
Eurographics Symposium on Rendering (2004)
H. W. Jensen, A. Keller (Editors)

An Irradiance Atlas for Global Illumination
in Complex Production Scenes

Per H. Christensen and Dana Batali

Pixar Animation Studios

Abstract
We introduce a tiled 3D MIP map representation of global illumination data. The representation is an adaptive,
sparse octree with a “brick” at each octree node; each brick consists of 83 voxels with sparse irradiance values.
The representation is designed to enable efficient caching. Combined with photon tracing and recent advances
in distribution ray tracing of very complex scenes, the result is a method for efficient and flexible computation of
global illumination in very complex scenes. The method can handle scenes with many more textures, geometry,
and photons than could fit in memory. We show an example of a CG movie scene that has been retrofitted with
global illumination shading using our method.

1. Introduction

Our goal is to make global illumination a practical, efficient,
and flexible tool for CG movie production. This requires a
rendering method that can handle scenes with hundreds of
light sources, thousands of texture and displacement maps,
and geometry consisting of hundreds of millions of polygons
when the objects are fully tessellated. We want the benefits
of full global illumination without limiting scene complexity
or shader generality.

We introduce a tiled 3D MIP map representation for vol-
ume and surface data. The representation is an adaptive,
sparse octree with a brick at each octree node. A brick is
a 3D generalization of a tile; our bricks contain 83 voxels
each. We call our tiled 3D MIP map representation a brick
map. The brick map is designed to enable efficient caching.

We demonstrate the utility of the brick map representa-
tion by using it to store irradiance data for an efficient and
flexible global illumination method able to deal with very
complex scenes. Our method is an extension of the photon
map method and consists of three steps. The first step is pho-
ton tracing. The photons are stored in a collection of photon
maps that together cover the entire scene. We call this collec-
tion of photon maps a photon atlas. In the second step, the
irradiance is estimated at each photon position, and for each
photon map a brick map representation of the irradiance is
constructed. We call this collection of irradiance brick maps
an irradiance atlas. The last step is rendering using final

gathering and irradiance interpolation, with the irradiance
atlas providing a rough estimate of the global illumination.

In this paper we focus on multi-bounce soft global illu-
mination on surfaces, but the same tiled 3D MIP map repre-
sentation can be used for single-bounce global illumination,
caustics, participating media, etc.

2. Related Work

Our proposed global illumination method extends the pho-
ton map method to handle more complex illumination and
geometry. Our method is inspired by 3D MIP maps used for
volume rendering and interactive paint programs, and by re-
cent advances in distribution ray tracing of complex scenes.

2.1. Texture MIP Maps

Peachey [Pea90] introduced a multiresolution texture
caching scheme that caches texture tiles from 2D MIP maps
[Wil83]. Each texture is represented at multiple resolutions,
and the texture at each resolution is tiled into 322 pixel
tiles. Peachey’s texture tile cache is highly efficient for scan-
line rendering, ray tracing, and distribution ray tracing: a
cache size of 1% of the total texture size is usually suffi-
cient [CLF∗03]. Our 3D tiling and caching approach, in-
troduced in the following, is a natural generalization of
Peachey’s.

c© The Eurographics Association 2004.

Christensen and Batali / An Irradiance Atlas

2D MIP maps are easily generalized to 3D. One differ-
ence is that the 3D data are often sparse, so the data are
stored in a sparse octree. Levoy and Whitaker [LW90] and
Laur and Hanrahan [LH91] used 3D MIP maps for volume
rendering of data sets such as magnetic resonance scans.
Neyret [Ney98] used 3D MIP maps to model and render fo-
liage, hair, and fur.

Benson and Davis [BD02] and DeBry et al. [DGPR02]
used 3D MIP maps to represent textures on surfaces. This
avoids forcing a 2D parameterization on surfaces with no
natural parameterization — such as implicit surfaces, sub-
division surfaces, and dense polygon meshes. They gener-
ated the 3D MIP maps in interactive 3D paint programs. The
sparse representation easily adapts to changes in detail such
as the intricate texture details at a decal. For texture lookups,
the texture filter size determines which MIP map level is
used. Benson and Davis only briefly mention that they tile
the octree, and they do not describe caching at all. In our ap-
plication, tiling and caching are absolutely essential, so we
will describe this aspect in detail.

Jensen and Buhler [JB02] also used an octree to represent
irradiance on surfaces (for computation of subsurface scat-
tering), but they did not tile or cache their irradiance data.

2.2. Photon Maps

The photon map method for computation of global illu-
mination was introduced by Jensen [Jen96, Jen01]. It is a
three-pass method. First photons are emitted from the light
sources, traced through the scene, and stored in a photon
map at every diffuse surface they hit; then the unorganized
collection of stored photons is sorted into a kd-tree; and
finally the scene is rendered using final gathering (a sin-
gle level of distribution ray tracing). The irradiance at final
gather ray hit points is estimated from the density and power
of the nearest photons. Irradiance interpolation [WH92] is
used to reduce the number of final gathers.

The final gathering can be sped up by a factor of 5 to 7
by augmenting the second pass to precompute the irradiance
at the photon positions [Chr99]. During rendering, the pre-
computed irradiance of the nearest photon is looked up at
final gather ray hit points, so no density estimates are nec-
essary during rendering. In this paper, we propose a further
enhancement of the second pass to be able to handle huge
numbers of photons (and also improve the filtering of the
irradiance estimates).

In order to compute sufficiently accurate indirect illumi-
nation in large scenes with intricate geometric detail, a lot of
photons are necessary. Photons can be traced in very com-
plex scenes, and if the photons are streamed to disk the pho-
ton map size can exceed the memory size of the computer.
However, if the photon map is too large, it cannot be read
back in! For example, on a computer with 1 GB memory, we
typically cannot expect to have more than 300 MB available

for photons during rendering (since we also need to store the
scene description, etc.); this corresponds to only 10 million
photons.

Final gather rays hit the scene in very incoherent order.
Hence the memory containing a standard photon map is ac-
cessed very incoherently during final gathering. If the photon
map information is not carefully organized, a limited-size
cache is of no help. What we need is a tiled, hierarchical
representation of the photon map information.

Some variations of the photon map method use im-
portance to reduce the number of photons stored in a
scene for a view-dependent global illumination solution
[PP98, SW00, KW00]. But in our applications, we prefer
a view-independent collection of photon maps that can be
used for fly-through-like animations, so we cannot reduce
the number of photons this way.

Other methods store the photons on surfaces instead of
in a kd-tree [Mys97, TWFP97, WHSG97]. However, those
approaches cannot handle very complex scenes since each
(potentially tiny) surface has a separate irradiance represen-
tation. In contrast, a single brick can cover many small sur-
faces if the illumination is smooth.

2.3. Rendering Complex Scenes

Pharr et al. [PKGH97] used path tracing to compute global
illumination in complex scenes. They reordered the ray inter-
section tests to increase the coherency of geometry accesses.
This reordering made it possible to render scenes that were
10 times larger than the geometry cache size, but unfortu-
nately introduced shader limitations.

In Christensen et al. [CLF∗03], we presented a method
to perform distribution ray tracing in very complex scenes.
We used a MIP map representation of tessellated geom-
etry and a multiresolution geometry cache that is very
similar to Peacheys 2D texture tile cache. Ray differen-
tials [Ige99, SW01] were used to determine the required tes-
sellation accuracy. An insight about cache coherency proper-
ties enabled efficient scanline rendering, ray tracing, and dis-
tribution ray tracing of very complex geometry. We demon-
strated distribution ray tracing in scenes with full tessella-
tions over 100 times larger than the geometry cache size.

Our distribution ray tracing method could be extended to
handle full multi-bounce global illumination by using an ir-
radiance cache as in the Radiance system [WRC88, WS98].
However, here we limit the distribution ray tracing to a single
level, and instead use photon tracing and an irradiance atlas
to more efficiently capture the effect of multiple bounces.

3. The Brick Map

In this section, we introduce the brick map, a general, tiled
3D MIP map representation for volume and surface data.

c© The Eurographics Association 2004.

Christensen and Batali / An Irradiance Atlas

The brick map is a 3D generalization of Peachey’s tiled 2D
texture MIP maps — very similar in spirit to the sparse,
adaptive octrees used by Benson and Davis and DeBry et al.,
but designed with more emphasis on tiling and cacheability.

3.1. Brick Map Data Structures

The data are organized in a sparse, adaptive octree. Each
node in the octree has eight pointers to its children and a
pointer to a brick. A brick has N3 voxels (we have chosen 83

in our implementation). Each voxel can be empty or contain
texture data such as diffuse and specular color, specularity,
irradiance, etc. Each voxel also contains a weight (“cover-
age” or “alpha”) indicating how much data has been inserted
in that voxel. For surface data, we also store the average nor-
mal for each voxel, and a flag indicating whether the normals
are incoherent. For the finest data (at octree leaves), we store
multiple voxels in a linked list at the same voxel position if
the data in that position have incoherent normals. The voxel,
brick, and octree data structures are:

#define N 8

struct Voxel {
float *data;
float weight;
struct Vector averagenormal;
bool incoherentnormals;
struct Voxel *next;

};

struct Brick {
struct Voxel voxel[N*N*N];

};

struct OctreeNode {
struct OctreeNode *child[8];
struct Brick *brick;

};

Figure 1 shows the top three levels of a brick map for sur-
face data. The brick at the root of the octree contains a very
coarse approximation of the 3D texture, while bricks at leaf
nodes contain the most accurate representation. The brick
map representation automatically adapts to data density: the
octree is only deep in regions with many data points.

Figure 1: Sparse brick map for surface data.

For the global illumination application we are interested
in here, we are only concerned with data that come from

points on surfaces. Hence many voxels will be empty. In
other applications (for example solid textures [Pea85, Per85]
and volume photon maps [JC98]), data are present in the en-
tire volume. This results in a full octree where all voxels
contain data. Figure 2 shows the top three levels of a brick
map for volume data.

Figure 2: Dense brick map for volume data.

3.2. Creating a Brick Map

Given a set of points (a “point cloud”) with associated nor-
mals, radii, and data, we want to create a brick map repre-
sentation of the data. We do this in three steps.

The first step is to create a sparse octree structure based
on point density and radii. (The radius associated with each
point can for example be determined from the local point
density.) First the bounding volume of the data set is found.
Then the volume is divided evenly into eight subvolumes,
and the data points are divided according to which subvol-
ume they are contained in. Then each subvolume is recur-
sively divided again, etc. This recursive division stops when
the subvolume contains no points with smaller radius than
half a voxel diagonal (or no points at all).

The second step is to create a linked list of the points that
overlap each leaf node. For each data point p, we first com-
pute a small volume Vp based on its position and radius.
Then, starting at the root node, we determine which child
nodes overlap Vp, and recursively go to those nodes. If the
node is a leaf, we insert point p in a linked list at that node.
Note that each point can be inserted in more than one linked
list. The advantage of this strategy is that the information
needed to create each brick is now completely local.

In the third step, we insert the point data. For each octree
node, starting at the leaves, the data that overlap the node are
inserted in its brick and the bricks of its parent nodes. When
a point’s data are inserted into a brick, we determine which
voxel(s) the point volume overlaps, and add the data val-
ues d̄p to the data d̄v in those voxels. When added, the data
are multiplied by a weight that is determined by how large a
fraction of the voxel volume Vv is overlapping the point vol-
ume Vp. We also increase the voxel weight, and update the
average normal for each covered voxel:

d̄v += wvp d̄p

wv += wvp

~nv += wvp~np ,

c© The Eurographics Association 2004.

Christensen and Batali / An Irradiance Atlas

with

wvp =
Vp ∩Vv

Vv
.

If a point is inserted into a voxel of an octree leaf node,
and the point normal is very different (for example more than
45 degrees) from the average normal of the voxel, we allo-
cate a new voxel, insert the point data in the new voxel, and
point the previous voxel’s next pointer to the new voxel. At
internal nodes (non-leaves), we do not allocate new voxels,
but add the data, weight, and normal as described above and
set the voxel’s “incoherentnormals” flag. There are relatively
few leaf node voxels with incoherent normals, so this strat-
egy does not increase the memory use significantly.

When all the node’s data have been inserted, we divide
each data value in a voxel by the weight of the voxel. We then
determine the maximum data (and normal) variation of all
2×2×2 voxel groups of the brick. If the variation is smaller
than a user-specified maximum error, we eliminate the brick.
If the variation is larger, we write the brick to disk. Empty
voxels are not written; this saves a lot of disk space for sparse
brick maps. We don’t write the weights either, since all data
have already been divided by their weights.

3.3. Looking Up in a Brick Map

Given a position, normal, and filter size (radius), we want
to find the interpolated value of the data at that point —
smoothed as appropriate for the given filter size.

We first construct a lookup volume V` from the lookup
point position and filter size. Then we recursively traverse
the octree, starting at the root and visiting all children that
the lookup volume overlaps (usually just one child, but can
be up to eight children). This recursive traversal continues
until the node contains voxels of approximately the same
size as the lookup volume or a leaf node has been reached.
If the voxels that overlap V` have the “incoherentnormals”
flag set, we reduce the size of the lookup volume and look
deeper in the octree to resolve the normals. This resolves po-
tential color leaking problems along edges and through thin
objects [DGPR02].

When we have reached the appropriate level in the oc-
tree, we determine which voxels overlap the lookup volume
and have normals similar to the lookup normal (for example
within 45 degrees). If we are at a leaf node, we may have to
follow the linked list of voxels sharing the same voxel posi-
tion in the brick. We increment the lookup result d̄` by the
voxel data multiplied by the fractional overlap of Vv and V`:

d̄` += wv` d̄v

with

wv` =
V` ∩Vv

Vv
.

(Empty voxels and voxels with inappropriate average nor-
mals do not contribute to the lookup results.)

If the lookup volume overlaps a neighbor octree branch
that does not have as much detail as the branch that contains
point p itself, we use the data at the available resolution.
The weights of the data are still determined by the ratio of
the overlap volume and the (fine or coarse) voxel volume.
More information about lookups that overlap different levels
of detail can be found in Benson and Davis [BD02].

Generally the lookup volume size will fall between two
levels in the octree. In this case, we can choose to look up
in each of the two levels and do a linear interpolation of the
resulting values; this ensures smooth transitions between dif-
ferent resolutions.

3.4. Brick Map Caching

The entire octree of a brick map is read from disk the first
time the brick map is accessed, and then kept in memory.
This is acceptable because each octree node consists of only
nine pointers (eight pointers to child nodes and one pointer
to a brick), and typically the octree nodes make up less than
half a percent of the total size of a brick map. Even for a
collection of brick maps with 1 million bricks, the octrees
only use 1 million * 9 pointers * 4 bytes = 36 MB.

Bricks are read from disk on demand and cached in mem-
ory. If the fine lookups are coherent (as they are in our
global illumination method), the cache has a high hit rate
and caching is very efficient. Note that even though the in-
dividual bricks can be sparse, the cache slots need to have
space for all 83 potential voxels in a brick since the same
cache slot may be filled later with a dense brick. (We dy-
namically allocate and free the “extra” voxels at leaf nodes
with inconsistent normals. To avoid fragmentation, we use a
pool of pre-allocated voxels for this.) Our cache uses a least-
recently-used (LRU) replacement strategy. In our implemen-
tation, the brick map cache size can be selected by the user.
The default size is 10 MB, corresponding to a capacity of
1280 bricks.

We have found that in typical applications, less than 50%
of the voxels in the brick cache have data in them. In other
words, more than half of the voxels are empty. This means
that it would be possible to compress the 10MB brick map
cache to around 5MB. However, the cost would be many
free’s and malloc’s of voxels every time a brick is read into
the cache.

4. Global Illumination using Brick Maps

Before the global illumination computation begins, the user
must select groups of objects that should share a photon map
file. (Alternatively, photon maps could be automatically as-
signed based on the object hierarchy and sizes, or divided
along creases between major objects [LC03].) The groups
should be chosen such that no single photon map ends up
with more photons than can fit in memory at one time. We
have found this grouping easy and intuitive in practice.

c© The Eurographics Association 2004.

Christensen and Batali / An Irradiance Atlas

In the first global illumination step, photons are traced as
in the standard photon map method. When a photon hits
a diffuse object, it is written to that object’s photon map
file. Then the photons in each photon map file are sorted
into a kd-tree and the irradiance and local area is estimated
at each photon position. (The radius associated with each
photon follows directly from its area estimate.) The result
is a collection of oriented, colored disks reminiscent of the
surfels used for surface representation [PZvBG00]. Then a
brick map is constructed from the irradiance disks for each
photon map file.

During rendering, we need to determine the radiance at fi-
nal gather ray hit points. The irradiance at the point is looked
up in the irradiance map of the hit object, and multiplied by
the local diffuse color at the hit point. The ray differential is
used to determine the filter size both for the irradiance map
lookup and the diffuse texture lookup.

Due to the coherency properties of scanline rendering, ray
tracing, and distribution ray tracing [CLF∗03], the fine brick
accesses are coherent. This means that it is sufficient to have
a brick cache with a capacity much smaller than the total
number of bricks in the irradiance atlas.

It is interesting to note that an irradiance map lookup is
usually faster than computing the illumination (even just the
direct illumination) if there are several light sources each re-
quiring shadow ray tracing or a shadow map lookup.

5. Results

We implemented this global illumination method in Pixar’s
RenderMan, a widely used commercial renderer [AG00]. All
our tests were done on a Linux PC with a 3.4 GHz Pentium 4
processor. The tests used less than 600 MB of memory. The
images were rendered at resolution 1024×553.

5.1. Test Scene

We tested the method on a scene from the CG movie “Mon-
sters, Inc.” [DP01]. The scene was not modeled with global
illumination in mind, but we retrofitted it with global illu-
mination shaders for these tests. Figure 3 shows the scene: a
city block with many individually modeled buildings, trees,
cars, etc. The scene consists of 36,000 high-level primitives,
mostly NURBS patches and subdivision surfaces. In this im-
age, the scene is only illuminated with direct light (from a
directional light source similar to the sun) with ray traced
shadows. Large parts of the scene are completely black since
no direct light reaches them. The render time was 6 minutes.

5.2. Photon Tracing

The objects were manually grouped into 41 groups. Emit-
ting 300 million photons took 29 minutes and resulted in
52 million photons being stored. (Due to a rather loose scene

Figure 3: Monstropolis city block with only direct illumina-
tion. (c© Disney/Pixar)

bounding box, the majority of the emitted photons did not hit
any objects.) The maximum photon reflection depth was set
to 10 to ensure that the photon maps capture enough bounces
of indirect illumination. The photons were stored in 41 pho-
ton map files with a total size of 2.2 GB. Each street, build-
ing, and car has a separate photon map file. Figure 4 shows
two of the photon maps. The photon map for the car contains
76,000 photons (file size 3.2 MB) while the photon map for
the building contains 3.4 million photons (144 MB).

Figure 4: Photon map for car and building.

For an overview of the illumination in the scene, figure 5
shows a coarse photon atlas of the entire scene. This figure
only shows 0.1% of the photons in the full photon atlas.

Figure 5: Coarse photon atlas for entire scene.

c© The Eurographics Association 2004.

Christensen and Batali / An Irradiance Atlas

5.3. Generating the Irradiance Atlas

The irradiance and area (radius) was estimated at each pho-
ton position; this took 18 minutes for all photon maps. Each
irradiance value and area was estimated using the nearest
50 photons.

Next, irradiance brick maps were computed from the irra-
diance point clouds; this computation took 25 minutes. For
brick elimination, we set the maximum error to 0.03 and the
normal deviation threshold to 45 degrees.

Figure 6 shows the top four levels of the irradiance brick
maps for the car and building. The car’s irradiance map has
959 bricks (file size 69 MB); the irradiance map of the build-
ing has 31,700 bricks (190 MB). The total size of all the ir-
radiance brick map files is 2.4 GB. The irradiance atlas has
253,000 bricks in total — nearly 200 times the default brick
cache capacity.

Figure 6: Irradiance brick maps for the car and building.

Figure 7 shows the car and building shaded with irradi-
ance from their respective irradiance maps.

Figure 7: Car and building shaded with irradiance from
their irradiance brick maps.

Figure 8 shows the entire scene rendered with irradiance
from the irradiance atlas. Note the color bleeding from the
red car onto the street and between the leaves on the trees.

Figure 8: Entire scene shaded with irradiance from the ir-
radiance atlas. (c© Disney/Pixar)

Figure 9 shows the scene with the objects shaded by the
irradiance times the local diffuse color. This image clearly
illustrates why the irradiance maps should not be rendered
directly — they are simply too noisy and blurry.

Figure 9: Irradiance times local diffuse color. (c© Dis-
ney/Pixar)

c© The Eurographics Association 2004.

Christensen and Batali / An Irradiance Atlas

Figure 10: Global illumination in a production scene with 237 million (unique, non-instanced) triangles and 52 million photons.
Photon tracing took 29 minutes, computing an irradiance atlas took 43 minutes, and rendering took 3.8 hours on a 3.4 GHz
CPU. Without the irradiance atlas representation, the 52 million photons would not fit in memory and it would be impossible to
render the global illumination efficiently. (c© Disney/Pixar)

5.4. Rendering

Figure 10 shows a final gather rendering of the entire scene.
Note the high quality of the indirect illumination in the
shaded areas, for example the houses on the left side of the
street. There is also a very subtle color bleeding from the red
car onto the street. Rendering this image took 3.8 hours and
required 73 million final gather rays and 4 million shadow
rays. During rendering, the scene was divided into 463,000
surface patches, which corresponds to 237 million triangles
at maximum tessellation rate. The 2D texture and tessella-
tion cache sizes were set to 10 MB and 30 MB, respectively.
There were 215 million brick cache lookups. Table 1 shows
cache statistics for different brick cache sizes. As it can be
seen, our default cache size of 10 MB is a reasonable com-
promise between size and speed.

cache size misses hit rate render time

0 215M 0% 6.7h
1MB 21M 90.3% 4.1h

10MB 2.3M 99.0% 3.8h
100MB 0.9M 99.6% 3.7h

Table 1: Brick cache statistics.

6. Discussion and Future Work

6.1. Brick Map Creation

Our algorithm for generating a brick map minimizes the
number of bricks that are kept in memory at one time — only
O(logn) bricks are needed, where n is the number of octree
nodes. This is usually only 10–20 bricks. In our first imple-
mentation, we used a simpler algorithm that stored all bricks
in memory during brick map generation, and only eliminated
and wrote bricks in the end. However, storing all the bricks
in memory turned out to be a significant memory bottleneck.

With our current workflow, each photon map is sorted into
a kd-tree to estimate the irradiances, and the irradiances are
then converted to a brick map. It may be possible (and more
efficient) to combine these two steps, i.e. computing the ir-
radiances directly in the brick map once the brick map struc-
ture has been determined from the photon positions.

Another possible optimization is to compute fewer pho-
ton irradiance estimates in regions with fairly uniform pho-
ton density. Currently such uniform irradiance estimates are
deleted in step 3 of the brick map creation, but it would be
more efficient to not compute them at all.

c© The Eurographics Association 2004.

Christensen and Batali / An Irradiance Atlas

6.2. Brick Map Lookups

Compared to the original photon map method, we often get
the benefit of filtered (less noisy) irradiance estimates. While
the original photon map method always uses a fixed number
of photons to estimate the irradiance at final gather ray hit
points, we use the ray differential to determine the lookup
level in the brick map. This means that we get the average of
several irradiance estimates when appropriate.

Our brick map lookups currently use quadrilinear inter-
polation (trilinear interpolation between neighbor voxels;
linear interpolation between two levels) and a single filter
size (radius) to determine the MIP map level. Interesting fu-
ture improvements would be higher-order interpolation and
anisotropic filtering.

6.3. Variations and Extensions

In this paper, we have focused on the application of brick
maps in a multi-bounce global illumination solution. For
single-bounce global illumination, brick maps can be used
as follows: skip the photon tracing pass but render the scene
with direct illumination and store (“bake”) the resulting radi-
ance data as 3D point clouds. Then convert the point clouds
to brick maps, and do a final gather rendering. The multi-
resolution caching properties of brick maps are equally use-
ful in this application. More details can be found in [Pix04].
The brick map representation can also be used for caustics
and for participating media.

Our approach is very flexible in that the irradiance maps
can be manipulated independently after they are generated.
If, for example, we want more color bleeding from an object,
we could load the brick map into an interactive 3D paint
package and increase some or all of the irradiance values.

During final gather rendering, the high-quality 3D global
illumination results can be stored as another 3D texture and
reused in subsequent renderings of the same scene. This can
amortize the computation cost over many images and also
gives a lot of flexibility to mix and match global illumination
solutions. If accurate global illumination has been computed
for the entire scene, rendering the same scene from a differ-
ent camera angle takes only a few minutes (approximately
the same time as to render direct illumination alone). A sim-
plified version could even be rendered at interactive speed.

We believe that our method is particularly well suited for
parallel execution. For very complex scenes, the bottleneck
for parallel ray tracing and global illumination is usually the
geometry and texture accesses, and with our multiresolution
caches this bottleneck is eliminated.

7. Conclusion

We have introduced the brick map, a tiled 3D MIP map
format for efficient representation and caching of general

surface and volume data. We use the brick map format to
improve the photon map method with efficient caching of
global illumination irradiance data. The resulting method
enables efficient and flexible computation of multi-bounce
global illumination in very complex scenes. It is our hope
that this will lead to more widespread use of global illumi-
nation in CG movie production.

Acknowledgments

We are very grateful for the substantial contributions from
David Laur, Julian Fong, and other members of the Ren-
derMan Products team. Thanks to Wayne Wooten for dig-
ging out the Monstropolis scene data. Thanks to John An-
derson, Guido Quaroni, Fabio Pellacini, Eliot Smyrl, Justin
Ritter, and others for discussions of 3D data, 3D textures,
and the brick map format. The Monstropolis scene is copy-
right c©Disney Enterprises, Inc. / Pixar Animation Studios.

References

[AG00] APODACA A., GRITZ L.: Advanced RenderMan —
Creating CGI for Motion Pictures. Morgan Kauf-
mann, 2000.

[BD02] BENSON D., DAVIS J.: Octree textures. In ACM
Transactions on Graphics, Proc. SIGGRAPH 02
(2002), pp. 785–790.

[Chr99] CHRISTENSEN P.: Faster photon map global illumi-
nation. Journal of Graphics Tools 4, 3 (1999), 1–10.

[CLF∗03] CHRISTENSEN P., LAUR D., FONG J., WOOTEN W.,
BATALI D.: Ray differentials and multiresolution ge-
ometry caching for distribution ray tracing in complex
scenes. In Computer Graphics Forum, Proc. Euro-
graphics 03 (2003), pp. 543–552.

[DGPR02] DEBRY D., GIBBS J., PETTY D., ROBINS N.: Paint-
ing and rendering textures on unparameterized mod-
els. In ACM Transactions on Graphics, Proc. SIG-
GRAPH 02 (2002), pp. 763–768.

[DP01] DISNEY ENTERPRISES, INC., PIXAR ANIMATION

STUDIOS: Monsters, Inc., 2001.

[Ige99] IGEHY H.: Tracing ray differentials. In Computer
Graphics, Proc. SIGGRAPH 99 (1999), pp. 179–186.

[JB02] JENSEN H., BUHLER J.: A rapid hierarchical render-
ing technique for translucent materials. In ACM Trans-
actions on Graphics, Proc. SIGGRAPH 02 (2002),
pp. 576–581.

[JC98] JENSEN H., CHRISTENSEN P.: Efficient simulation of
light transport in scenes with participating media us-
ing photon maps. In Computer Graphics, Proc. SIG-
GRAPH 98 (1998), pp. 311–320.

[Jen96] JENSEN H.: Global illumination using photon maps.
In Rendering Techniques ’96, Proc. 7th Eurograph-
ics Workshop on Rendering (1996), Springer-Verlag,
pp. 21–30.

c© The Eurographics Association 2004.

Christensen and Batali / An Irradiance Atlas

[Jen01] JENSEN H.: Realistic Image Synthesis using Photon
Mapping. A. K. Peters, 2001.

[KW00] KELLER A., WALD I.: Efficient importance sampling
techniques for the photon map. In Proc. 5th Fall Work-
shop on Vision, Modeling, and Visualization (2000),
IEEE, pp. 271–279.

[LC03] LARSEN B., CHRISTENSEN N.: Optimizing photon
mapping using multiple photon maps for irradiance
estimates. In Proc. 11th Int. Conf. in Central Europe
on Computer Graphics, Visualization and Computer
Vision (WSCG) (2003), University of West Bohemia.

[LH91] LAUR D., HANRAHAN P.: Hierarchical splatting: a
progressive refinement algorithm for volume render-
ing. In Computer Graphics, Proc. SIGGRAPH 91
(1991), pp. 285–288.

[LW90] LEVOY M., WHITAKER R.: Gaze-directed volume
rendering. In Computer Graphics, Proc. Symposium
on Interactive 3D Graphics (1990), pp. 217–223.

[Mys97] MYSZKOWSKI K.: Lighting reconstruction using fast
and adaptive density estimation techniques. In Ren-
dering Techniques ’97, Proc. 8th Eurographics Work-
shop on Rendering (1997), Springer-Verlag, pp. 251–
262.

[Ney98] NEYRET F.: Modeling, animating, and rendering
complex scenes using volumetric textures. IEEE
Transactions on Visualization and Computer Graph-
ics 4, 1 (1998), 55–70.

[Pea85] PEACHEY D.: Solid texturing of complex surfaces.
In Computer Graphics, Proc. SIGGRAPH 85 (1985),
pp. 279–286.

[Pea90] PEACHEY D.: Texture on demand. Pixar technical
memo 217 (unpublished manuscript), 1990.

[Per85] PERLIN K.: An image synthesizer. In Computer
Graphics, Proc. SIGGRAPH 85 (1985), pp. 287–296.

[Pix04] PIXAR ANIMATION STUDIOS: Ambient occlu-
sion, image-based illumination, and global illumina-
tion. PhotoRealistic RenderMan Application Note
#35, 2004.

[PKGH97] PHARR M., KOLB C., GERSHBEIN R., HANRAHAN

P.: Rendering complex scenes with memory-coherent
ray tracing. In Computer Graphics, Proc. SIGGRAPH
97 (1997), pp. 101–108.

[PP98] PETER I., PIETREK G.: Importance driven con-
struction of photon maps. In Rendering Techniques
’98, Proc. 9th Eurographics Workshop on Rendering
(1998), Springer-Verlag, pp. 269–280.

[PZvBG00] PFISTER H., ZWICKER M., VAN BAAR J., GROSS

M.: Surfels: surface elements as rendering primitives.
In Computer Graphics, Proc. SIGGRAPH 00 (2000),
pp. 335–342.

[SW00] SUYKENS F., WILLEMS Y.: Density control for
photon maps. In Rendering Techniques ’00, Proc.
11th Eurographics Workshop on Rendering (2000),
Springer-Verlag, pp. 11–22.

[SW01] SUYKENS F., WILLEMS Y.: Path differentials and
applications. In Rendering Techniques ’01, Proc.
12th Eurographics Workshop on Rendering (2001),
Springer-Verlag, pp. 257–268.

[TWFP97] TOBLER R., WILKIE A., FEDA M., PURGATHO-
FER W.: A hierarchical subdivision algorithm for
stochastic radiosity methods. In Rendering Tech-
niques ’97, Proc. 8th Eurographics Workshop on Ren-
dering (1997), Springer-Verlag, pp. 193–204.

[WH92] WARD G., HECKBERT P.: Irradiance gradients.
In Proc. 3rd Eurographics Workshop on Rendering
(1992), pp. 85–98.

[WHSG97] WALTER B., HUBBARD P., SHIRLEY P., GREEN-
BERG D.: Global illumination using local linear den-
sity estimation. ACM Transactions on Graphics 16, 3
(1997), 217–259.

[Wil83] WILLIAMS L.: Pyramidal parametrics. In Computer
Graphics, Proc. SIGGRAPH 83 (1983), pp. 1–11.

[WRC88] WARD G., RUBINSTEIN F., CLEAR R.: A ray trac-
ing solution for diffuse interreflection. In Computer
Graphics, Proc. SIGGRAPH 88 (1988), pp. 85–92.

[WS98] WARD LARSON G., SHAKESPEARE R.: Rendering
with Radiance. Morgan Kaufmann, 1998.

c© The Eurographics Association 2004.

Christensen and Batali / An Irradiance Atlas

Figure 3: Monstropolis city block with only direct illumina-
tion. (c© Disney/Pixar)

Figure 8: Entire scene shaded with irradiance from the ir-
radiance atlas. (c© Disney/Pixar)

Figure 9: Irradiance times local diffuse color. (c© Dis-
ney/Pixar)

Figure 10: Global illumination in a production scene with
237 million triangles, 52 million photons. (c© Disney/Pixar)

c© The Eurographics Association 2004.

