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Fig. 1. We introduce a novel, modular architecture based on kernel-predicting neural networks that performs multi-scale, temporal denoising of rendered

sequences. Our network can be retrained using a small amount of data and performs robustly with artist-control over the variance-bias tradeoff on novel data,

such as these two examples from our test set. © Disney / Pixar, © Disney.

We present a modular convolutional architecture for denoising rendered

images. We expand on the capabilities of kernel-predicting networks by

combining them with a number of task-specific modules, and optimizing

the assembly using an asymmetric loss. The source-aware encoder—the first

module in the assembly—extracts low-level features and embeds them into

a common feature space, enabling quick adaptation of a trained network to

novel data. The spatial and temporal modules extract abstract, high-level

features for kernel-based reconstruction, which is performed at three differ-

ent spatial scales to reduce low-frequency artifacts. The complete network

is trained using a class of asymmetric loss functions that are designed to pre-

serve details and provide the user with a direct control over the variance-bias

trade-off during inference. We also propose an error-predicting module for

inferring reconstruction error maps that can used to drive adaptive sampling.

Finally, we present a theoretical analysis of convergence rates of kernel-

predicting architectures, shedding light on why kernel prediction performs

better than synthesizing the colors directly, complementing the empirical

evidence presented in this and previous works. We demonstrate that our

networks attain results that compare favorably to state-of-the-art methods

in terms of detail preservation, low-frequency noise removal, and temporal

stability on a variety of production and academic data sets.
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1 INTRODUCTION

Monte Carlo (MC) rendering is used ubiquitously in computer an-

imation and visual effect productions [Keller et al. 2015]. Despite

continuously increasing computational power, the cost of construct-

ing light paths—the core component of image synthesis—remains

a limiting practical constraint that leads to noise. Among the many

strategies explored to reduce Monte Carlo noise, image-space de-

noising has emerged as a particularly attractive solution due to its

effectiveness and ease of integration into rendering pipelines.

Until recently, the best-performing MC denoisers were hand-

designed and based on linear regression models [Zwicker et al.

2015]. In publications from last year, however, Bako et al. [2017] and

Chaitanya et al. [2017] demonstrated that solutions employing con-

volutional neural networks (CNN) can outperform the best zero- and

first-order regression models under specific circumstances. Despite
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this, the previous generation of hand-designed models are still used

extensively in commercial rendering systems (e.g. RenderMan, VRay,

and Corona). Furthermore, there are several well-known issues with

neural networks—in particular with regards to data efficiency dur-

ing training and domain adaptation during inference—which limit

their broad application. We present several novel architectural ex-

tensions and a class of asymmetric loss functions that overcome

these limitations and allow trading variance for bias at run-time.

Data-efficiency of deep learning remains an open challenge with

larger networks requiring enormous training data sets to produce

good results. This poses a particular problem for denoising since

generating ground-truth renders to be used as targets for prediction

in the supervised-learning framework is extremely computationally

expensive. This issue impacts several areas including training, adap-

tation to data from different sources, and temporal denoising. We

propose several solutions to overcome this problem.

First, our denoiser is based on the recently presented kernel-

predicting (KPCN) architecture [Bako et al. 2017; Vogels 2016]. In-

tuitively, kernel prediction trades a larger inductive bias for lower-

variance estimates resulting in faster and more stable training than

direct prediction. In this work we provide theoretical reasoning for

why KPCN converges faster. Specifically, we show that in the convex

case, optimizing the kernel prediction problem using gradient de-

scent is equivalent to performing mirror descent [Beck and Teboulle

2003] which enjoys an up-to-exponentially faster convergence speed

than standard gradient descent.

Second, to integrate data from different sources (e.g. different ren-

derers and auxiliary buffer sets), we propose source-aware encoders
that extract low-level features particular to each data source. This

allows the network to leverage data from multiple renderers during

training by embedding different datasets into a common feature

space. Furthermore, it enables a pre-trained network to be quickly

adapted to a new data source with few training examples, but at the

same time avoiding catastrophic forgetting [Kirkpatrick et al. 2017],

which can result from naive fine-tuning.

Third, we propose an extension to the temporal domain—necessary

for processing animated sequences—that requires less ground-truth

data than previous approaches. Chaitanya et al. [2017] propose a

recurrent model which they train using a converged reference image

for each frame in the sequence. We present an alternative scheme

that crucially does not require reference images for each input in

the sequence. Instead, we combine feature representations from

individual frames using a lightweight, temporal extension to KPCN.

Our approach amortizes the cost of denoising each frame across

multiple sliding temporal windows yet produces temporally stable

animations of higher quality than a single-frame KPCN.

We incorporate these developments in a modular, multi-scale
architecture that operates on a mip-map pyramid to reduce low-

frequency noise. We employ a lightweight scale-compositing mod-

ule trained to combine spatial scales such that blotches and ringing

artifacts are prevented. We also propose a dedicated error-predicting
module that approximates the reconstruction error. This enables

adaptive sampling by iteratively executing the error prediction dur-

ing rendering and distributing the samples according to the pre-

dicted error. We demonstrate that acknowledging the strengths and

weaknesses of the denoiser in this way yields better results than

adaptive sampling driven by the variance of rendered outputs.

Finally, we provide a mechanism for a user control over the trade-

off between variance and bias. We propose asymmetric loss functions
that magnify gradients during back-propagation when the result

deviates strongly from the input. The asymmetry is varied during

training and linked to an input parameter of the denoiser that pro-

vides the user with direct control over the trade-off between residual

noise and loss of detail due to blurring or other artifacts—a crucial

feature for production scenarios.

The remainder of the paper is organized as follows: In Section 2,

we briefly review modern regression- and neural-network-based

approaches to denoising. Our modular denoising architecture is de-

scribed in Section 3, which introduces the source-aware encoder and

a novel approach to temporal and multi-scale denoising. The class

of asymmetric loss functions for incorporating user-controllable be-

havior is described in Section 4. Our approach to adaptive sampling

is discussed in Section 5. In Section 7, we evaluate the performance

of our denoiser on a mixture of production and freely-available

scenes against state-of-the-art approaches and carefully study our

design choices. Finally, we provide a theoretical analysis explaining

the superior convergence of kernel prediction.

2 RELATED WORK

A large body of research has been devoted to MC denoising. We

refer the reader to the review by Zwicker et al. [2015] and focus

here on the most relevant and recent developments, and related

work employing CNNs [LeCun et al. 2015].

2.1 Image-space Methods

Early work by Rushmeier and Ward [1994] pioneered the idea of

denoising Monte Carlo renderings. McCool [1999] proposed the

idea of using auxiliary buffers to improve the robustness of the

denoising procedure, which was adopted in most current methods

based on linear regression. These can be categorized depending

on the polynomial order of the underlying model. Central to zero-

order methods is the idea of extracting a weighting kernel, and

computing the denoised result as a linear combination of kernel-

weighted noisy pixels. Most approaches use joint bilateral [Sen

and Darabi 2012] or non-local, patch-based schemes [Buades et al.

2005; Kalantari et al. 2015; Moon et al. 2013; Rousselle et al. 2013]

to compute kernel weights. Several works have also explored the

possibility of employing first-order [Bauszat et al. 2011; Bitterli et al.

2016; Moon et al. 2014] and even higher-order [Moon et al. 2016]

models. These represent the current state of the art in the context

of linear-regression denoising.

Temporal Stability. Several of the aforementioned approaches ex-

tend well to the temporal domain. Methods based on patch-based

metrics [Bitterli et al. 2016; Buades et al. 2008; Kalantari et al. 2015;

Rousselle et al. 2012, 2013] do so by considering spatial neighbor-

hoods in temporally near frames. The main drawback of these meth-

ods is that the weighting of neighbor contributions is unreliable if

the center frame has a bad signal-to-noise-ratio—even if the neigh-

bors are noise-free.
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Our approach is largely similar to the patch-based methods, but

we provide the denoising network with all temporal information to

ensure the extracted kernels are not biased towards the center frame.

Inspired by the work of Delbracio et al. [2014], we also operate on

multiple scales to further reduce low-frequency artifacts. However,

in contrast we recombine the scales adaptively using a trained scale-

compositing module.

Error Estimation and Adaptive Sampling. Techniques for adaptive
rendering initially focused on the sampling problem alone, using

the contrast measure of extrema sample values [Mitchell 1987]

or by modeling the human visual system [Bolin and Meyer 1998;

Ramasubramanian et al. 1999] as a proxy for perceptual significance.

Later works considered the combination of adaptive sampling and

reconstruction, either using the sample-based contrast measure of

noisy inputs [Hachisuka et al. 2008; Overbeck et al. 2009], or by

using the reconstruction Mean relative Squared Error (MrSE). This

enabled a tight coupling of the sampling and reconstruction steps

for linear filters [Moon et al. 2014; Rousselle et al. 2011], non-linear

filters with known derivatives [Li et al. 2012], or arbitrary filters

using pairs of independent noisy renderings [Bitterli et al. 2016;

Rousselle et al. 2012]. Our work also leverages an estimation of

the reconstruction error to distribute samples, but we employ a

neural network taking only the noisy and denoised images as input,

allowing for robust loss estimates with no constraints on the filter,

or reliance on pairs of independent renderings. Unlike recent work,

we use the Symmetric Mean Absolute Percentage Error (SMAPE) of

the reconstruction to distribute samples, instead of the MrSE, which

leads to more robust reconstructions according to the perceptual

SSIM metric [Wang et al. 2004].

2.2 Denoising Neural Networks

Neural networks have been successfully applied to a vast number

of problems. Here we review applications to denoising. Jain and

Seung [2008] employed four-layer CNNs and Burger et al. [2012]

used fully-connected multi-layer perceptrons to denoise natural

images corrupted with Gaussian noise; the latter demonstrating

comparable performance to BM3D [Dabov et al. 2006].

Several works proposed alternatives to predicting the denoised

colors directly. Kalantari et al. [2015] used a multi-layer perceptron

to predict the optimal parameters of cross-bilateral and non-local-

means denoisers for filtering MC renderings. Bako et al. [2017]

demonstrated that a CNN can be trained to achieve state-of-the-art

results via a kernel-based reconstruction [Jia et al. 2016; Vogels 2016],

similar in spirit to zero-order regression models. Kernel-predicting

networks have also been recently utilized for burst-denoising of

natural images [Mildenhall et al. 2017] andmore widely for temporal

upsampling of video sequences [Niklaus et al. 2017].

We complement previous works utilizing a kernel-predicting

convolutional network (KPCN) in numerous ways. First, we provide

theoretical evidence supporting the earlier empirical claims that

KPCN trains faster than a direct-predicting network. Second, we

extend the concept over a temporal window predicting kernels for

an entire sequence of subsequent animation frames.

With regards to temporal denoising, Chaitanya et al. [2017] pro-

pose a convolutional architecture which enforces temporal stability

via recurrent connections that provide a mechanism to incorporate

information from past frames in a sequence. We argue that our

approach is better suited for applications where future frames are

also available—such as movie rendering—supplementing our claim

with empirical evidence.

3 MODULAR ARCHITECTURE

In this section, we first formalize the denoising operation as a su-

pervised learning problem and introduce necessary notation. As a

solution to the problem we propose a neural network with a mod-

ular architecture based on kernel-predicting CNNs. The modules

are designed to deliver a solution with specific properties such as

temporal stability, and handling of diverse sets of inputs.

Problem Statement. Denoising Monte Carlo renderings can be

formally described as a mapping д of an input tuple x = {c, f} to an

estimate d of the ground-truth color r. For a given pixel p, the noisy
values in the input tuple are obtained from a renderer as average

RGB color cp and (optional) auxiliary buffers fp , e.g. color variance,
surface normal, or albedo, over multiple samples contributing to p.

Similar to previous works [Bako et al. 2017; Chaitanya et al. 2017],

we use a convolutional neural network parameterized by a set of

weights θ to represent д. The optimal parameters θ̂ are estimated

via supervised learning that utilizes a large dataset with N example

pairs of noisy inputs and corresponding ground-truth color images,

DN = {(x1, r1), . . . , (xN , rN )}. The learning aims to minimize the

average distance between the ground-truth r and the denoised image

d = д(x;θ ) via a loss function ℓ:

θ̂ = argmin

θ

1

N

N∑
n=1
ℓ(rn ,д(xn ;θ )). (1)

In practice, we use the symmetric mean absolute percentage error1

(SMAPE) for ℓ:

ℓ(r, d) =
1

3|I |

∑
p∈I

∑
c ∈C

��dp,c − rp,c ����dp,c �� + ��ri,c �� + ε . (2)

Here I is the domain of pixels in the image, C are the three color

channels, and we use ε = 10
−2
. The choice for SMAPE is motivated

by it’s stable behavior in HDR images.

In what follows, we describe a modular design that reuses trained

components in different networks. The architecture facilitates de-

bugging and permits constructing large networks that would be

difficult to train all together due to large memory requirements.

3.1 Single-frame Denoiser

The core of our denoiser is a kernel-predicting CNN [Bako et al. 2017;

Vogels 2016] designed to denoise a single frame; see Figure 2 for

illustration. In contrast to Bako et al. [2017], who use a vanilla 9-layer

CNN, we employ residual blocks [He et al. 2016] consisting of two
layers bypassed by a skip connection; see Figure 2 (right). The skip

connection enables chainingmany such blocks without optimization

instabilities. With up to 48 layers, we obtain significantly increased

performance as demonstrated in Section 7.

1
Here “symmetric” refers to the equivalent role of d and r in the equation. This concept

is orthogonal to the concept of “asymmetric loss functions” introduced in Section 4.
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Fig. 2. Our single-frame denoiser module consists of a source-aware encoder followed by an extractor of spatial features, which are fed into a KPCN

kernel-predicting module. The scalar kernels are normalized using the softmax function and applied to the noisy input to obtain the denoised image. The

spatial-feature extractor consists of a number of residual blocks (right), each consisting of two 3 × 3 convolutional layers bypassed by a skip connection.
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Fig. 3. Our temporal denoiser module first extracts spatial features from individual frames, which are then warped using motion vectors to match the time

of the center frame. All features are concatenated and fed into an extractor of temporal features, which are used to predict a kernel for each frame in the

temporal window. The kernels are jointly normalized to sum up to 1 and applied to the input colors to produce the denoised version of the center frame. We

use a pre-trained, single-frame source-aware encoder and spatial-feature extractor with the same parameters θ̂ for all frames (symbolized by “=”) that are

“locked” during the training of temporal-feature extractors and kernel predictors.
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Fig. 4. The multi-scale single-frame/temporal denoiser first decomposes the inputs into several scales.D represents a downsampling operation and U represents

upsampling. The scales are denoised independently and combined using a spatially varying blending parameter α that balances low frequencies from the finer

and coarser scales. The parameter α is produced by a relatively shallow CNN (right).

A distinct feature of the kernel-predicting network is that the

denoised color dp is reconstructed as a linear combination of input

colors in a k ×k neighborhoodN(p) around p. The stack of residual
blocks can thus be interpreted as an extractor of spatial features

that are passed down to another module, which produces a k × k
kernel of scalar weights. The denoised color dp is then obtained by

applying the weights to the input colors and summing over them:

dp = дp (x;θ ) =
∑

q∈N(p)

wpq cq . (3)

The kernel weights are normalized using the softmax function:

wpq =
exp([zp ]q )∑

q′∈N(p) exp([zp ]q′)
, (4)

where zp ∈ Rk×k represents the kernel predicted for pixel p, and
[.]i retrieves the i-th entry in a linearized version of the kernel.

Softmax normalization ensures that 0 ≤ wpq ≤ 1,∀q ∈ N(p) and∑
q∈N(p)wpq = 1. In Section 8, we provide a theoretical argument

for the superiority of the kernel-based reconstruction, in terms of

optimization speed, over predicting the colors directly.

3.2 Source-aware Encoder

Input features obtained from different renderers are not always

equivalent. Their varying samplers, reconstruction filters, and vari-

ance estimators create the need for source-aware treatment. The

tasks of denoising, however, is the same irrespective of the renderer.

To enable the denoising of images across different renderers with

potentially varying sets of auxiliary buffers, we therefore introduce
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source-aware encoders into our architecture. Encoding modules,

with input features unique to the renderer and independent param-

eters, constitute the first few layers of the network. All following

layers of the network have identical parameters across all sources.

Our approach to training source-aware encoders is similar in

spirit to the work of Andreas et al. [2016] in visual question an-

swering, which used dynamically assembled task-specific modules.

By sharing a common denoising back-end for all data sources, the

source-aware encoder is effectively designated to extract a common,

low-level representation to unify the various inputs. Such design

enables adaptation to new data sources by training new encoders

while keeping the rest of the network fixed. The retraining pro-

cedure is light on training data as the source-aware encoders are

rather shallow, consisting of only two 3 × 3 convolutional layers.

A source-aware encoder, feature extractor, and kernel predictor,

as illustrated in Figure 2, are the main building blocks of our system

and jointly represent a single-frame module for obtaining a denoised
image from the input and features of a single frame.

3.3 Temporal Denoiser

The single-frame module may produce an animated sequence with

severe temporal artifacts—flickering—when executed on a sequence

of frames independently. This is because each of the denoised frames

is “wrong” in a slightly different way. In order to achieve tempo-

ral stability, we use the same approach as most prior works: we

consider a sequence of frames—a temporal neighborhood T =

[{ci−M , f i−M }, · · · {ci , f i }, · · · {ci+M , f i+M }] of 2M+1 input tuples—
when denoising a single frame. This has two benefits: first, the

temporal neighbors provide additional information that helps to re-

duce the error in d; second, since the neighborhoods of consecutive
frames overlap, the residual error in each frame will be correlated,

reducing the highly perceptive temporal flicker.

Our solution to incorporating temporal neighbors is driven by

a number of observations. We target applications in which the

denoiser has access to both past and future frames. The temporal

neighborhood may occasionally be asymmetric, e.g. when denoising

the first or last frame of a sequence. And lastly, the cost of denoising

a sequence should scale well to large temporal neighborhoods.

We propose to pre-process individual frames of the sequence in-

dependently and combine them using a temporal kernel-predicting

network. The complete architecture is detailed in Figure 3. We first

extract spatial features from each of the input frames. In order to

align the features from animated content, we project each of the

center frame’s pixels p to all input frames in T using motion vectors,

and gather the spatial features of the input frames along the motion

trajectory at the position p. We either obtain motion vectors from

the renderer or use optical flow. The gathered features at each pixel

are then concatenated and input into a temporal-feature extrac-

tor, which consists of three residual blocks. As in the single-frame

network, the extractor produces features that are then fed into a

one-layer kernel predictor, only this time we have an independent

kernel predictor for each of the frames. At each pixel, the multiple

kernels are jointly normalized using a softmax. The joint normaliza-

tion ensures that we can obtain the final denoised frame by simply

adding the kernel-weighted noisy inputs.

There are two ways to ensure that in each frame, the kernels for a

pixelp in the center frame i are applied to pixels that correspondwell
content-wise to p. The first approach is to warp the kernels pixel-by-

pixel into adjacent frames usingmotion vectors. This is equivalent to

applying unwarped kernels to warped images. The second approach

is to rigidly offset—or “reposition”—kernels according to inverse

motion vectors the center frame. While both approaches performed

on par in our experiments, we opt for the second approach, as we

consider it the corresponding inverse to “gathering” spatial features.

Parameter Reuse and Training. We use the same set of network

parameters across all the instantiations of the source-aware encoder

and spatial-feature extractor. These two modules are pre-trained

independently as part of a single-frame network, which is optimized

using a set of noisy/ground-truth image pairs. The parameters are

then locked (e.g. treated as constant during later backpropagation)

and the modules instantiated across all input frames in the tem-

poral neighborhood. Training the rest of the temporal network

then requires optimizing only the parameters of the relatively small

temporal-feature extractor and kernel predictor. The optimization

of the temporal modules is performed using pairs of noisy input

sequences and reference images for the center frame of the sequence.

Discussion. Our approach to temporal denoising is substantially

different from the work by Chaitanya et al. [2017] who utilize recur-

rent connections to accumulate information over subsequent frames.

The two works differ primarily due to the very different application

they target. Since their target is real-time rendering, Chaitanya et al.

are able to build a temporal context using only past frames. On the

other hand, we are able to make use of a symmetrical neighborhood

around the frame to be denoised. In Section 7 we investigate the

effect of different types of temporal context and neighborhood size.

3.4 Multi-scale Architecture

While denoising algorithms are typically good at removing high-

frequency noise, they tend to leave low-frequency residual noise;

CNN-based denoisers are no exception. Inspired by the work of

Delbracio et al. [2014], we propose to improve the performance by

filtering at different spatial scales.

Scale Decomposition. For an input frame (or a sequence of frames),

we construct a three-level pyramid with the input on top and lower

levels being obtained by a uniform 2 × 2 down-sampling. Each

lower/coarser level spans a four-times larger region than the previ-

ous one. The auxiliary buffers in f are also down-sampled with the

only caveat that variance buffers are additionally divided by a factor

of 4 to account for reduction in noise. The (down-sampled) inputs

of each scale enter a single-frame or a temporal module, depending

on whether we are denoising a single frame or a sequence.

Scale Composition. The denoised results from individual scales

are progressively combined—from the coarsest to the finest scale—

using a scale-compositing module. The module accepts two images

produced by denoising two adjacent scales of a frame (or a sequence);

a coarse-scale image ic and fine-scale image if . The images are input

to a convolutional network that extracts a per-pixel scalar weight
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Input Ours-MS Naive Ours-MS Weight α

Fig. 5. Multi-scale reconstruction. Aliasing in the mip-map decomposi-

tion can lead to ringing artifacts in the reconstruction (Ours-MS Naive).

Our weighted reconstruction (Ours-MS) modulates the contributions from

coarser scales on a per-pixel basis using weights α (brighter corresponds to

higher contribution of coarser scale), thereby alleviating ringing. © Disney.

αp , which is used to blend the two images producing the output:

op = ifp − αp [UDi
f ]p + αp [Uic]p . (5)

The blending takes the fine-scale image if and replaces its low fre-

quencies with low frequencies obtained from the coarse-scale image

ic. The D and U are 2 × 2-downsampling and nearest-neighbor-

upsampling operators, respectively, UDif extracts low frequencies

from the fine-scale image, and Uic refers to the upsampled result

from the coarse-scale; see the right half of Figure 4 for an illustration.

Parameter Reuse and Training. Similarly to the temporal archi-

tecture, the single-frame and temporal modules applied to different

scales share the same set of pre-trained, locked parameters. The

scale-weight predictors across different scales also share the same

set of parameters. Since the scale-compositing module appears twice

in the three-level hierarchy, it is optimized using backpropagation

twice for each entry in the training set, improving data-efficiency.

Discussion. The key difference between our multi-scale architec-

ture and the one proposed by Delbracio et al. [2014] is that we

employ a weighted scale composition, where the weights are pre-

dicted by the network. In hierarchical schemes, ringing artifacts due

to aliasing in the decomposition are a recurrent problem. Our scale

composition mitigates these artifacts by weighting the contribution

of the coarser levels of the mip-map layers on a per-pixel basis. This

mechanism effectively disables the multi-scale reconstruction if the

denoised output is inconsistent across the mip-map layers, which

alleviates ringing artifacts as we illustrate in Figure 5.

4 ASYMMETRIC LOSS FUNCTIONS

In some applications, feature-film production in particular, it may

be desirable to retain some residual noise rather than sacrifice detail

by over-blurring. Often this choice is an artistic decision and could

be made on a movie, or scene, basis. Therefore it is important that

the end users of the denoiser have control over the level to which

residual noise is retained. Next, we describe the concept of the

asymmetric loss, which allows the denoiser (and the user) to trade

between variance and bias.

Assuming the network is to be optimized using loss ℓ, we allow

controlling the aggressiveness of the denoiser by instead optimizing

it using a modified, asymmetric loss

ℓ′λ(d, r, c) = ℓ(d, r) · (1 + (λ − 1)H ((d − r)(r − c))) , (6)

Ref Ref

Prediction A Prediction B

Input Input

L
o
s
s

Original loss

λ = 2

Fig. 6. Asymmetric loss function. The dashed blue line indicates an original

loss function and the orange line is the asymmetric version with λ = 2. The

side of the asymmetry varies per pixel depending on whether the input

value at that pixel ‘Input’ is larger or smaller than the ground-truth ‘Ref’.

Input Input

High uncertainty Low uncertainty

← Predicted value→ ← Predicted value→

E
x
p
e
c
t
e
d
l
o
s
s

λ = 1

λ = 2

λ = 4

λ = 8

λ = 16

Fig. 7. Expected loss as a function of the predicted intensity for a given

pixel for a wide and narrow distribution p indicated by dashed lines. The

noisy input color is denoted by ‘Input’. Colored solid lines are the expected

loss under asymmetric loss with varying levels of asymmetry (blue amounts

to a symmetric loss). The wider the likelihood, which can be interpreted as

larger uncertainty of the network, the more the minimum of this function

shifts towards the input as the asymmetry level increases.

where the Heaviside function H (·) returns 1 if the argument is

positive and 0 otherwise. If the differences (d − r) and (r − c) have
the same sign—i.e. the filtered result and the input are not on the

same “side” relative to the reference—then we penalize such result

by multiplying the original loss ℓ by the slope parameter λ; see

Figure 6 for illustration.

The loss ℓ′λ is asymmetric in the sense that, given two solutions

that are equally close to the reference and λ > 1, the loss favors

the solution that deviates less from the input. This has the effect of

producing solutions that retain some of the input noise but only in

situations when the minimum loss cannot be reached.

4.1 Decision-theoretic analysis

The mechanism that allows a neural network to remain conserva-

tive in certain situations when trained with an asymmetric loss

function can be understood through a decision-theoretic analysis.

For a (pixel-wise) loss ℓ(rp , dp ) and a distribution p(rp | cp ) which
governs the probability of observing a particular reference given a

noisy input pixel, p, the Bayes optimal solution [Murphy 2012] is

given by argmindp τ (dp | cp ) where

τ (dp | cp ) = Ep(rp | cp )
[
ℓ(rp , dp )

]
=

∫
ℓ(rp , dp )p(rp | cp ) drp . (7)

For loss functions that operate only on the distance between the

two arguments, i.e. ℓ(r, d) = ℓ(d − r, 0), Equation (7) takes the form
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Fig. 8. We train a shallow loss-specialization module and kernel predictor

on top of a pre-trained feature extractor (either spatial or spatio-temporal.)

The loss-specialization module additionally receives a per-pixel map of the

asymmetric slope parameter λ that controls denoising behavior.

of a convolution of the loss with the likelihood,

τ (dp | cp ) =
∫
ℓ(dp − rp , 0)p(rp | cp ) drp . (8)

In case of symmetric loss functions and unimodal, symmetric

distributions p, the convolution changes only the shape of the loss,

not its minimum.

Our proposed ℓ′λ (Equation (6)) is, however, asymmetric with

a steeper slope on the side opposite the input to penalize strong

deviations (e.g. excessive blurring). The convolution will thus shift

the minimum towards the noisy input with the parameter λ con-

trolling the amount of offsetting; see Figure 6 and Figure 7 for an

illustration. Therefore, solutions closer to the noisy input will be

preferred. The offsetting from the minimum is more pronounced

when the distribution p is wide, and less-so when p is narrow.

If we assume that the network implicitly learns to estimate q ≈
p(rp | cp ), it will minimize the expected loss Eq ℓ

′
λ(rp , dp , cp ) by

adjusting its output based on its uncertainty in the relationship

between input and reference and the value of λ. For pixels where
the uncertainty is high, it will tend to retain some of the input noise,

rather than blurring, thus preserving detail.

4.2 Run-time artistic control

The simplest way to use an asymmetric loss function is to train a

network from scratch with ℓ′λ for a fixed slope parameter λ > 1.

Here, the choice of λ makes the denoiser more or less conserva-

tive. We take an alternative approach where a single network is

optimized for a range of slope parameters at once. We train with

random values for λ, and provide λ as an input to the network. This

optimizes the network for a whole class of loss functions that can

be chosen from by the user at run-time, offering direct control over

the behavior of the denoiser. Higher values lead to conservative

denoising, permitting the denoiser to leave residual noise. λ = 1

reverts back to the symmetric loss.

4.3 Modular training

We take a modular approach to training for asymmetric loss func-

tions. We use a feature extractor that was pre-trained with loss

ℓ(d, r), and optimize a lightweight loss-specialization module, which

receives an additional single-channel input λ, using the asymmetric

loss ℓ′λ(d, r, c); see Figure 8. To support spatially varying λ at run-

time, we use a different λ for each pixel during training; we draw

log(λ) from a uniform distributionU(0, log 10) thereby optimizing

for each pixel in a mini-batch using a slightly different loss function.

64 spp 512 spp
0.5

0.6
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0.9

1.0

MrSE (rel.)

64 spp 512 spp

SMAPE (rel.)

64 spp 512 spp
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MS-DSSIM (rel.)

Fig. 9. Adaptive sampling proportional to various guiding metrics (■ relative
variance, ■ relative squared error, ■ SMAPE, ■ DSSIM, ■MS-DSSIM) with

average budgets of 64 and 512 samples per pixel. The average error over

theMoana test set is reported according to multiple metrics. The metrics

are relative to the quality of uniform sampling (lower is better). All guiding

metrics are predicted, i.e. computed with no knowledge of the ground-truth,

using a relatively small network. The symmetric absolute percentage error

has the interesting property of offering a good compromise according to

perceptual evaluation metrics (DSSIM, MS-DSSIM) and others alike; see

Figure 19 for a visualization of the sampling maps.

Because λ enters the network only near the end, all preceding

computation can be cached, enabling a rapid user interaction with

the parameter and a user-friendly adjustment of the performance.

5 ADAPTIVE SAMPLING

In this section, we discuss how to further reduce the final error via

adaptive sampling, which makes the likely uneven noise distribution

over the image plane (e.g. due to varying materials, depth of field, or

lighting conditions) more uniform. A common solution is to adapt

the number of per-pixel samples proportional to the relative variance

of each pixel’s sample mean. This approach, however, disregards the

denoising step, which has a large impact on the reconstruction error.

Consequently, many algorithms [Li et al. 2012; Moon et al. 2014;

Rousselle et al. 2011] alternate sampling and denoising steps, and

distribute samples not according to the input variance, but rather

according to the estimated reconstruction error.

We follow a similar approach: the first iteration starts with 16

samples per pixel (non-adaptive). After each iteration we denoise

the image and execute an error-predicting network that predicts

error maps. The next iterations double the total number of samples

across all pixels, allocating samples to pixels proportionally to the

predicted error maps. The error-predicting network consists of six

residual blocks, and learns to estimate error maps for the guiding
metric ℓ(d, r) from pairs of noisy and denoised images (c, d). The
network is optimized using an L1 loss.

We considered four guiding metrics: the relative squared error

(MrSE), SMAPE (Equation (2)) , structural dissimilarity (DSSIM), and

its multi-scale version (MS-DSSIM).We trained four error-predicting

networks, each optimized to predict one of these metrics, and tested

the resulting adaptive sampling on 11 scenes from Moana. We

also considered adaptive sampling driven by the relative variance

of the input as a baseline solution that does not acknowledge the

denoiser. Figure 9 shows the average performance of each of the

error-predicting networks over the 11 scenes, according to various

loss functions. The errors are expressed relative to the error achieved

by uniform sampling with the same average sample count. Beyond

observing that each guiding metric for sampling achieves good re-

sults according to the corresponding loss function, e.g. distributing
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samples according to the predicted DSSIM error-map achieves a low

DSSIM loss after denoising, we notice that the input’s relative vari-

ance is a poor guide according to perceptual metrics. Interestingly,

predicting SMAPE offers a good compromise on all metrics.

6 EXPERIMENTAL SETUP

In this section we describe the various datasets used for training and

evaluation. We also describe how our model was trained in detail.

6.1 Training, Validation, and Testing Data

For training, we used three data sets—Moana, Cars, and Tung-

sten—where the first two contain production data and the last one

consists of data from publicly available scenes rendered with the

Tungsten renderer. Each dataset features different visual content

and was generated with a different renderer (Disney’s Hyperion

renderer, RenderMan, and Tungsten respectively) with different

approaches to obtaining motion vectors. The training sets consists

of 7-frame sequences—each rendered at several sample-per-pixel

(spp) rates that were produced by writing out intermediate results

progressively during rendering. We rendered a high-quality refer-

ence for the center frame of each sequence and use it as the target

for prediction. We held out several frames from each of these sets

for validation (e.g. evaluating convergence and picking hyperpa-

rameters).

In order to evaluate performance, we prepared five test sets. Three

of them comprise additional held-out frames from the same sources

as our training data and include the same visual content. The re-

maining two—Olaf and Coco—represent content that none of the

networks in our experiments was trained on, enabling us to test the

ability to generalize and adapt to unseen data. Detailed information

about each dataset is given in Table 1.

In all cases, the inputs to the network consist of log(1 + color)

(3 channels), relative color-variance (1 channel), log(1 + albedo)

(3 channels), relative albedo-variance (1 channel), normal (3 chan-

nels) and relative normal-variance (1 channel). Here, relative vari-

ance is an estimate of the pixel variance divided by the correspond-

ing squared sample mean. For non-negative features, such a relative

variance is bounded between 0 and 1. The definition of each buffer

may vary depending on the renderer, e.g. color-variance is obtained

differently for low-discrepancy and independent samplers.

Similarly to Bako et al. [2017], we decompose rendered outputs

into diffuse and specular buffers and factorize the diffuse channel

into irradiance and albedo. The three resulting components are de-

noised separately by a single network, wich an input flag indicating

irradiance decomposition. This is unlike Bako et al., who employ a

different network for denoising each component. We use the same

source-aware encoder for all components.

6.2 Implementation and Training

We implement our networks in TensorFlow [Abadi et al. 2015] and

optimized them for the SMAPE loss (Equation (2)) using Adam.

Trainable weights are initialized using Xavier initialization [Glorot

and Bengio 2010]. All KPCNs predict 21 × 21 scalar kernels.

To perform training, we randomly extract 128 × 128 patches and

feed them into the network in mini-batches of size 12 (learning rate,

Table 1. Training, validation, and test datasets used in our experiments. The

data column reports the number of unique, 7-frame-long sequences × the

number of different spp rates that they were obtained with.

Name Used for Data Characteristics

Moana

Training 174 × 4

Hyperion renderer; adaptive

low-discrepancy sampling;

rendered motion vectors

Validation 5 × 4

Testing 4 × 4

Olaf Testing 10 × 4

Cars

Training 290 × 3

RenderMan renderer; uniform

low-discrepancy sampling;

optical-flow motion vectors

Validation 6 × 3

Testing 6 × 3

Coco Testing 10 × 4

Tungsten

Training 1200 Tungsten renderer; uniform

independent sampling; rendered

motion vectors

Validation 3 × 4

Testing 6 × 4

η = 10
−4
) for training the single-frame and multi-scale modules, and

mini-batches of size 3 (η = 0.25 × 10−4) for training the temporal

network. The patches are selected adaptively depending on the

content using the selection process described by Bako et al. [2017].

During training, we evaluate the performance on a validation

set—we use one that corresponds to the training set but contains

different images—after every 2048 iterations. We terminate training

when the training wall-clock time reaches seven days and retain

the best-performing instance.

6.3 Comparisons

We compare our proposed denoiser to two state-of-the-art denoisers:

NFOR [Bitterli et al. 2016] and a variant of the recurrent approach

proposed by Chaitanya et al. [2017]. In order to ensure a fair com-

parison to the latter, we pre-trained a single-frame, direct-predicting

network with the same dimensions as our proposed network. We

then added recurrent connections to obtain a temporal context and

trained it on sequences to directly predict the denoised color of the

center frame. In this way, the recurrent network has an equivalent

number of parameters and access to the same amount of training

data as our proposal. We refer to this approach as R-DP. We also

considered a direct reimplementation of the method by Chaitanya

et al. [2017], but it never yielded better results than R-DP. We thus

focus on comparing our method and R-DP, which puts emphasis on

the main concepts rather than particular implementation details.

7 RESULTS

We now demonstrate the impact of the various components of our

modular architecture, as well as our asymmetric loss and adaptive

sampling scheme. While some improvements may appear subtle,

they are important for high quality results and use in production

environments; the results highlighted in this section can be better

appreciated on full resolution images, and we refer the reader to

our supplemental material which features an interactive web-based

viewer that allows for direct comparison of all methods. We also

provide a video for comparing temporal results.
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Encoder only Fully trained for Tungsten

Our network, fully trained using 1200 frames Input NFOR Ours-Enc-75 Ours-Full-75 Ours-Full-1200 Reference

Fig. 10. Comparison to the NFOR denoiser [Bitterli et al. 2016] on the public Tungsten dataset. We experimented with two network variants: 1) training a

Tungsten-aware encoder for a fixed network pre-trained on Moana and Cars using 75 training Tungsten frames (Ours-Enc-75), and 2) training a Tungsten-

specialized network from scratch using 75 and 1200 training frames (Ours-Full-75, Ours-Full-1200). The best result overall is obtained with the specialized

network using the full 1200-frames training set, but with the smaller 75-frame training set we better preserve details when training an encoder (Ours-Enc-75)

for an existing network than when training a specialized network from scratch (Ours-Full-75). All network configurations lead to more visually pleasing and

consistent results than NFOR. See Figure 11 for plots showing the network reconstruction accuracy at varying training set sizes, relative to NFOR.

Table 2. Source-aware encoders. We evaluate the performance of four net-

works on data from two renderers according to the mean DSSIM error

relative to the input. Networks trained on data from one renderer perform

poorly on test data from the other renderer (yellow cells). Networks trained

on inputs from both renderers (bottom two lines) yield good performance

in all situations. Using a dedicated source-aware encoder for each renderer

allocates the first few layers to source-specific processing. This enables

lightweight adaptation to new renderers and/or feature sets (see Figure 11).

DSSIM (rel.) Hyperion RenderMan

Moana Olaf Cars Coco

Trained on Moana only 13.31% 5.25% 18.89% 18.68%

Trained on Cars only 21.08% 8.67% 7.89% 12.25%

Trained on both 13.19% 5.05% 7.97% 12.43%

Trained on both w/ encoders 12.91% 5.07% 7.87% 12.18%

7.1 Source-aware encoder

Table 2 shows denoising quality on the Hyperion-rendered (Moana,

Olaf) and RenderMan-rendered (Cars,Coco) datasets, when trained

either using only the Moana or Cars training set, or using their

union. The network performs poorly on the RenderMan sets when

trained only with the Hyperion data, and vice versa, suggesting

a poor generalization across rendering engines. However, when

trained using datasets from both renderers—Moana and Cars—the

network can robustly handle both sources, including content that

it has not experienced (Olaf, Coco). The combined training yields

marginally better results than networks specialized for a particular

renderer, presumably thanks to its increased training set size. With

a dedicated source-aware encoder for each renderer (fourth line),
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Fig. 11. Comparison to the NFOR denoiser on the public Tungsten dataset.

We plot the DSSIM error relative to NFOR when: 1) training a Tungsten-

aware encoder for a pre-trained network with frozen weights (orange line,

the original network was trained using Moana and Cars data), and 2)

training a Tungsten-specific network from scratch (blue line). We used

varying training set sizes (horizontal axis), and averaged the errors over

sampling rates of 32 to 256 spp. For smaller training sets, training a Tungsten-

aware encoder for an existing network gives better results than training

from scratch. Overall, we get more robust results than NFOR in both cases.

See Figure 10 for a visual comparison of the reconstructions.

the first few network layers are allocated to source-specific process-

ing. This enables lightweight adaptation to new renderers and/or

feature sets by training a new frontend only while keeping all other

weights fixed. In Figures 10 and 11, we investigate this adaptation,

and show the performance as a function of the training-set size.

We conducted two experiments: 1) training a Tungsten-aware en-

coder for a pre-trained network with frozen weights (which used

the combined Moana-Cars training set), and 2) training the net-

work from scratch using a separate Tungsten training set. We used
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Color image Single frame 3 frames 5 frames 7 frames

3.20 × 10−3 1.19 × 10−3 0.97 × 10−3 0.86 × 10−3

Fig. 12. Temporal stability. Crops show the mean DSSIM between pairs of adjacent frames over a sequence with 24 renders with different random-number

seeds of the same scene. Bright colors correspond to high temporal instability. Reported numbers are averages over the image. © Disney.

Ours: 7-frame symmetric window Input Single frame 7 frames Reference Single frame 7 frames

Fig. 13. Temporal denoising performance. Considering larger temporal windows helps not only with temporal flickering (see Figure 12), but can also increase

the quality of the reconstruction. The reconstruction error (DSSIM, right-most two columns) is reduced for largely static content (top three rows of crops), and

stable for moving content (bottom row of crops). A quantitative analysis of the performance is presented in Figure 15. © Disney / Pixar, © Disney.

various subsets of the Tungsten training data (from only 75, up

to all 1200), to evaluate the network performance as the volume of

training data increases. The performance values used in Figure 11

are relative to the NFOR denoiser [Bitterli et al. 2016]. For small

sets, training a Tungsten-aware encoder yields better results than

training from scratch, but as the training dataset size increases,

training from scratch eventually yields similar results. While, ide-

ally, one would combine the full Tungsten training set with the

Moana and Cars ones to achieve best performance, our experiment

shows that source-aware encoders provide an inexpensive means

to adapt trained networks to new content (and renderer) with a

relatively small amount of training data. For a visual comparison of

the reconstructions, please see Figure 10.

7.2 Temporal Denoiser

One of the main goals of our denoiser is to improve temporal coher-

ence and reduce flickering in denoised sequences. We demonstrate

the increased stability of the temporal denoiser in Figure 12, by

visualizing how the average difference between denoised adjacent

frames in a static sequence decreases as we increase the temporal

window; please see our accompanying video for more temporal

stability results on production sequences.

While the main goal of our temporal denoiser is to alleviate

flickering artifacts, it has the added benefit of improving detail

reconstruction in mostly static regions, as we illustrate in Figure 13.

Our temporal architecture uses the proposed temporal combiner,

which predicts reconstruction kernels for all frames in the temporal

window at once. To compare our design to the recurrent architecture

used by Chaitanya et al. [2017], we replaced the temporal combiner

in our modular architecture with a recurrent combiner that predicts

denoised colors directly. We denote this approach R-DP. To train

the R-DP, we pretrained a spatial-feature extractor (two weeks),

fixed its weights, and used its last feature layer as the input to the

recurrent combiner. The spatial-feature extractor was trained with

a direct-predicting backend to maximize the R-DP performance.

In Figure 14, we compare our proposed kernel-predicting tem-

poral combiner (Ours) to the direct-predicting recurrent combiner

(R-DP), and the NFOR denoiser. R-DP is designed to use only pre-

vious frames, whereas NFOR can handle symmetric temporal win-

dows; we therefore show results for our kernel-predicting combiner

in both configurations. On our test data, R-DP results suffer from

over-blurring, as well as brightness- and color-shift artifacts. NFOR

offers sharper results, but tends to leave residual noise. Overall our

kernel-predicting combiner offers consistently more robust results,

that are both sharper and with fewer residual noise artifacts.
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3-frame “past” window 5-frame symmetric window

Ours: 5-frame symmetric window Input R-DP Ours NFOR Ours Reference

Fig. 14. Comparison of temporal denoisers. We compare reconstruction results obtained using a direct-predicting recurrent network (R-DP) to our kernel-

predicting temporal combiner, both using only information from past 3 frames in the sequence and trained under equivalent conditions. R-DP suffers from

significant brightness, color-shift, and over-blurring issues compared to our architecture. When comparing to the NFOR denoiser [Bitterli et al. 2016], we use a

symmetric temporal window. The NFOR results are sharp overall, but suffer from residual noise artifacts. Our network consistently produces smooth results

while preserving details. See Figure 15 for numerical comparison using various metrics on our full test set for all denoisers. © Disney / Pixar.
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Fig. 15. Error averaged over the Olaf and Coco test sets relative to the

NFOR single-frame denoiser, for two evaluation metrics (lower is better).

The recurrent direct-predicting combiner ‘R-DP 4p’ and ‘Ours 4p’ operate

on past four frames. All other denoisers use symmetric temporal windows

indicated by the number in their name.

Figure 15 shows a quantitative comparison between all methods

on two evaluation metrics, relative to the performance of a single-

frame NFOR baseline, averaged over the Olaf and Coco test sets.

7.3 Multi-scale architecture

Residual low-frequency noise artifacts, blotches, are sometimes vi-

sually distracting. As illustrated in Figure 16, network depth is a

dominant factor. As we increase the network depth, low-frequency

blotches gradually vanish, even though the kernel size is fixed. Effec-

tively, with 24 residual blocks, the network leverages information

gathered over a 97× 97 pixels footprint when predicting the 21× 21

kernel, which explains the improved handling of low frequencies.

Using our proposed multi-scale kernel-predicting architecture, we

can drastically reduce low-frequency artifacts, achieving visually

pleasing results with a shallow 6-block network.

7.4 Asymmetric Loss

Weused the asymmetric loss to fine-tune a trained network to enable

user control over the variance–bias trade off. We illustrate this

in Figure 17, which features denoising results with an increasingly

asymmetric loss. Increasing λ allows the network to perfer solutions
that retain some noise instead of enforcing an overly smooth result.

Leaving a small amount of residual noise helps preserving input

details. See the accompanying video for a detail comparison.

In Figure 18, we compare the noise produced by the asymmetric

loss to a naive approach of adding the input noise: we simply blend

between the noisy input and a denoised image obtained using a

network optimized for the standard symmetric loss. The blending

weight β was tuned to minimize the mean squared error between

the blended image and the result obtained with the asymmetric loss.

The naive way of “blending in” the input noise preserves fireflies

and the final image inherits the heavy-tail noise distribution of

the input. In contrast, the asymmetric loss unifies the noise and

produces a visually more uniform noise which increases in regions

of low confidence and decreases in easy-to-denoise areas.

7.5 Adaptive Sampling

In Figure 19, we compare the reconstruction accuracy using uniform

and adaptive sampling, according to both MrSE and DSSIM. We

distributed samples using the SMAPE loss predicted by our network,

which resulted in sample distributions that capture the general

distribution obtained using the ground-truth loss, computed using

the reference image. In the worst case (bottom row), the adaptive

result was slightly worse according to DSSIM, but still offered an

improvement according to MrSE. In the best case, both the DSSIM

and MrSE losses were reduced by approximately 40% over uniform

sampling.
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Input Ours-6 Ours-12 Ours-24 Ours-6-MS Reference

Fig. 16. Multi-scale reconstruction. The occurrence of residual low-frequency noise is dominated by the network depth, not the kernel size. Blotches visible in

the reconstruction using our single-frame network with 6 residual blocks (Ours-6) gradually vanish as we increase the network depth (Ours-12, Ours-24), all of

which use a 21 × 21 kernel prediction. Our multi-scale architecture (Ours-6-MS) can yield smooth result even with a shallow network, enabling good results in

memory- or run-time-constrained environments. © Disney / Pixar.

Input Symmetric (lambda = 1) λ = 2 λ = 9 Reference

Fig. 17. Asymmetric loss. The asymmetry parameter λ gives the user fine-grained control over the denoiser variance–bias trade-off. An increased slope

parameter λ results in a more conservative filter, which better preserves details at the expense of an increased level of residual noise. © Disney / Pixar.

(1 − β ) × sym. Asym. loss w/

Input +β × input λ = 10

Fig. 18. Asymmetric loss. A comparison of two approaches for reducing blur

(bias). The insets in the middle column show a blend between the input

(left insets) and a denoised image produced w/ a symmetric loss. The right

insets show results w/ an asymmetric loss. Although images are similar on

average, the asymmetric leaves noise with an aesthetically more pleasing

distribution. © Disney / Pixar.

7.6 Runtime Cost

The denoising time of a video sequence of resolution 1920 × 804

with the 7-frame temporal denoiser with 21 × 21 kernel prediction

is 10.2s per frame. This time can be broken down in the cost of

the spatial-feature extractor (3.0s per frame), running the temporal

combiner (2s per frame), and kernel prediction (5.2s per frame).

These numbers are averages over 100 experiments and are recorded

with an Nvidia Titan X (Pascal) GPU. The frames are denoised in 8

overlapping spatial tiles of size 544 × 466 to fit the GPU memory.

8 ANALYSIS OF KPCN

Kernel prediction has been observed to converge faster than di-

rect prediction [Bako et al. 2017; Niklaus et al. 2017; Vogels 2016].

Predicted sampling Groundtruth sampling

DSSIM |MrSE 62.4% | 57.9% 58.5% | 54.1%

DSSIM |MrSE 88.3% | 80.1% 82.1% | 73.5%

DSSIM |MrSE 103.4% | 88.4% 94.3% | 80.3%

Fig. 19. Sampling maps. We denoise 11 scenes with adaptive sampling

using the error-predicting network for SMAPE and visualize the results

for the best (top row) median (middle row), and worst (bottom row) error

relative to uniform sampling, according to DSSIM. The reconstruction shown

(left) uses the predicted sampling map (center), which correctly captures

the distribution of the ground-truth sampling map (right). The relative

reconstruction error relative to uniform sampling, when using the predicted

and ground-truth maps, are given under each (lower is better). © Disney.

The convergence plot on the right

compares two independently trained

networks that differ only in the re-

construction approach. The kernel-

predicting network converges faster

with greater stability. In what follows,

we provide a theoretical justification

for these empirical observations.
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We analyze and compare the convergence behavior of a shallow,

convex analogue of KPCN against its direct prediction variant. In

Appendix A, we demonstrate that kernel prediction is implicitly

performing mirror descent [Beck and Teboulle 2003] on a function

constrained on the probability simplex with an entropic regularizer

(see Bubeck [2015]; Shalev-Shwartz et al. [2012] for an in-depth

treatment of mirror descent). We can then leverage established re-

sults in convex optimization to show that optimizing the kernel

prediction problem enjoys an exponential improvement in conver-

gence speed over otherwise equivalent direct prediction methods

with respect to the dimensionality of the parameter space.

Since the structure of the KPCN and DPCN networks proposed

by Bako et al. [2017] differ only in the final layer, we consider the

following “shallow”, convex analogue of KPCN. Given a set of data

points xn ∈ Rd and corresponding targets yn ∈ R for n = 1, . . . ,N ,

we aim to solve

argmin

θ ∈Θ
ℓ(θ ) = argmin

θ ∈Θ

1

N

N∑
n=1

fn (y
n − θ⊤xn ), (9)

where fn is a convex loss function (e.g. squared or absolute error).

For direct prediction, the parameter space is Θ ⊂ Rd , a compact

convex subset of Rd . For kernel prediction the parameter space

Θ = ∆d = {θ ∈ R
d
+ :

∑d
j=1 θ j = 1} is restricted to the probability

simplex.

The following proposition characterises the difference in rate of

convergence between kernel and direct prediction. Specifically it

compares the loss evaluated on the averaged sequence of solutions

after T ≥ 1 update steps, ℓ
(
1

T
∑T
t=1 θ

(t )
)
with the loss at the opti-

mum, ℓ(θ∗). This is exactly the setting in which ubiquitously used

adaptive convex optimization algorithms (e.g. AdaGrad [Duchi

et al. 2011] and Adam [Kingma and Ba 2014]) have been analyzed.

Recently, Balduzzi et al. [2017] used this framework to obtain con-

vergence guarantees for a more general class of non-convex, non-

smooth deep neural networks (including convolutional networks

with ReLU non-linearities).

Proposition 8.1. Define EKernel ≜ ℓ
(
1

T
∑T
t=1 θ

(t )
)
− ℓ(θ∗) as the

suboptimality of the solution to (9) with Θ = ∆d after T iterations
Similarly, define EDirect as the suboptimality of the solution to the
same regression problem where Θ ⊂ Rd . So we have

EKernel = O

(√
logd

T

)
, and EDirect = O

(√
d

T

)
.

The proof is provided in Appendix A. Proposition 8.1 states that

kernel prediction achieves exponentially faster convergence—in terms

of the dimension of the parameter space, d—than direct prediction.

This analysis of the simplest, convex analogue of kernel prediction

goes some way towards explaining the large empirical improvement

in convergence speed and stability of KPCN over its direct prediction

variants.

9 DISCUSSION AND FUTURE WORK

In this section, we elaborate on the motivations and implications of

some of our design choices, as well as outline ongoing experiments

with alternative architectures.

9.1 Multi-scale Reconstruction

Relative to the computational cost, our multiscale approach provides

only marginal improvements. This is because—at higher SPP inputs

particularly—the network on which it is based (see Figure 4) already

performs well in preventing low-frequency artifacts and blotches.

However, we do observe a noticeable benefit at lower sampling rates

or for networks with fewer parameters.

Kernel Size. Recent experiments indicate that the kernel size for

the final reconstruction can be reduced to 5 × 5, while still handling

low-frequency noise well, using our multi-scale architecture.

Relation to U-Net. An alternative implementation of our multi-

scale reconstruction could be to incorporate the U-net architecture

[Chaitanya et al. 2017; Ronneberger et al. 2015], which naturally

decomposes the feature representation—rather than the image—at

multiple scales, by having a kernel prediction at the end of each

U-Net scale. Ongoing experiments indicate this yields similar recon-

struction quality, while providing computational benefits.

9.2 Training Modules in Parts

While training modules in parts offers some compelling advantages,

such as only training a new source-aware encoder to support an

additional data source, it is not a requirement: the whole network

can in theory be trained end-to-end. The main motivation for train-

ing our framework in parts is the complexity of its modules (in

terms of number of residual blocks and bandwidth, i.e. convolu-

tional kernels per block), which is such that it cannot fit in memory.

We have successfully experimented with end-to-end training of a

lighter network configuration—including the source-aware encoder,

spatial feature extractor, temporal combiner and scale-compositing

modules. This lighter network configuration comes at a minor loss

of quality, presumably because of the reduced modeling power. We

have, however, not yet explored whether training in parts compro-

mises performance compared to end-to-end training.

9.3 Asymmetric Loss

Our asymmetric loss functions use an inherent notion of uncertainty

based on Bayesian decision theory to adapt the level of retained

residual noise. A fully Bayesian approach could be considered, where

the network would maintain a posterior distribution over the output

space which could then also be used to guide adaptive sampling.

10 CONCLUSION

We have presented a modular denoising architecture that extends

kernel-predicting networks [Bako et al. 2017; Vogels 2016], enabling

temporal and multiscale filtering. We have shown the theoretical

benefit in terms of convergence speed of kernel prediction over

direct prediction which supports our empirical observations and

further justifies its use in our modular denoising architecture.

We proposed source-aware encoders which are able to robustly

handle diverse data from three different rendering systems over a

wide range of sampling rates. Our temporal approach extracts and

combines feature representations from neighboring frames rather

than building a temporal context using recurrent connections. As

such it requires fewer reference images (relative to the size of the

2018-05-11 10:23. Page 13 of 1–15. ACM Transactions on Graphics, Vol. 37, No. 4, Article 124. Publication date: August 2018.
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training set) for training. We evaluated our system by comparing

its performance to recently published methods demonstrating con-

sistent state-of-the-art results across all test data.

We also propose an asymmetric loss function which offers user

control on the denoiser variance–bias tradeoff.We provide a decision-

theoretic justification which posits that, when uncertain, the net-

work will choose to retain residual noise rather than over-blurring.

We empirically confirm that the asymmetric loss retains subtle de-

tails but crucially does not simply increase the noise level uniformly.
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A MIRROR DESCENT

In this section we give a basic definition of the mirror descent

algorithm [Beck and Teboulle 2003]. We then show the equivalence

between gradient descent updates to the shallow kernel prediction

problem in (9) and a special case of the mirror descent algorithm.

Definition A.1 and Proposition A.3 rely on standard concepts from

convex optimization. We refer the reader to Bubeck [2015] for a

comprehensive treatment of the subject.

Definition A.1 (Mirror descent). For a convex function ℓ(θ ), which
is L-Lipschitz with respect to an arbitrary norm, ∥ · ∥, mirror descent

is an iterative algorithm for solving argminθ ∈Θ ℓ(θ ). Let the mirror
map Φ : Θ → R be a function ρ-strongly convex under ∥ · ∥. The

mirror descent update at iteration t with a learning rate η > 0 is

given by

z(t ) = z(t−1) − η∇ℓ(θ (t−1)) (10)

θ (t ) = argmax

θ ∈Θ
θ⊤z(t ) − Φ(θ ) (11)

Proposition A.2. For a convex function in θ , ℓ(θ ), performing
gradient descent kernel prediction updates is equivalent to mirror
descent updates on (9) with entropic regularizer Φ(θ ) =

∑d
j=1 θ j logθ j

where the parameter space Θ = ∆d is restricted to the probability
simplex.

Proof. The solution to (11) under the conditions in the proposi-

tion is θ (t ) = softmax(z(t )). Recall from Section 3.1, for (9) kernel

prediction performs the following update

z(t ) = z(t−1) − η∇θ ℓ(θ
(t−1)), θ (t ) = softmax(z(t )).

This is precisely an update iteration of the normalized exponential
gradient descent algorithm, a special case of mirror descent [Shalev-

Shwartz et al. 2012]. □

Proposition A.3 (Theorem 4.2 from Bubeck [2015]). Define the
radius R2 = supθ ∈Θ Φ(θ ) − Φ(θ (1)) where θ (1) ∈ argminθ ∈Θ Φ(θ )
and Θ is a closed convex set. Mirror descent as described in Propo-

sition A.1 with a learning rate, η = R
L

√
2ρ
T achieves a convergence

rate

E ≜ ℓ

(
1

T

T∑
t=1

θ (t )

)
− ℓ(θ∗) ≤ RL

√
2

ρT
.

We are now ready to provide the proof of Proposition 8.1.

Proof of Proposition 8.1. From Proposition A.2 we have that

performing kernel prediction updates is equivalent to mirror descent

with Φ(θ ) =
∑d
j=1 θ j logθ j . Φ is 1-strongly convex with respect to

∥ · ∥1, so ρ = 1. We also have that Θ = ∆d so R2 = logd .
Performing direct prediction updates using stochastic gradient

descent is equivalent to performing mirror descent updates with

the mirror map Φ(θ ) = 1

2
∥θ ∥2 which is ρ = 1-strongly in ∥ · ∥2.

In this setting, Θ ⊂ Rd so the radius R2 = d . Plugging these into

Proposition A.3 yields the result. □

Discussion. In the convex setting, the optimal convergence rate

for stochastic first-order optimization methods (such as SGD) is

O(1/
√
T ) and cannot be improved without further assumptions

(e.g. using second order information, or variance reduction [Lucchi

et al. 2015]).

However, popular methods for optimizing deep networks such as

AdaGrad and Adam perform adaptive updates which can greatly

improve convergence speed [Duchi et al. 2011]. However, this im-

provement is typically only realized under restrictive assumptions

(e.g. data sparsity or low-rankness [Krummenacher et al. 2016]).

Practically, adaptive optimization methods often show no improve-

ment over well-tuned SGD [Wilson et al. 2017].

In contrast, mirror descent with entropic regularization shows

a theoretical exponential improvement over SGD regardless of the

data distribution. In fact, mirror descent can be shown to be a second-

order algorithm [Raskutti and Mukherjee 2015]. This goes some

way to explaining why—even though both KPCN and DPCN employ

the Adam optimizer—KPCN shows a substantial improvement in

training speed and convergence stability over DPCN.

This result has implications beyond just the training speed of

KPCN. Recent work by Hardt et al. [2016] has shown that in both

convex and non-convex settings optimizers which converge faster

exhibit better generalization properties.

Kernel prediction has been proposed concurrently as adaptive
convolution for video interpolation [Niklaus et al. 2017]. It should

be noted that the analysis developed here also applies. However,

Mildenhall et al. [2017] modified the kernel prediction output to

remove the softmax. This breaks the equivalencewithmirror descent

and so the theoretical improvement no longer applies.
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