deformation techniques address the de-
formation of individual meshes. Second, the decoupling allows us
to reuse the articulation as the character geometry changes. We can
also reuse articulation of the cage to articulate the full version of
the character, as well as low detail versions for faster preview and
rendering. Such reuse of articulation is significant since, at least at
our studio, articulation typically takes an order of magnitude longer
to author than static geometry.

1.1 Contributions

In this paper we offer the first cage-based deformation technique
guaranteeing that the influence of each cage vertex is non-negative
and falls off with distance as measured within the cage (see Sec-
tion 2). Moreover, it is the first cage-based deformation technique
that enables users to refine the deformation behavior over the inte-
rior of the cage by optionally adding vertices, edges, and faces (see
Section 3). Taken together, these contributions comprise a powerful
new deformation method for use in high-end character articulation.

1.2 Previous work

Our work lies at the intersection of three rather large bodies of lit-
erature: volume deformations, generalized barycentric coordinates,
and harmonic functions. The number of related papers is therefore
very large. In this section we summarize the most closely related
work.

In the area of volume deformations, as mentioned above Sederberg
and Parry [1986] introduced a method based on three dimensional
lattices. MacCracken and Joy [1996] subsequently used recursive
subdivision to achieve more topological flexibility. Similar in spirit
to our application where a coarse cage is used to pose a charac-
ter, Capell et al. [2002] use the method of MacCracken and Joy
to transfer motion of a coarse subdivision lattice to the geometry

of a character. Use of subdivision is crucial for their purposes
since refinement is used to create the hierarchical basis they use
to accelerate the simulation of elastic deformation. However, we
wish to avoid subdivision-based methods because, like the origi-
nal free-form deformation, they require the interior of the cage to
be meshed, and they contain interior vertices that must be articu-
lated. This makes authoring of cage articulation more difficult than
cage-based schemes like ours that do not require interior points. A
direct manipulation volume deformation method was introduced by
Igarashi et al. [2005]. The deformations they produce are intuitive,
but their method does not employ a cage, so the reuse advantages
mentioned above are not realized.

In the area of barycentric coordinates, Ju et al. [2005] used gener-
alized barycentric coordinates, specifically, mean value coordinates
(see also Floater et al.[2005]) to define deformations controlled by
a surface mesh rather than a three dimensional lattice. The prob-
lem of generalizing barycentric coordinates is rich and has received
considerable attention in recent years ([Wachpress 1975], [R.Sibson
1981], [Loop and DeRose 1989], [Warren 1996], [Meyer et al.
2002], [Floater 2003]). Ju et al. [2005] provide a good overview.
Our method improves on previous methods by using a different gen-
eralized barycentric coordinate formulation, one based on Laplace’s
equation.

In the area of harmonic functions, we note that Laplace’s Equation,
harmonic functions, and harmonic maps have often been mentioned
in previous constructions of generalized barycentric coordinates in
two dimensions. For instance, the “cotangent weights” of Pinkall
and Polthier [1993] and Meyer et al. [2002] can be derived from
piecewise linear discretizations of Laplace’s equation. Similarly,
Floater’s construction of mean value coordinates [Floater 2003] was
motivated by the mean value theorem for harmonic functions. In-
dependent of our work, Floater and co-workers [2006] recently ob-
served that solutions to Laplace’s equation in two dimensions could
be used as generalized barycentric coordinates. They did not pursue
the observation because their objective was to find a closed-form
formulation. However, for character articulation, non-negativity
and interior locality are far more important than closed-form ex-
pressions. Harmonic coordinates are the only coordinates we are
aware of that possess these crucial properties.

Harmonic functions have also been used to define surface defor-
mations. For example, Zayer et al. [2005] describe a method for
direct mesh manipulation based on properties of two-dimensional
harmonic functions. Similar to our method, they construct a basis
function per controllable vertex, where each function is the result
of solving Laplace’s equation subject to Kronecker delta type con-
straints. Shi et al. [2006] extended the method of Zayer et al. by
providing a multigrid-based solver. In some sense, our method can
be seen as combining the benefits of Zayer et al. and Shi et al. with
the those of Ju et al.. This combination is far from trivial however
since we expose the deep connection between generalized barycen-
tric coordinates (in any dimension) with harmonic functions, and
we use this connection to create the first cage-based deformation
method with non-negative basis functions possessing optional and
flexible interior controls.

Finally, harmonic functions have been used in scattered data in-
terpolation. For instance, the membrane and thin-plate splines in-
troduced by Duchon [1977] are harmonic and bi-harmonic func-
tions, respectively, that are used to construct a smooth interpolant
(Wahba [1990]). These splines are often used as radial basis func-
tions to define coordinates over the interior of a given space. For in-
stance, Carr et al. [2001] used polyharmonic spline functions to re-
construct smooth 2-manifold surfaces from point clouds, and Choe
et al. [2001] used similar splines as a basis function for interpolat-
ing marker motion on a human face model. These methods are all
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Figure 3: Mean value vs harmonic interpolation. (a) The straight-
line paths corresponding to mean value interpolation. (b) The
Brownian paths corresponding to harmonic interpolation.

designed to interpolate at a finite set of points, whereas our method
is designed to interpolate over the entire continuous boundary of
the cage.

2 Theory

In this section we formalize the discussion of the previous section
and prove that harmonic coordinates possess all the properties nec-
essary for use in high-end character articulation.

We begin by considering the construction of mean value coordi-
nates as described in [Floater et al. 2005] and [Ju et al. 2005]. They
derive coordinates starting with a “mean value interpolant” of a
function f defined on a closed boundary. To compute an interpolant
value for each interior point p, they consider each point x on the
boundary, multiply f (x) by the reciprocal distance from x to p, then
average over all x (see Figure 3(a)). This definition makes it clear
that mean value coordinates involve straight-line distances irrespec-
tive of the visibility of x from p. For character articulation, the cage
often has large concavities, and a more useful interpolant would re-
spect visibility of an cage vertex from an object point. To construct
such an interpolant, we can average not over all straight-line paths,
but rather over all Brownian paths leaving p, where the value as-
signed to each path is the value of f at the point the path first hits
the cage boundary (see Figure 3(b)). At first, this interpolant seems
intractable to compute. However, a famous result from stochas-
tic processes (c.f. [Port and Stone 1978], [Bass 1995]) states that
the interpolant thus produced (in any dimension) in fact satisfies
Laplace’s equation subject to the boundary conditions given by f 2.
Therefore, we can obtain improved generalized barycentric coordi-
nates from a numerical solution of Laplace’s equation in the cage
interior.

More formally, let a cage C be a polyhedron in d dimensions –
that is, a closed (not necessarily convex) volume with a piecewise
linear boundary. In two dimensions, a cage is a region of the plane
bounded by a closed polygon (such as the ones shown in Figure 4),
and in three dimensions a cage is a closed region of space bounded
by planar (though not necessarily triangular) faces. For each of
the vertices Ci of the cage, we seek a function hi(p) defined on C
subject to the following conditions (listed in the order that they are
proved later):

1. Interpolation: hi(C j) = δi, j.

2. Smoothness: The functions hi(p) are at least C1 smooth in the
interior of the cage.

3. Non-negativity: hi(p)≥ 0, for all p ∈C.

2We thank Michael Kass for pointing out this connection to us.

4. Interior locality: We quantify the notion of interior locality
introduced in Section 1 as follows: interior locality holds, if,
in addition to non-negativity, the coordinate functions have no
interior extrema.

5. Linear reproduction: Given an arbitrary function f (p), the
coordinate functions can be used to define an interpolant
H[ f ](p) according to:

H[ f ](p) = ∑
i

hi(p) f (Ci) (2)

Following Ju et al. [2005], we require H[ f ](p) to be exact
for linear functions. As shown by Ju et. al, taking f (p) = p
means that

p = ∑
i

hi(p)Ci (3)

which is the “non-popping” condition mentioned in Section 1.

6. Affine-invariance: ∑i hi(p) = 1 for all p ∈C.

7. Strict generalization of barycentric coordinates: when C is a
simplex, hi(p) is the barycentric coordinate of p with respect
to Ci.

Mean value coordinates possess all but two of these properties,
namely, non-negativity and interior locality. We claim that coor-
dinate functions satisfying all seven properties can be obtained as
solutions to Laplace’s equation

52 hi(p) = 0, p ∈ Int(C) (4)

if the boundary conditions are appropriately chosen.

To gain some insight into how the boundary conditions are deter-
mined, we consider first the construction of harmonic coordinates
in two dimensions. It will then be clear how the construction gener-
alizes to d dimensions. For reasons that will soon become apparent,
the appropriate boundary conditions for hi(p) in two dimensions are
as follows. Let ∂ p denote a point on the boundary ∂C of C, then

hi(∂ p) = φi(∂ p), for all ∂ p ∈ ∂C (5)

where φi(∂ p) is the (univariate) piecewise linear function such that
φi(C j) = δi, j . For example, if C is the cage shown in Figure 4(a),
then φi(∂ p) is the piecewise linear function defined on the edges
e1, ...,e19 such that φi(C j) = δi, j, for i, j = 1, ...,19.

We now show that functions satisfying Equation 4 subject to Equa-
tion 5 possess the properties enumerated above.

1. Interpolation: by construction hi(C j) = φi(C j) = δi, j .

2. Smoothness: Away from the boundary harmonic coordinates
are solutions to Laplace’s equation, and hence they are C∞ in
the cage interior. On the boundary they are only as smooth as
the boundary conditions, and hence are only guaranteed to be
C0 on the boundary.

3. Non-negativity: harmonic functions achieve their extrema at
their boundaries. Since boundary values are restricted to [0,1],
interior values are also restricted to [0,1], and are therefore
non-negative. An example is shown in Figure 4(c).

4. Interior locality: follows from non-negativity and the fact that
harmonic functions possess no interior extrema.

5. Linear reproduction: Let f (p) be an arbitrary linear func-
tion. We need to show that H[ f ](p) = f (p), where H[ f ](p)
is defined as in Equation 2. We begin by establishing that
H[ f ](p) = f (p) everywhere on the boundary of C. If ∂ p is a
point on the boundary of C, then by construction

H[ f ](∂ p) = ∑
i

hi(∂ p) f (Ci) = ∑
i

φi(∂ p) f (Ci) (6)
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Figure 4: A comparison of coordinate functions for a concave cage. (a) A 2D cage with vertices C1, ...,C19; (b) the value of the mean
value coordinate for C3 (yellow indicates positive values, green indicates negative values); (c) the value of the harmonic coordinate for C3
(red denotes the exterior of the cage where the function is undefined). To accentuate values near zero, intensities of yellow and green are
proportional to the square root of the coordinate function value. The significant influence of the position of C3 on object points in the leg on
the right is indicated by the presence of green in the right leg of (b). The corresponding influence in (c) is essentially zero.

The functions φi(∂ p) are the univariate linear B-spline ba-
sis functions (commonly known as the “hat function” basis),
which are capable of reproducing all linear functions on ∂C
(in fact, they reproduce all piecewise linear functions on ∂C).

Next we extend the result to the interior of C. Since f (p) is
linear, all second derivatives vanish. That is,52 f (p) = 0 and
f (p) satisfies Laplace’s equation on the interior of C. Since
H[ f ](p) is a linear combination of harmonic functions, it also
satisfies Laplace’s equation on the interior.

f (p) and H[ f ](p) satisfy the same boundary conditions and
are both solutions to Laplace’s equation. Therefore, by
uniqueness of solutions to Laplace’s equation, they must be
the same function.

6. Affine invariance: affine invariance follows immediately from
the linear reproduction property by substituting f (p) := 1 in
Equation 2.

7. Strict generalization of barycentric coordinates. If the cage
C consists of a single triangle, the harmonic coordinates re-
duce to simple barycentric coordinates. Let β j(p) denote the
barycentric coordinates of p with respect to the triangle. To
establish that h j(p) = β j(p), note that β j(p) is a linear func-
tion, so we can use the linear reproduction property above by
taking f (p) = β j(p):

β j(p) = H[β j](p)

= ∑
i

hi(p)β j(Ci)

= ∑
i

hi(p)δi, j

= h j(p)

It is straightforward to generalize harmonic coordinates from two to
d dimensions. First, consider harmonic coordinates in one dimen-
sion: the cage is a line segment bounded by two vertices C0 and C1,
and Laplace’s equation reduces to

d2hi(p)
d p2 = 0. (7)

Thus, hi(p) is a linear function, and the proper (zero dimen-
sional) boundary conditions come from the interpolation property:
hi(C j) = δi, j .

With this insight, we can repose the next higher (two) dimensional
construction for the cage C. Start with the interpolation conditions
hi(C j) = δi, j. This determines the coordinates on the 0-dimensional
facets (the vertices) of C. Next, extend the coordinates to the 1-
dimensional facets (the edges) of C using the one dimensional ver-
sion of Laplace’s equation. Finally, extend them to the two dimen-
sional facets (the interior) of C using the two dimensional version
of Laplace’s equation.

The extension to three and higher dimensions follows immediately:
the harmonic coordinates hi(p) for a d dimensional cage C with
vertices Ci, are the unique functions such that:

• hi(C j) = δi, j.

• On every facet of dimension k≤ d, the k dimensional Laplace
equation is satisfied.

Using mathematical induction, we can prove that these d dimen-
sional harmonic coordinates possess the above required properties.
The induction is on on the facet dimension, starting with the 1-
facets as the base case. The proofs given above for two dimensions
are in fact valid in any dimension k assuming that linear reproduc-
tion is achieved on the k−1 facets. These proofs therefore serve as
the inductive step.

Having defined coordinates in this way, by construction we have
the following additional property that is shared by barycentric co-
ordinates as well as Warren’s construction [1996]:

• Dimension reduction: d dimensional harmonic coordinates,
when restricted to a k < d dimensional facet, reduce to k di-
mensional harmonic coordinates.

For example, a three dimensional cage bounded by triangular facets
possesses harmonic coordinates that reduce to barycentric coordi-
nates on the faces. Similarly, a dodecahedral cage will have 3D
harmonic coordinates that reduce to 2D harmonic coordinates on
its pentagonal faces.

In the next two sections we describe extensions to the basic con-
struction of harmonic coordinates that dramatically enhance the
controllability and range of practical application in character artic-
ulation.
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Figure 5: Interior control in three dimensions. (a) A character face including an eye ball and a simple cage. The cage will be used to
reposition all the object points within the cage. The object points serve as control points for two subdivision surfaces, one for the face, and
one for the eye ball. This is the pose used for binding. (b) The deformed facial region. Since the deformation applies only to points of the
face inside the cage, the control mesh for the facial surface is far from smoothly varying at the edge of the cage. (c) Point weighting is used
to smooth the transition from the cage interior to its exterior. (d) The cage from (a) has been augmented with a interior triangulated sphere
to control the shape of the iris. (e) The iris in the deformed facial region is kept round using the interior sphere. (f) The deformed limit
subdivision surfaces.



3 Interior Control

Harmonic deformations as formulated thus far are completely de-
fined by the cage boundary, which is ideal in many instances. How-
ever, it is sometimes helpful to give artists optional control over the
deformation in the cage interior. We can easily provide such control
by adding cage elements (vertices, edges and faces) where they are
needed.

As an example of the use of such interior control, consider the situ-
ation shown in Figure 5, where the region around a character’s eye
is deformed. The object points serve as control points for subdivi-
sion surface control meshes, in this case for two surfaces: one for
the face, and one for the eye ball. All object points within the cage
shown in Figure 5(a) are affected by the cage deformation. Since
the object points just inside the cage would be deformed fully, and
those just outside the cage would be left unchanged, the subdivi-
sion meshes would not be smooth in more extreme poses (see Fig-
ure 5(b)). This is a common issue in character articulation, so char-
acter rigging systems, including ours, provides a facility similar to
cluster weighting as found in Maya. In this situation the weights
are used to feather out the influence of the deformer near its bound-
ary. Proper weighting together with harmonic deformation results
in poses like the one shown in Figure 5(c). Because of the convex
nature of the cage, the example up to now could have been created
using mean value coordinates. However, eyes are such an impor-
tant part of story telling that our directors generally require the iris
and pupil to stay round. Maintaining roundness of the iris and pupil
while the surrounding geometry deforms has been extremely chal-
lenging in the past, requiring the addition of a second “correction”
deformation whose purpose is to counter deform the iris and pupil.
This process is delicate, time consuming, and approximate.

However, using harmonic deformations, the desired affect can be
easily accomplished by augmenting the cage with an interior tri-
angulated sphere (shown in green in Figure 5(d)) that surrounds
the iris and pupil. By keeping the interior green component of the
cage round, the iris and pupil stay round as the geometry arround
them deforms, as shown in Figure 5(e) and (f). This kind of pre-
cise interior control is simply not available using other deformation
methods. An animated version of this example is available on the
accompanying video (see [Joshi et al. 2007]).

Harmonic coordinates are assigned to interior vertices in just the
same way they are assigned to boundary vertices of the cage. In-
terior edges and faces are handled identically as well. In fact, our
solver makes no distinction between boundary and interior compo-
nents.

The interior controls in the previous example formed a manifold,
but this need not be the case — it is sufficient for the interior of the
cage to form what is known as a linear cell complex. Intuitively, a
linear cell complex is a collection of “cells” of various dimensions,
0-cells (vertices), 1-cells (linear edges), 2-cells (planar faces), and
so on, with the property that the intersection of any two cells is
either empty or is another cell in the collection.

The two dimensional example shown in Figure 6 was chosen to
better illustrate the generality of the method, though the same ideas
apply equally well to three (and higher) dimensions. Figure 6(a)
shows the bind-time configuration a biped character. In Figure 6(b),
the cage vertices near the head, shown in yellow, are moved after
binding, resulting in a deformation that influences the head, neck
and shoulder regions most, but it also influences the under arms.
This may or may not be considered desirable, depending on the
needs of the articulator. If the articulator wishes to isolate the un-
der arms from motion of the head vertices of the cage, he/she can
add additional interior vertices and edges to the cage, as shown in

(a) (b)

(c) (d)

Figure 6: Interior control using a linear cell complex. (a) An ob-
ject and cage with no interior controls at bind-time. (b) the object
deformed by the cage in (a). (c) An object and cage with interior
controls at bind-time. (d) the object deformed by the cage in (c).

Figure 6(c). This results in more localized deformations as shown
in Figure 6(d), where it should be noted that the under arms of the
object are unaffected by the motion of the head vertices of the cage.

Although the examples of interior control given here are somewhat
subtle, the control of such subtlety is an absolute requirement in
high-end articulation. It is one of the most important factors that
separates high-end articulation from less exacting applications.

Formally speaking, harmonic functions are C∞ away from bound-
aries, but they are only guaranteed to be C0 across boundary ele-
ments. Except for numerical issues, the blue object shown in Fig-
ure 6(d) would therefore be as smooth as the undeformed object.
However, if a smooth object crosses an interior facet of the cage
in the bind pose, its image under the deformation will only be C0.
Sometimes these discontinuities are desired. In situations where
they are not the articulator has a number of options. For instance,
cluster weighting together with the smoothing introduced when the
deformed control points are averaged to produce a B-spline or sub-
division surface is often sufficient, as in Figure 5. Another alterna-
tive is to use a more dense distribution of interior facets that come
close to but don’t intersect the object in the bind pose, much like
the situation shown in Figure 6.

4 Dynamic binding

Our discussion thus far, as well Ju et al. [2005], has implicitly as-
sumed static binding; that is, object point locations are assumed to
be known at the time the coordinate values are computed.

However, consider a situation such as the one shown in Figure 7
where an arm is first twisted within the cage, then is bound to the
cage and deformed. Both the arm twist and the cage deformation
must occur at real-time rates for use by animators. Since the arm
twist changes the position of object points within the cage, the ob-
ject point locations are not known in advance. To address this issue,



Property Fig 1 Fig 2 Fig 5 Fig 6
No. cage vertices 325 112 39 27
No. object points 9775 8019 269 136

Grid resolution — s 5 5 4 5
Solve time (sec.) 4285.67 543.33 5.85 0.83
Pose time (sec.) 0.111 0.026 0.0001 0.0007

Solution grid size (MB) 9.2 3.7 0.32 0.048

Table 1: Resource requirements for the examples in the paper. For
each example we present the number of vertices of the cage, the
number of object points, the solver grid resolution, and the associ-
ated time and memory costs. Solve times indicate the time to pre-
compute harmonic coordinates for the cage interior, and the pose
time indicates the time to compute new object positions during in-
teractive posing. All timings were performed on a PowerMac G5
Quad 2.5GHz with 1.5 GB of ram.

we store the entire solution grid for each coordinate at precompu-
tation time. At pose time, we then use multi-linear interpolation
to compute the coordinates at each of the object points prior to ap-
plying Equation 1. We refer to this process as dynamic binding.
Dynamic binding was also used in Figures 1(b) and 1(c) where the
eye lids were opened prior to binding and deformation.

Naively storing the solution grids to support dynamic binding re-
quires prohibitive amounts of memory. For instance, the solu-
tion grids for the character shown in Figure 2 took approximately
100MB to store naively. However, since each harmonic coordinate
decays relatively quickly away from its corresponding cage vertex,
significant savings are possible by sparsely storing the coordinate
grids. The sparse grid data structure we use consists of an array,
with one entry per grid cell. The contents of entry (i, j) consists
of a list of index-value pairs, where the index names a cage vertex,
and the value is the harmonic coordinate for that cage vertex at cell
(i, j). The structure is sparse because only the index-value pairs
whose value is above a threshold are stored. Using this scheme, the
sparse solution grid for the character shown in Figure 2 required
only about 3MB. We should also note that dynamic binding is not
exclusive to harmonic coordinates — a similar strategy would work
for free-form deformations or mean value coordinates.

5 Implementation

We currently use a straightforward multi-grid finite difference
solver to compute harmonic coordinates. It is identical to the solver
described in DeRose and Meyer [2006], except for the relaxation
stencils used at the boundaries. Whereas simple averaging was used
in DeRose and Meyer, we currently obtain higher accuracy at the
boundaries by computing intersections of grid edges with the cage
boundaries; we then use the reciprocal of the distance from the grid
center to the intersection as the stencil weight.

The finest level of the grid has size 2s on a side, where s is currently
a user selected parameter. Running times, memory usage, and val-
ues of s for various examples used in the paper are presented in
Section 6.

Our 3D implementation is currently limited to cages with triangular
facets, though it would be easy to extend it to handle planar quad
faces. Non-planar quad meshes are more problematic and are a
topic of future research.

6 Statistics

Memory and time requirements for examples given in the paper are
listed in Table 6. In each of the examples we selected the lowest

grid resolution s that produced an acceptable discretization error.
The error was measured as the ratio of the maximum residual at the
object points to the diagonal of the bounding box of the object. In
all cases the error was less than 0.005.

The total memory utilized by the harmonic solver during the pre-
processing mentioned in Section 5 never exceeded 90MB for any of
our examples. For each level of the multi-grid, our solver replaces
the value at each cell with the average of its neighbors until the
average change in value between successive iterations is less than
10−6. This same number (10−6) was used as a sparsity threshold
when storing the solution grids for dynamic binding.

7 Summary and Future Work

We have shown that harmonic coordinates offer an effective charac-
ter articulation method that improves on previous methods in sev-
eral ways. First, harmonic coordinates are non-negative, and their
influence falls off with distance as measured within the cage, lead-
ing to intuitive behavior even in strongly concave situations. Sec-
ond, harmonic deformations offer greater topological freedom in
crafting control cages. Specifically, arbitrary linear cell complexes
can be used where necessary to more precisely control the interior
nature of the deformation.

The main limitation of our method for use in character articulation
is the lack of a closed formed expression. However, that limitation
is far out weighed by the increased quality and controllability. An-
other limitation, at least for some applications, is that mean value
coordinates are defined everywhere, whereas harmonic coordinates
are defined only on the interior of the cage. For this reason, mean
value coordinates can be used for extrapolation as well as interpo-
lation. For some applications reliance on a closed cage might also
be a limitation, but for the reasons cited earlier, cages are an advan-
tage for character articulation. Finally, like other volume deforma-
tion methods such as subdivision and mean value coordinates, our
method when applied to extreme deformations will not preserve
fine mesh detail as well as methods based on differential coordi-
nates, such as those described in Sorkine [2006] or Shi et al. [2006].

Our emphasis so far in the research has been on assessing quality,
generality, and ease of authoring of the method. Our main area
of future work is to improve the speed and memory requirements
of the solver. The improvements we intend to explore include the
following:

• Exploiting parallelism. Each harmonic coordinate function
can be computed independently and in parallel on separate
machines in our server farm. Parallelism alone should reduce
the solve time for Figure 1 to the 20-30 second range.

• Use of factorization solvers. We currently use a simple “home
grown” solver. The use of factorization solvers such as the
Super LU method used by Zayer et al. [2005] should be much
faster since factorization can be done once, requiring only the
back substitution step to be done for each harmonic coordi-
nate.

• Use of adaptive grids. Since the coordinate fields vary slowly
on the interior of the cage, it should be possible to use rel-
atively large grid cells over most of the volume of the cage,
transitioning to smaller cells only near the boundaries. This
should allow us to more accurately adapt to detail at the
boundary at reasonable cost.

• Localizing re-solves. As the cage is being designed, most ed-
its are confined to a local region of the cage. Rather than
completely re-solving for all coordinates as we do now, we



(a) (b) (c)

Figure 7: Dynamic binding. (a) An object and cage in their rest poses. (b) the object after applying the arm twist. This is the pose in which
the object is bound to the cage. (c) The deformed object after applying the harmonic deformation. Dynamic binding allows the arm twist as
well as the harmonic deformation to be performed in real-time.

should instead solve for only those coordinates that are influ-
enced by the modified region. That is, we should not re-solve
for coordinates whose (sparsified) value is zero in the region
of change. Happily, the benefits of this optimization increase
as the cage becomes more complicated.

Since cages are specifically designed to be fairly coarse, we expect
cage complexities to range from tens of vertices (especially for local
use cases such as the one shown in Figure 5), to no more than a
thousand vertices for a full body cage of a complicated character.
Using the improvements listed above, we expect to reduce full solve
times into the sub minute range even for the most complicated cages
we are likely to encounter.

Harmonic coordinates are a form of generalized barycentric coordi-
nates and can be defined for any dimension. Generalized barycen-
tric coordinates are fundamental building blocks in a number of
other areas such as the construction of N-sided surface patches
[Loop and DeRose 1989] and finite element analysis [Wachpress
1975]. As a second area of future research it would be interest-
ing to investigate the use of d dimensional harmonic coordinates in
application areas other than character articulation.
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