
Controllable Neural Style Transfer for Dynamic Meshes
Guilherme G. Haetinger

haetinger@disneyresearch.com

DisneyResearch|Studios

Switzerland

Jingwei Tang

jingwei.tang@disneyresearch.com

DisneyResearch|Studios

Switzerland

Raphael Ortiz

raphael.ortiz@disneyresearch.com

DisneyResearch|Studios

Switzerland

Paul Kanyuk

pkanyuk@pixar.com

Pixar Animation Studios

USA

Vinicius C. Azevedo

vinicius.azevedo@disneyresearch.com

DisneyResearch|Studios

Switzerland

Original Mesh

Stylized Mesh

Stylized Mesh

Original Mesh

Figure 1: Our novel mesh style transfer method allows seamless transfer of 2D image styles to 3D meshes. It supports stylizing
both static (right) and dynamic assets, such as cloth (top left) and liquid (bottom left) simulations. ©Disney/Pixar.

ABSTRACT
In recent years, animation movies are shifting from realistic rep-

resentations to more stylized depictions that support unique de-

sign languages. To favor that, recent works implemented a Neural

Style Transfer (NST) pipeline that supports the stylization of 3D

assets by 2D images. In this paper we propose a novel mesh styliza-

tion technique that improves previous NST works in several ways.

First, we replace the standard Gram-Matrix style loss by a Neural

Neighbor formulation that enables sharper and artifact-free results.

To support large mesh deformations, we reparametrize the opti-

mized mesh positions through an implicit formulation based on the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0525-0/24/07

https://doi.org/10.1145/3641519.3657474

Laplace-Beltrami operator that better captures silhouette gradients

that are common in inverse differentiable rendering setups. This

reparametrization is coupled with a coarse-to-fine stylization setup,

which enables deformations that can change large structures of

the mesh. We provide artistic control through a novel method that

enables directional and temporal control over synthesized styles

by a guiding vector field. Lastly, we improve the previous time-

coherency schemes and develop an efficient regularization that

controls volume changes during the stylization process. These im-

provements enable high quality mesh stylizations that can create

unique looks for both simulations and 3D assets.

CCS CONCEPTS
• Computing methodologies→ Physical simulation;Mesh ge-
ometry models .

KEYWORDS
Style Transfer, Optimizations, Meshes, Physics Simulations

https://orcid.org/0009-0008-7293-292X
https://orcid.org/0009-0000-6005-7808
https://orcid.org/0000-0002-7437-3198
https://orcid.org/0009-0004-6022-6789
https://orcid.org/0009-0002-4133-4309
https://doi.org/10.1145/3641519.3657474

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Guilherme G. Haetinger, Jingwei Tang, Raphael Ortiz, Paul Kanyuk, and Vinicius C. Azevedo

(a) Original Mesh (b) Darkmatter Style (c) Moon Surface Style (d) Fur Style

Figure 2: Cloth stylization. Our method enables unique stylized cloth simulations, that efficiently transfer image-based styles
to dynamic animated meshes.

ACM Reference Format:
Guilherme G. Haetinger, Jingwei Tang, Raphael Ortiz, Paul Kanyuk,

and Vinicius C. Azevedo. 2024. Controllable Neural Style Transfer for Dy-

namicMeshes. In Special Interest Group on Computer Graphics and Interactive
Techniques Conference Conference Papers ’24 (SIGGRAPH Conference Papers
’24), July 27–August 01, 2024, Denver, CO, USA. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3641519.3657474

1 INTRODUCTION
Since the debut of the first 3D animated movie, Toy Story, the

industry developed a consistent and sophisticated set of tools for

modeling, animating and rendering assets. In recent years, more

stylized depictions are favored over realistic representations to

support storytelling. This prompted researchers and animators to

team up in developing tools that can support new design paradigms:

artistically stylizing volumes [Kanyuk et al. 2023], dynamic mesh

sharpening filters [Somasundaram et al. 2023], and artist driven

linework [Grochola et al. 2023] represent a few recent successful

examples.

Among these recent techniques, image-based stylization of 3D

assets allows artists to achieve new unique looks in an efficient way.

Previous works, however, were either focused on volumetric data

[Aurand et al. 2022; Kim et al. 2019, 2020], static meshes [Liu and

Jacobson 2019; Liu et al. 2018], or lacked artistic control [Gao et al.

2023; Michel et al. 2021] to be directly incorporated in animation

and VFX pipelines. Moreover, mesh appearance modelling works

tend to either be restricted to closely follow the surface of the input

mesh [Hertz et al. 2020; Liu et al. 2018], or to be solely focused on

texture synthesis [Chen et al. 2022; Höllein et al. 2022; Mishra and

Granskog 2022; Yin et al. 2021].

In this paper we propose a novel mesh stylization technique that

is able to produce sharp, temporally-coherent and controllable styl-

izations of dynamic meshes. The proposed method can seamlessly

stylize assets stemming from cloth (Figure 2) and liquid (Figures

12, 8) simulations, while also enabling detailed control over the

evolution of the stylized patterns over time.

At the heart of the proposed tool is a carefully designed pipeline

that improves previous stylization methods in several ways. First,

we replace the standard Gram-Matrix-based [Gatys et al. 2016] style

loss by a Neural Neighbor [Kolkin et al. 2022] formulation that

enables sharper and artifact-free results. In order to support large

mesh deformations, we reparametrize the optimized mesh positions

through an implicit formulation based on the Laplace-Beltrami

operator [Nicolet et al. 2021] to better capture silhouette gradients,

commonly present in inverse differentiable rendering setups. We

couple this reparametrizationwith a coarse-to-fine stylization setup,

which enables deformations that can change large portions of the

mesh.

Control is one of the often overlooked aspects of image-based

stylization. We propose a novel method that enables control over

synthesized directional styles on the mesh by a guided vector field.

This is embodied by augmenting the style loss with multiple orien-

tations of the style image, which are combined with a screen-space

guiding field that spatially modulates which style direction should

be used. Lastly, we improve the previous time-coherency schemes

[Kim et al. 2020] and develop an efficient regularization that con-

trols volume changes during the stylization process. These improve-

ments enable novel mesh stylizations that can create unique looks

for both simulations and 3D assets (Figure 1).

2 RELATEDWORK
Neural Style Transfer. Image-based Neural Style Transfer (NST)

[Gatys et al. 2016] taps into the representation power of Convolu-

tional Neural Networks trained for classification tasks [Simonyan

and Zisserman 2014; Szegedy et al. 2014] to develop an innovative

approach that can transfer styles between images. NST iteratively

optimizes the resulting image with two complimentary objectives:

a content loss that measures differences between CNN features, and

a style loss that computes secondary statistics for channels within a

specific layer. Many follow-up works adopted the pipeline proposed

by Gatys et al. [2016]: [Li and Wand 2016; Li et al. 2017d,c; Risser

et al. 2017] explored alternative feature representations to improve

the style loss objective, and single [Jing et al. 2018; Johnson et al.

2016; Ulyanov et al. 2016; Wang et al. 2017], multiple [Chen et al.

2017; Dumoulin et al. 2017; Li et al. 2017a; Zhang and Dana 2019]

and arbitrary style [Ghiasi et al. 2017; Huang and Belongie 2017; Li

et al. 2019, 2017b; Shen et al. 2018] convolutional neural networks

were trained to improve style transfer efficiency. Among notable

extensions, a neural neighbor method [Kolkin et al. 2022] drastically

improves stylization quality. It works by spatially decomposing the

content and style images into feature vectors, and then replacing

each individual content feature vector with its closest style feature

through a nearest neighbor search.

Neural style transfer was also extended for 3D assets. Volumetric

[Aurand et al. 2022; Guo et al. 2021; Kim et al. 2019, 2020] and

mesh style transfer [Kato et al. 2018; Liu et al. 2018] pipelines uti-

lize differentiable rendering to generate images through a set of

well-distributed views to obtain a image-space loss/energy function.

Stylization of 3D assets were performed with neural radiance fields

https://doi.org/10.1145/3641519.3657474

Controllable Neural Style Transfer for Dynamic Meshes SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

representations [Huang et al. 2021; Liu et al. 2023c; Nguyen-Phuoc

et al. 2022; Zhang et al. 2022], applied to mesh texture synthesis

[Frühstück et al. 2019; Höllein et al. 2022; Sendik and Cohen-Or

2017; Yin et al. 2021; Zhou et al. 2018], and combined with CLIP em-

beddings [Gao et al. 2023; Michel et al. 2021; Mishra and Granskog

2022] for text-based stylization. For a thorough review of 3D neural

stylization, we refer to Chen et al. [2023].

Geometric Methods. Other than image-based style transfer, a

set of methods focus on geometric approaches to directly modify

meshes based on the style of other 3D shapes. Similarly to image

analogies [Hertzmann et al. 2001], Ma et al. [2014] formulates 3D

shape style transfer by computing analogies between assets. The

idea is further extended by Liu and Jacobson [2021] to handle free-

form deformations of the source shape. Liu and Jacobson [2019]

implements cubic stylization through as-rigid-as-possible (ARAP)

energy [Sorkine and Alexa 2007]. Kohlbrenner et al. [2021] extends

[Liu and Jacobson 2019] by allowing interactive choices of the

surface normal directions. Learning-based methods have also been

employed to learn high frequency details for geometric texture

synthesis [Hertz et al. 2020], perform style-aware mesh subdivision

[Liu et al. 2020], and extract geometric features for stylization [Kang

et al. 2023].

Diffusion Models for 3D Assets. Alongside the development of

text-to-image generative models [Radford et al. 2021; Rombach et al.

2022], recent works focus on generating mesh textures with textual

prompts through diffusion models [Chen et al. 2022; Richardson

et al. 2023]. Many works also developed methods on the direct

generation of 3D assets from text [Poole et al. 2022; Shi et al. 2023;

Wang et al. 2023] or from single-view images [Liu et al. 2023b,a;

Qian et al. 2023]. To the best of our knowledge, transferring 2D

image styles to 3D assets through diffusion models is still an under-

explored area.

3 METHOD
We follow a similar pipeline as the previous volumetric [Aurand

et al. 2022; Kim et al. 2019, 2020] and mesh style transfer [Liu et al.

2018] methods (Figure 3): 3D assets renders are generated by a

differentiable renderer through a set of Poisson-distributed views

to obtain an image-space loss (energy) function. This loss function

is minimized with respect to the mesh vertex positions x to obtain

a stylized look. This is expressed by

x̂ = argmin

x

∑︁
𝜃∼Θ
L𝑠 (R𝜃 (x) , 𝐼𝑠), (1)

where R is a differentiable renderer with a camera setup 𝜃 sam-

pled from a distribution Θ of all possible configurations. The style

loss (L𝑠) receives the rendered (R𝜃 (x)) and style (𝐼𝑠) images to

evaluate the style matching objective. The stylization process is

also required to ensure that the content of the generated image

matches the original input. This is implemented either by initializ-

ing the optimization with the original image and making sure that

the optimized variable is bounded [Aurand et al. 2022; Kim et al.

2019, 2020], or by using additional content losses [Gatys et al. 2016;

Huang and Belongie 2017]. We initialize the stylized mesh to be the

original mesh in our pipeline.

3.1 Neural Neighbor Style Transfer
Central to an efficient stylization is a dimensionality reduced image

representation that will allow the decomposition of the image into

its representative elements. Commonly, image features are com-

puted through the feature activation maps from a pretrained clas-

sification networks such as VGG [Simonyan and Zisserman 2014]

or Inception [Szegedy et al. 2014]. The style of an image is then

extracted by computing the secondary statistics of those features.

Specifically, the Gram matrix models correlations through a dot

product between channels of a single classification network layer.

However, the performance of Gram matrices can be subpar. The

problem arises when synthesizing high-frequency details: the Gram

matrix optimization can guide the result to focus on correlations

that are not relevant in smaller scales. This creates a “washed out”

stylization that converges to a local minima where high-frequency

details are mixed or not clearly visible (Figure 4).

(a) Original Mesh (b) Gram Matrix (c) Neural Neighbor

Figure 4: Neural Neighbor Stylization. By stylizing the mesh
with the neural neighbor loss (Equation (2)) a sharper,
artifact-free stylization can be achieved: (a) original mesh;
(b) stylizing with the traditional Gram matrix style loss; (c)
results obtained by neural neighbor stylization equation.

Neural neighbor style transfer [Kolkin et al. 2022] fixes this issue

by first spatially decomposing the content and style images into

feature vectors, and then replacing each individual content feature

vector with its closest style feature through a nearest neighbor

search. This generates a set of style features that preserves the

layout of the original image, allowing the optimization to process

image corrections that can synthesize high-frequency details. The

neural neighbor stylization defines the style loss as the cosine

distance Dcos between the replaced features and the feature to be

optimized as

L(𝐼 , 𝐼𝑠)𝑠 =
1

𝑁

𝑁∑︁
𝑖=1

Dcos

(
N

(
F (𝐼𝑖), F (𝐼𝑠)

)
, F (𝐼𝑖)

)
, (2)

where F is the zero-centered feature extraction network, N is the

function that replaces the features of a given 𝑖-th pixel of the image

to be optimized 𝐼𝑖 with the nearest neighbor feature on the style

image 𝐼𝑠 , and𝑁 is the number of pixels of the image to be optimized

𝐼 .

In our pipeline, Equation (2) is plugged into Equation (1) with

𝐼 = R𝜃 (x), and mesh vertices are optimized such that at each

iteration the cosine distance between the zero-centered extracted

features of the rendered mesh and the style image are minimized.

In the original work of Kolkin et al. [2022], the authors include

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Guilherme G. Haetinger, Jingwei Tang, Raphael Ortiz, Paul Kanyuk, and Vinicius C. Azevedo

Figure 3: Mesh stylization pipeline for a single frame. In the forward pass (purple arrow), an implicit Laplacian parametrization
is applied to mesh vertices. This parametrization allows the optimization process to modify large portions of the mesh.
Differentiable rendering is used with Poisson sampled cameras for a view-consistent stylization. Combined with user-input
orientation fields, the nearest neighbour search in the feature space efficiently captures discrepancies between the rendered
and style images. The loss function gradient is backpropagated (orange arrows) to the Laplacian parametrization space and
updates the mesh parameters. The technique has not yet been used in any Pixar films. ©Disney/Pixar.

a formulation that stabilizes the optimization by anchoring the

nearest neighbor loss using the features of the input content image,

instead of the one that is being interactively optimized 𝐼 . We noticed

in our experiments that not including this term does not pose any

instability issues.

3.2 Multi-level Optimization through
Laplacian Smoothing

Key to our approach is the decomposition of the stylization into

multiple levels, enforcing a coarse-to-fine optimization process.

Naively optimizing a multi-scale image-space loss function (Equa-

tion (1)), however, is not enough to modify large structures of the

mesh. This happens because geometric gradients in differentiable

rendering contain sparse values stemming from silhouette modi-

fications [Nicolet et al. 2021]. Despite having large values, these

silhouette gradients are not able to significantly modify large struc-

tures of the mesh due their sparsity. Therefore, the optimization

process can get stuck in creating small scale structures that are

overly restricted to the mesh surface.

With this observation, we reparametrize the optimized posi-

tions of Equation (1) through an implicit formulation based on the

Laplace-Beltrami operator L in a similar way as Nicolet et al. [2021]:

x∗ = (I + 𝜆L)x, (3)

where I is the identity matrix and 𝜆 is a parameter to control

the smoothness of the parametrization. This reparametrization

effectively modifies the gradient in each optimization step as

x∗ ← x∗ − 𝜂 (I − 𝜆L)−1 𝜕L
𝜕x∗

, (4)

with 𝜂 being the learning rate. The effect of reparametrizing the

mesh positions with Equation (3) is that the sparse silhouette gradi-

ents as well as the image-space modifications are diffused to larger

regions of the mesh during the backpropagation step. Figure 5

demonstrates the effect of the reparametrization: with 𝜆 set to zero

in (b), the optimization process is unable to modify large structures

of the mesh; higher 𝜆 values enable coarser mesh updates in (c) –

(e).

To better synthesize structures at different scales, we implement

a coarse-to-fine strategy that receives as input a set of rendered and

style images, with optimizing images with the smallest size as the

first level. The output of each coarse level stylization serves as the

initialization of the next finer level. This approach also has to lever-

age the influence of the reparametrization proposed on Equation (3).

As we progress to finer levels, we decrease the Laplacian coefficient

𝜆 to make more local/detailed changes. Figure 5(f) demonstrates

how these parameters work together to create a stylized result that

can modify both large scale structures and small scale details of the

mesh.

3.3 Guided Stylization with Orientation Fields
One of the often overlooked aspects of incorporating mesh styliza-

tion into animation pipelines is that some styles have directional

features relevant to the final result. Consider the style image that

has a distinctive directional component shown in Figure 6: if one

naively stylizes the mesh with this image, stylized patterns can be

synthesized in arbitrary directions. We propose two modifications

that allow the method to be better oriented given an input orien-

tation field. First, the neural neighbor style loss is augmented by

rotating the style image into several different orientations. Each

rotated image is associated with a directional vector that indicates

Controllable Neural Style Transfer for Dynamic Meshes SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

(a) Original Mesh (b) 𝜆 = 0 (c) 𝜆 = 1 (d) 𝜆 = 5 (e) 𝜆 = 20 (f) 𝜆 = 20, 5, 0.5

Figure 5: Stylization results for multiple 𝜆 parameters over multiple scales. As 𝜆 decreases, so does the stylization locality, until
it becomes uncoordinated noise at 𝜆 = 0. The last results illustrates how using multiple 𝜆s helps generating the best stylization
over all scales. ©Disney/Pixar.

the orientation of the style. Second, we allow a user-specified ori-

entation vector field defined on the mesh. The directional vectors

are then combined with a screen-space orientation field (Figure 3,

bottom right) to compute a set of per-pixel weights associated with

each rotated style image.

We employ a simplified rendering process for the orientation

field: the user-specified orientation vectors are mapped to RGB com-

ponents of a textured mesh, and then rendered with a flat shading

and no lights for each camera view. The rendering still considers

occlusions, so only visible orientation fields will be projected to the

screen-space. These 2D orientation vectors are then combined with

the directional vectors of the rotated style images through a dot

product, creating several per-pixel masks that serve as weights for

the style losses represented by the rotated style images. We show

the effects of the control guides in Figure 6: a style image with

horizontal lines is used to stylize the Panda Statue in (a); by aug-

menting the style loss with several orientations (b), the stylization

is able to match features that are oriented in different directions,

but the sense of directionality is lost; by introducing the orientation

field in (c), the stylization is able to produce patterns following the

user-specified input.

3.4 Enforcing Temporal Coherency
The mesh style loss in Equation (1) is only defined for a single

frame, and is therefore not temporally coherent: directly optimizing

it produces patterns that abruptly change across different frames.

A common strategy is to align stylization displacements computed

individually for different frames with the velocities defined by the

underlying animation [Aurand et al. 2022; Kim et al. 2019]. The

adjacent aligned displacement fields are then smoothed out to en-

sure that transitions between frames are continuous. To implement

temporal coherency efficiently we adopt an approach that is similar

to Aurand et al. [2022]: displacement contributions across multiple

frames are accumulated every time-step, which requires a single
alignment and smoothing step. For each 𝑡 > 0, this amounts to

blending displacements with

d𝑡 ← (1 − 𝛾𝜇 (𝛼)) d𝑡 + 𝛾𝜇 (𝛼) T (d𝑡−1, u𝑡−1), (5)

where d𝑡 = x̂∗𝑡 − x∗𝑡 is the mesh displacement at timestep 𝑡 and u𝑡
represents vertex velocity of the animated mesh. We highlight that

(a) No Aug. (b) 8 Aug. (c) 8 Aug. + Guide

Figure 6: Guided Stylization with Orientation Fields. (a) Style
transfer without rotation augmentations on the Panda Statue.
(b) Using 8 rotation augmentations. (c) Guiding the style loss
in (b) with orientation fields. ©Disney/Pixar.

the displacements are computed over the Laplacian parametrized

variable x∗, which also further ensures smoothness in temporal

coherency.

While previous EMA-based NST [Aurand et al. 2022] pipelines

are able to produce temporally coherent stylizations for volumetric

data, we found that this approach produces sub-par results for

mesh stylizations. Therefore, we improve upon it by employing

an iteration-aware function 𝛾𝜇 that replaces the constant blending

weight 𝛼 . By adopting a linearly decaying function as iteration

progresses our results are able to obtain stylizations that allow

sharper synthesized patterns. The function 𝛾𝜇 (𝛼) = 𝑚𝑎𝑥 (𝛼 (1 −
𝑚
𝜇), 0) employs a decaying period factor 𝜇 that modulates the EMA

smoothing weight according with the𝑚-th iteration. We refer to

our supplemental video, which better illustrates the effect of the

iteration-aware EMA smoothing.

The T function uses the per-vertex velocities u𝑡−1 to transport

quantities defined over the mesh across subsequent frames. We

chose the transport function to be the standard Semi-Lagrangian

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Guilherme G. Haetinger, Jingwei Tang, Raphael Ortiz, Paul Kanyuk, and Vinicius C. Azevedo

(a) V = 23.19m3 (b) V = 10.64m3 (c) V = 20.98m3 (d) V = 22.51m3

Figure 7: Volume conservationwith stochasticmasking. Style
transfer on the input mesh (a) using a high learning rate re-
sults (1 × 10−2, 5 × 10−3, 5 × 10−4) in big volume changes with-
out volume conservation (b). When the learning rate is tuned
to be lower (1 × 10−3, 5 × 10−4, 5 × 10−4) in (c), volume con-
servation is better, but the stylization is sub-optimal. When
stochastic masking is enabled in (d), even with the learning
rate as (b), the volume is conserved better. ©Disney/Pixar.

method, defined as

T (d𝑡 , u𝑡) = I(P(x∗𝑡 , u𝑡), d𝑡−1), (6)

where P and I represent the position integration (e.g., Runge-

Kutta) and interpolation functions, respectively. Differently from

previous volumetric approaches, an interpolation function for the

displacements is not readily available for animated meshes. We

therefore employ a Shepard interpolation to continuously sample

mesh displacements in space. For each vertex, a fixed neighborhood

size of 50 is used for the interpolations of all our examples.

3.5 Volume Conservation Regularization
In some cases, the stylization procedure might induce prohibitive

change of volume (Figure 7(b)), especially in thin regions of the

mesh. To avoid this issue, one could enforce a divergence free con-

straint into the stylization displacements. This can be accomplished

by restricting the displacements to follow the tangent space of the

mesh [Müller 2009; Zhang et al. 2012], or by solving a Poisson

system to project the displacements into their closest divergence

free counterpart at each iteration [Da et al. 2016]. We tried both

approaches in our early experiments, but the restriction of strictly

preserving the volume at each iteration overconstrains the styliza-

tion, generating subpar results. Drastically decreasing the learning

rate can improve volume conservation (Figure 7(c)), but results in

less stylized results that are mostly restricted to the mesh surface.

We implemented a simpler approach that works better in practice

(Figure 7(d)). At the start of each optimization scale, we initialize

a random mask that covers a user-defined percentage of the ver-

tices. These vertices are defined in the Laplacian parametrization

and they are kept from being displaced by the stylization. Due to

the Laplacian parametrization, masked vertices have influences on

their neighboring vertices, enabling a smooth transition from non-

stylized to stylized regions. For the coarser scales, we observe that

the mask has to pin down vertices more aggressively to prevent

(a) Original Mesh (b) [Kim et al. 2020] (c) Ours (d) Ours (no mask)

Figure 8: Viscous sheet. LNST [Kim et al. 2020] (b) shows
inferior results than ours (c), as it can only modify the mesh
structures indirectly during optimization.We show the effect
of using no volume conservation in (d): the optimization can
generate invalid mesh configurations when stochastic masks
are not used.

volume loss; for the finest scales, no mask is necessary, since the

stylization will mostly focus in creating small scale details that do

not incur in significant volume loss. The effect of the proposed

masking can be seen in Figure 8(d): naively stylizing thin structures

present in the original animated mesh generates invalid mesh con-

figurations; by using a mask covering 20% and 10% of the vertices in

the two coarsest levels, the stylization sharply synthesizes patterns

present on the style image. Algorithm 1 summarizes all the steps

required by our mesh stylization pipeline.

4 EXPERIMENTS AND RESULTS
The proposed mesh stylization pipeline was implemented in Py-

Torch [Paszke et al. 2019] and uses PyTorch3D’s Differentiable

Renderer [Ravi et al. 2020]. We apply a specular material to the

target meshes and render them with a light source attached to the

camera position. For each optimization step, an orthographic cam-

era is randomly sampled within a pre-defined range. To efficiently

integrate the parametrization in Section 3.2 into the stylization

pipeline, we precompute the (I + 𝜆L)−1 through a Cholesky decom-

position for each mesh that is stylized. We also observed that there

were little differences between using combinatorial or cotagent

discrete Laplacian formulations; due to efficiency and simplicity we

chose the former. Typically, more iterations are used when scales

goes finer. We use volume conservation regularizations from Sec-

tion 3.5 in all our experiments unless otherwise mentioned. The

animated meshes for liquid and cloth simulations (Figures 12, 2 and

8) are created in Houdini. We infer vertex velocities for temporal

coherency treatment through a first-order Euler step. All results are

rendered with Houdini’s Mantra renderer. The AdamW optimizer

[Loshchilov and Hutter 2019] is used with 𝛽1 = 0.9 and 𝛽2 = 0.999

in both color and displacement optimizations. All experiments are

conducted on a Nvidia RTX 3090 GPU. We show detailed informa-

tion as well as the runtime for each example in Table (1). We refer

Controllable Neural Style Transfer for Dynamic Meshes SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

Algorithm 1: Displacement optimization at frame 𝑡

Input: Vertex positions x𝑡 ; stylized vertex positions x̂𝑡−1;
style image 𝐼𝑠 ; orientation field G (optional); Extra

Non-stylization MaskingM (optional).

Param: Set of image scales S; set of learning rate 𝜂; set of

Laplacian coefficients 𝜆; set of number of iterations

Niters; set of stochastic masking ratios r.
⊲ Each set has the cardinality of 𝑁

scales
.

Output: Stylized vertex positions x̂𝑡
1 Camera Param. Θ← PoissonSample() ⊲ |Θ| = Sum (N𝑖𝑡𝑒𝑟𝑠)
2 x̂𝑡 ← x𝑡 ⊲ Initialization

3 for ℓ ← 1 : 𝑁scales do
4 CholeskyDecomposition(𝐼 + 𝜆ℓ𝐿)
5 Mℓ ← RandomSample(𝑟ℓ) ∪M ⊲ Sec 3.5

6 x̂∗𝑡 ← (𝐼 + 𝜆ℓ𝐿) x̂𝑡
7 x̂∗

𝑡−1 ← (𝐼 + 𝜆ℓ𝐿) x̂𝑡−1
8 for𝑚 ← 1 : Nℓ

iters do
9 x̂∗𝑡 ← TemporalCoherency

(
x̂∗𝑡 , x̂

∗
𝑡−1

)
⊲ Eq. 5

10 x̂𝑡 ← CholeskySolve (x̂∗𝑡) ⊲ Eq. 3

11 L ← L
(
RΘℓ

𝑚
(x̂𝑡), 𝐼𝑠 , Sℓ ,G

)
⊲ Eq. 2, Sec. 3.3

12 x̂∗𝑡 ← AdamW

(
x̂∗𝑡 ,L, 𝜂ℓ

)
⊲ Eq. 4

13 x̂∗𝑡 ← VolumeConservation(x̂∗𝑡 ,Mℓ) ⊲ Sec 3.5

14 end
15 x̂𝑡 ← CholeskySolve (x̂∗𝑡) ⊲ Eq. 3

16 end

to our supplemental video, which better illustrates dynamic aspects

of our stylization pipeline.

4.1 Color and Displacement Guidance Priors
Color plays an intricate and essential role in 2D image style transfer.

While experimenting on how to integrate color stylization in our

pipeline, we found that simultaneously optimizing for color and dis-

placements produced results that limited the influence of the latter.

This happens since stylizing a set of vertex colors for a given view is

less constraining than modifying a set of vertex positions. We thus

implement color and displacement optimizations in a sequential

order: Figure 11(c) first optimizes displacements and then colors,

while (d) first optimizes colors then displacements. Optimizing for

colors first tend to bias the synthesized displacements to better

follow texture patterns. We leave it as an option for the user to

decide the order of the stylization, as the quality of the results is

highly example-dependent.

4.2 Comparisons with Previous Approaches
We compare our pipeline to previous approaches in Figure 9. The

original code of Paparazzi [Liu et al. 2018] did not include their

style transfer examples, so simplifications on our codebase were

made to emulate their method. Specifically, we employed a sin-

gle scale Gram matrix style loss, removed masking, and did not

include the implicit Laplacian parametrization of mesh vertices.

Figure 9(b) demonstrates the results of the Paparazzi stylization:
synthesized structures are overly constrained to the mesh surface,

and do not properly represent the style of the input image. Addi-

tional comparisons with Text2Mesh [Michel et al. 2021] (Figure 9(c))

and TextDeformer [Gao et al. 2023] (Figure 9(d)) are provided. Both

works mostly focus on stylizing meshes with input text prompts,

but the authors adopt a style loss that measures the cosine distance

between the style and rendered image CLIP embeddings [Radford

et al. 2021]. The stylized results demonstrate that CLIP embeddings

can have difficulties representing the style image accurately. Lastly,

our approach (Figure 9(e)) is able to create larger mesh deformations

that can faithfully represent the input style.

Figure 8 compares our approach against the Lagrangian Neural

Style Transfer (LNST) [Kim et al. 2020]. LNST can only modify

mesh structures indirectly, since the stylization displacements are

added to the original particle positions that control the simulation.

These positions implicitly track the liquid surface changes through

a particle-to-grid operation that is implemented through smooth

transfer kernels. This assumption results in a liquid surface repre-

sentation that does not have the necessary degrees of freedom to

allow localized sharp stylizations. Thus, LNST modifications are

mostly focused on creating holes that poke through the liquid sheet,

and therefore fail to capture the discontinuous features required

by the triangular style image (Figure 8(b)). Our approach, on the

other hand, directly modifies vertex positions at the liquid interface,

enabling sharp stylizations (Figure 8(c)). Lastly, we also show the

effect of not using vertex masking in Figure 8(d): thin structures

present in the original animated mesh can easily generate invalid

mesh configurations if vertices are not appropriately pinned.

4.3 Artistic Control Inputs
Controllable Masking. Other than the volume preservation sto-

chastic masking in Section 3.5, our implementation also allows the

input of a user-specified mask to fix a specific region to be non-

stylized. This facilitates not only the artistic control of synthesized

style features, but also volume conservation on thin regions of the

mesh. Figure 13 shows how one can leverage this functionality by

defining a mask in (b) to generate the stylization (d) while maintain-

ing mesh structures around the Manticore’s eye, nose and mouth

regions. The Laplacian parametrization ensures that the transition

between stylized and non-stylized regions are smooth.

Orientation Fields. Combining

user-defined orientation fields

with rotation augmentation of the

style images can better help syn-

thesized structures to align with

the input mesh features. The inset

image shows the effect of using a

prescribed orientation field to align the style patterns with the

sword blade in Figure 1. Another example that uses guiding orien-

tation fields is shown in Figure 6: the input orientation field (c) is

able control how the line patterns align. When no orientation field

is used (a), the stylization follows the horizontal direction for the

whole mesh.

4.4 Stylization on Animated Meshes
Stylization results on animated meshes are shown in Figures 2,

12, 14, 8. We tested different parameters for temporal coherency

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Guilherme G. Haetinger, Jingwei Tang, Raphael Ortiz, Paul Kanyuk, and Vinicius C. Azevedo

(a) Original Mesh (b) [Liu et al. 2018] (c) [Michel et al. 2021] (d) [Gao et al. 2023] (e) Ours

Figure 9: Style transfer comparisons for Spot. The original mesh (a) is stylized with the starry night image (inset) with different
methods. All experiments are run on the input mesh with 210K vertices, except for (d), which runs on a mesh with 3K vertices
as it hits a memory bottleneck. The runtime for each methods are: (b) 72s, (c) 755s (d) 741s and (e) 147s.

Table 1: Parameters and performance statistics.

Example Diff Render No. Image Laplacian Learning Runtime
Resolution Vertices Scales Coefficient 𝜆 Rate (×10−3) (s/frame)

Manticore (Fig. 11) 800 × 800 700K [0.5, 0.5, 1.25] [20.0, 5.0, 1.0] [8.0, 1.0, 5.0] 230

Manticore (Fig. 1) 700 × 700 700K [0.5, 1.0, 1.5] [20.0, 5.0, 0.5] [9.0, 4.0, 1.0] 178

Panda (Fig. 7) 800 × 800 760K [0.5, 1.0, 1.5] [20.0, 5.0, 0.5] [10.0, 5.0, 0.5] 118

Cloth (Fig. 2) 400 × 400 160K [0.5, 1.0, 1.5] [20.0, 5.0, 2.0] [10.0, 5, 1.5] 18

Liquids (Fig. 12) 400 × 400 180K [0.5, 1.0, 1.5] [20.0, 5.0, 0.5] [3.5, 0.8, 0.4] 20

Viscous Sheet (Fig. 8) 700 × 700 200K [0.5, 0.8, 1.0] [20.0, 5.0, 3.0] [5.0, 1.0, 0.25] 14

Spot (Fig. 9) 1000 × 1000 210K [0.4, 0.8, 1.5] [20.0, 5.0, 1.0] [8.0, 2.0, 0.5] 147

Lost Soul (Fig. 14) 800 × 800 175K [0.25, 0.5, 1.0] [20.0, 5.0, 1.0] [4.0, 3.0, 1.0] 56

(temporal smoothing coefficient 𝛼 , and temporal decay period𝑀)

for the cloth stylization sequence. These results can be seen in our

supplemental video. We stylized the liquid simulations (Figure 12)

and the animated character (Figure 14) with a displacement first,

color second order. For better temporal consistency, we only sample

the stochastic mask once at the first frame and keep it fixed over

time on the vertices in the cloth example (Figure 2). The Lost Soul

example (Figure 14) includes orientation and velocity fields gener-

ated by a curl-noise [Bridson et al. 2007] to intentionally guide and

displace patterns over time.

5 CONCLUSIONS
In this paper we present a production-friendly pipeline for mesh

neural style transfer (NST) based on 2D images. To provide a bet-

ter image space style loss gradient, we replace the commonly used

GramMatrix style loss with a neural neighbor formulation. A Lapla-

cian parametrization space is employed to enable a coarse-to-fine

optimization procedure that is able to modify large portions of the

mesh. To enable artistic control over synthesized pattern directions,

we propose to use an input orientation field together with rotation

augmented style images in computing the style loss. Furthermore,

we improve upon the previous EMA-based temporal coherency

treatment by adding an iteration-aware decay term on the blending

weight. Finally, for volume and content conservation during the

stylization process, a stochastic mask is used to pin down vertices

to be non-stylized.

Our pipeline has a few limitations. When color optimization is

applied (Figure 11, 14), the final colorized mesh does not properly

match the color distribution of the style image. This is a known

issue of the neural neighbor formulation [Kolkin et al. 2022]. The

authors apply a color matching post-processing on the stylized

image in the original paper, which can potentially be integrated in

our pipeline. Using stochastic masking does not guarantee a strict

volume conservation, and temporal flickering can be observedwhen

a higher percentage of the vertices is pinned down. Other mesh

volume conservation techniques, such as tetrahedralizing the mesh

and applying a volume conservation step can be further explored

to alleviate this issue. Lastly, our stylizations do not guarantee that

the resulting meshes will be interpenetration-free.

As future work, diffusion models [Ho et al. 2020; Rombach et al.

2022] can provide a promising venue for exploration. Image features

extracted from diffusion models are much more abundant than

those from pre-trained image classification networks, and can thus

provide more powerful stylization capabilities [Hertz et al. 2024].

REFERENCES
Joshua Aurand, Raphael Ortiz, Silvia Nauer, and Vinicius C. Azevedo. 2022. Efficient

Neural Style Transfer for Volumetric Simulations. ACM Transactions on Graphics
41, 6 (Nov. 2022). https://doi.org/10.1145/3550454.3555517 Publisher: Association

for Computing Machinery.

Robert Bridson, Jim Houriham, and Marcus Nordenstam. 2007. Curl-noise for

procedural fluid flow. ACM Transactions on Graphics 26, 3 (July 2007), 46–es.

https://doi.org/10.1145/1276377.1276435

Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, and Gang Hua. 2017. StyleBank: An

Explicit Representation for Neural Image Style Transfer. https://doi.org/10.48550/

arXiv.1703.09210 arXiv:1703.09210 [cs].

Yongwei Chen, Rui Chen, Jiabao Lei, Yabin Zhang, and Kui Jia. 2022. TANGO: Text-
driven Photorealistic and Robust 3D Stylization via Lighting Decomposition. Technical
Report. https://cyw-3d.github.io/tango.

Yingshu Chen, Guocheng Shao, Ka Chun Shum, Binh-Son Hua, and Sai-Kit Yeung.

2023. Advances in 3D Neural Stylization: A Survey. https://doi.org/10.48550/arXiv.

2311.18328 arXiv:2311.18328 [cs].

https://doi.org/10.1145/3550454.3555517
https://doi.org/10.1145/1276377.1276435
https://doi.org/10.48550/arXiv.1703.09210
https://doi.org/10.48550/arXiv.1703.09210
https://cyw-3d.github.io/tango.
https://doi.org/10.48550/arXiv.2311.18328
https://doi.org/10.48550/arXiv.2311.18328

Controllable Neural Style Transfer for Dynamic Meshes SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

Fang Da, David Hahn, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2016.

Surface-only liquids. ACM Transactions on Graphics 35, 4 (July 2016), 1–12. https:

//doi.org/10.1145/2897824.2925899

Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. 2017. A Learned

Representation For Artistic Style. https://doi.org/10.48550/arXiv.1610.07629

arXiv:1610.07629 [cs].

Anna Frühstück, Ibraheem Alhashim, and Peter Wonka. 2019. TileGAN: synthesis of

large-scale non-homogeneous textures. ACM Transactions on Graphics 38, 4 (Aug.
2019), 1–11. https://doi.org/10.1145/3306346.3322993

William Gao, Noam Aigerman, Thibault Groueix, Vova Kim, and Rana Hanocka. 2023.

TextDeformer: Geometry Manipulation using Text Guidance. In ACM SIGGRAPH
2023 Conference Proceedings (SIGGRAPH ’23). Association for ComputingMachinery,

New York, NY, USA, 1–11. https://doi.org/10.1145/3588432.3591552

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2016. Image Style Transfer

Using Convolutional Neural Networks. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, 2414–2423. https://doi.org/10.1109/CVPR.

2016.265

Golnaz Ghiasi, Honglak Lee, Manjunath Kudlur, Vincent Dumoulin, and Jonathon

Shlens. 2017. Exploring the structure of a real-time, arbitrary neural artistic styliza-

tion network. In Procedings of the British Machine Vision Conference 2017. British
Machine Vision Association, London, UK, 114. https://doi.org/10.5244/C.31.114

Pav Grochola, Filippo Maccari, Young Joon Lee, and Edmond Boulet-Gilly. 2023.

Linework in Spider-Man Across the Spider-Verse: An artistic driven approach

to linework generation. In ACM SIGGRAPH 2023 Talks. ACM, Los Angeles CA USA,

1–2. https://doi.org/10.1145/3587421.3595456

Jie Guo, Mengtian Li, Zijing Zong, Yuntao Liu, Jingwu He, Yanwen Guo, and Ling-

Qi Yan. 2021. Volumetric appearance stylization with stylizing kernel prediction

network. ACM Transactions on Graphics 40, 4 (July 2021), 162:1–162:15. https:

//doi.org/10.1145/3450626.3459799

Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-Or. 2020. Deep geometric

texture synthesis. ACM Transactions on Graphics 39, 4 (July 2020). https://doi.org/

10.1145/3386569.3392471 arXiv: 2007.00074 Publisher: Association for Computing

Machinery.

Amir Hertz, Andrey Voynov, Shlomi Fruchter, and Daniel Cohen-Or. 2024. Style

Aligned Image Generation via Shared Attention. https://doi.org/10.48550/arXiv.

2312.02133 arXiv:2312.02133 [cs].

Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and David H. Salesin.

2001. Image Analogies. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques. ACM, 327–340. https://doi.org/10.1145/383259.

383295

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic

models. Advances in Neural Information Processing Systems 2020-Decem, NeurIPS

2020 (2020), 1–25. arXiv: 2006.11239.

Hsin-Ping Huang, Hung-Yu Tseng, Saurabh Saini, Maneesh Singh, and Ming-Hsuan

Yang. 2021. Learning to Stylize Novel Views. https://doi.org/10.48550/arXiv.2105.

13509 arXiv:2105.13509 [cs].

Xun Huang and Serge Belongie. 2017. Arbitrary Style Transfer in Real-Time with

Adaptive Instance Normalization. In 2017 IEEE International Conference on Computer
Vision (ICCV). IEEE, Venice, 1510–1519. https://doi.org/10.1109/ICCV.2017.167

Lukas Höllein, Justin Johnson, and Matthias Nießner. 2022. StyleMesh: Style Transfer
for Indoor 3D Scene Reconstructions. Technical Report. https://lukashoel.github.io/

stylemesh/

Yongcheng Jing, Yang Liu, Yezhou Yang, Zunlei Feng, Yizhou Yu, Dacheng Tao, and

Mingli Song. 2018. Stroke Controllable Fast Style Transfer with Adaptive Receptive

Fields. InComputer Vision – ECCV 2018: 15th European Conference, Munich, Germany,
September 8-14, 2018, Proceedings, Part XIII. Springer-Verlag, Berlin, Heidelberg,
244–260. https://doi.org/10.1007/978-3-030-01261-8_15

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual Losses for Real-Time

Style Transfer and Super-Resolution. In Computer Vision – ECCV 2016. Vol. 9906.
Springer International Publishing, Cham, 694–711. https://doi.org/10.1007/978-3-

319-46475-6_43 Series Title: Lecture Notes in Computer Science.

Hongyuan Kang, Xiao Dong, Juan Cao, and Zhonggui Chen. 2023. Neural style transfer

for 3D meshes. Graphical Models 129 (Oct. 2023), 101198. https://doi.org/10.1016/j.

gmod.2023.101198

Paul Kanyuk, Vinicius Azevedo, Raphael Ortiz, and Jingwei Tang. 2023. Singed Silhou-

ettes and Feed Forward Flames: Volumetric Neural Style Transfer for Expressive

Fire Simulation. In ACM SIGGRAPH 2023 Talks. ACM, Los Angeles CA USA, 1–2.

https://doi.org/10.1145/3587421.3595435

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3DMesh Renderer.

In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, Salt
Lake City, UT, 3907–3916. https://doi.org/10.1109/CVPR.2018.00411

Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and Barbara Solenthaler. 2019.

Transport-based neural style transfer for smoke simulations. ACM Transactions
on Graphics 38, 6 (Nov. 2019). https://doi.org/10.1145/3355089.3356560 arXiv:

1905.07442 Publisher: Association for Computing Machinery.

Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and Barbara Solenthaler. 2020.

Lagrangian neural style transfer for fluids. ACM Transactions on Graphics 39, 4
(July 2020). https://doi.org/10.1145/3386569.3392473 arXiv: 2005.00803 Publisher:

Association for Computing Machinery.

M. Kohlbrenner, U. Finnendahl, T. Djuren, and M. Alexa. 2021. Gauss Stylization:

Interactive Artistic Mesh Modeling based on Preferred Surface Normals. Computer
Graphics Forum 40, 5 (2021), 33–43. https://doi.org/10.1111/cgf.14355 _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14355.

Nicholas Kolkin, Michal Kucera, Sylvain Paris, Daniel Sykora, Eli Shechtman, and

Greg Shakhnarovich. 2022. Neural Neighbor Style Transfer. (March 2022). http:

//arxiv.org/abs/2203.13215 arXiv: 2203.13215.

Chuan Li and Michael Wand. 2016. Combining Markov Random Fields and Convo-

lutional Neural Networks for Image Synthesis. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE, Las Vegas, NV, USA, 2479–2486.
https://doi.org/10.1109/CVPR.2016.272

Shaohua Li, Xinxing Xu, Liqiang Nie, and Tat-Seng Chua. 2017d. Laplacian-Steered

Neural Style Transfer. In Proceedings of the 25th ACM international conference on
Multimedia. ACM, Mountain View California USA, 1716–1724. https://doi.org/10.

1145/3123266.3123425

Xueting Li, Sifei Liu, Jan Kautz, and Ming-Hsuan Yang. 2019. Learning Linear Trans-

formations for Fast Image and Video Style Transfer. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, Long Beach, CA, USA,
3804–3812. https://doi.org/10.1109/CVPR.2019.00393

Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang.

2017a. Diversified Texture Synthesis with Feed-Forward Networks. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Honolulu, HI,
266–274. https://doi.org/10.1109/CVPR.2017.36

Yijun Li, Chen Fang, Jimei Yang, ZhaowenWang, Xin Lu, and Ming-Hsuan Yang. 2017b.

Universal Style Transfer via Feature Transforms. In Advances in Neural Information
Processing Systems, Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/

paper_files/paper/2017/hash/49182f81e6a13cf5eaa496d51fea6406-Abstract.html

Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. 2017c. Demystifying Neural

Style Transfer. In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence. International Joint Conferences on Artificial Intelligence

Organization, Melbourne, Australia, 2230–2236. https://doi.org/10.24963/ijcai.2017/

310

Hsueh Ti Derek Liu and Alec Jacobson. 2019. Cubic stylization. ACM Transactions
on Graphics 38, 6 (Nov. 2019). https://doi.org/10.1145/3355089.3356495 arXiv:

1910.02926 Publisher: Association for Computing Machinery.

Hsueh-Ti Derek Liu and Alec Jacobson. 2021. Normal-Driven Spherical Shape Analo-

gies. Computer Graphics Forum 40, 5 (2021), 45–55. https://doi.org/10.1111/cgf.14356

_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14356.

Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman, and

Alec Jacobson. 2020. Neural subdivision. ACM Transactions on Graphics 39, 4 (Aug.
2020). https://doi.org/10.1145/3386569.3392418

Hsueh-ti Derek Liu, Michael Tao, Alec Jacobson, and Hsueh-Ti Derek Liu. 2018. Pa-

parazzi: Surface Editing by way of Multi-View Image Processing. 1, 1 (2018), 11.

https://doi.org/10.1145/8888888.7777777

Kunhao Liu, Fangneng Zhan, Yiwen Chen, Jiahui Zhang, Yingchen Yu, Abdulmotaleb El

Saddik, Shijian Lu, and Eric Xing. 2023c. StyleRF: Zero-shot 3D Style Transfer

of Neural Radiance Fields. (March 2023). http://arxiv.org/abs/2303.10598 arXiv:

2303.10598.

Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Mukund Varma T, Zexiang Xu, and

Hao Su. 2023b. One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without

Per-Shape Optimization. http://arxiv.org/abs/2306.16928 arXiv:2306.16928 [cs].

Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and

Carl Vondrick. 2023a. Zero-1-to-3: Zero-shot One Image to 3D Object. https:

//doi.org/10.48550/arXiv.2303.11328 arXiv:2303.11328 [cs].

Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.

https://doi.org/10.48550/arXiv.1711.05101 arXiv:1711.05101 [cs, math].

Chongyang Ma, Haibin Huang, Alla Sheffer, Evangelos Kalogerakis, and Rui Wang.

2014. Analogy-Driven 3D Style Transfer. Technical Report. Volume: 33 Issue: 2.

Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and Rana Hanocka. 2021.

Text2Mesh: Text-Driven Neural Stylization for Meshes. (Dec. 2021). arXiv:

2112.03221.

Shailesh Mishra and Jonathan Granskog. 2022. CLIP-based Neural Neighbor Style

Transfer for 3D Assets. https://doi.org/10.48550/arXiv.2208.04370 arXiv:2208.04370

[cs].

Matthias Müller. 2009. Fast and robust tracking of fluid surfaces. In Proceedings of the
2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, New

Orleans Louisiana, 237–245. https://doi.org/10.1145/1599470.1599501

Thu Nguyen-Phuoc, Feng Liu, and Lei Xiao. 2022. SNeRF: Stylized Neural Implicit

Representations for 3D Scenes. ACM Transactions on Graphics 41, 4 (July 2022).

https://doi.org/10.1145/3528223.3530107 arXiv: 2207.02363 Publisher: Association

for Computing Machinery.

Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. 2021. Large steps in inverse

rendering of geometry. ACM Transactions on Graphics 40, 6 (Dec. 2021). https://

doi.org/10.1145/3478513.3480501 Publisher: Association for Computing Machinery.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,

https://doi.org/10.1145/2897824.2925899
https://doi.org/10.1145/2897824.2925899
https://doi.org/10.48550/arXiv.1610.07629
https://doi.org/10.1145/3306346.3322993
https://doi.org/10.1145/3588432.3591552
https://doi.org/10.1109/CVPR.2016.265
https://doi.org/10.1109/CVPR.2016.265
https://doi.org/10.5244/C.31.114
https://doi.org/10.1145/3587421.3595456
https://doi.org/10.1145/3450626.3459799
https://doi.org/10.1145/3450626.3459799
https://doi.org/10.1145/3386569.3392471
https://doi.org/10.1145/3386569.3392471
https://doi.org/10.48550/arXiv.2312.02133
https://doi.org/10.48550/arXiv.2312.02133
https://doi.org/10.1145/383259.383295
https://doi.org/10.1145/383259.383295
https://doi.org/10.48550/arXiv.2105.13509
https://doi.org/10.48550/arXiv.2105.13509
https://doi.org/10.1109/ICCV.2017.167
https://lukashoel.github.io/stylemesh/
https://lukashoel.github.io/stylemesh/
https://doi.org/10.1007/978-3-030-01261-8_15
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1016/j.gmod.2023.101198
https://doi.org/10.1016/j.gmod.2023.101198
https://doi.org/10.1145/3587421.3595435
https://doi.org/10.1109/CVPR.2018.00411
https://doi.org/10.1145/3355089.3356560
https://doi.org/10.1145/3386569.3392473
https://doi.org/10.1111/cgf.14355
http://arxiv.org/abs/2203.13215
http://arxiv.org/abs/2203.13215
https://doi.org/10.1109/CVPR.2016.272
https://doi.org/10.1145/3123266.3123425
https://doi.org/10.1145/3123266.3123425
https://doi.org/10.1109/CVPR.2019.00393
https://doi.org/10.1109/CVPR.2017.36
https://proceedings.neurips.cc/paper_files/paper/2017/hash/49182f81e6a13cf5eaa496d51fea6406-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/49182f81e6a13cf5eaa496d51fea6406-Abstract.html
https://doi.org/10.24963/ijcai.2017/310
https://doi.org/10.24963/ijcai.2017/310
https://doi.org/10.1145/3355089.3356495
https://doi.org/10.1111/cgf.14356
https://doi.org/10.1145/3386569.3392418
https://doi.org/10.1145/8888888.7777777
http://arxiv.org/abs/2303.10598
http://arxiv.org/abs/2306.16928
https://doi.org/10.48550/arXiv.2303.11328
https://doi.org/10.48550/arXiv.2303.11328
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.48550/arXiv.2208.04370
https://doi.org/10.1145/1599470.1599501
https://doi.org/10.1145/3528223.3530107
https://doi.org/10.1145/3478513.3480501
https://doi.org/10.1145/3478513.3480501

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Guilherme G. Haetinger, Jingwei Tang, Raphael Ortiz, Paul Kanyuk, and Vinicius C. Azevedo

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.

2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.

http://arxiv.org/abs/1912.01703 arXiv:1912.01703 [cs, stat].

Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. 2022. DreamFusion:

Text-to-3D using 2DDiffusion. (Sept. 2022). http://arxiv.org/abs/2209.14988 _eprint:

2209.14988.

Guocheng Qian, Jinjie Mai, Abdullah Hamdi, Jian Ren, Aliaksandr Siarohin, Bing Li,

Hsin-Ying Lee, Ivan Skorokhodov, Peter Wonka, Sergey Tulyakov, and Bernard

Ghanem. 2023. Magic123: One Image to High-Quality 3D Object Generation Using

Both 2D and 3D Diffusion Priors. http://arxiv.org/abs/2306.17843 arXiv:2306.17843

[cs].

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini

Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen

Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models From

Natural Language Supervision. https://doi.org/10.48550/arXiv.2103.00020

arXiv:2103.00020 [cs].

Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin

Johnson, and Georgia Gkioxari. 2020. Accelerating 3D Deep Learning with Py-

Torch3D. https://doi.org/10.48550/arXiv.2007.08501 arXiv:2007.08501 [cs].

Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, and Daniel Cohen-Or. 2023.

TEXTure: Text-Guided Texturing of 3D Shapes. In Special Interest Group on Computer
Graphics and Interactive Techniques Conference Conference Proceedings. ACM, Los

Angeles CA USA, 1–11. https://doi.org/10.1145/3588432.3591503

Eric Risser, Pierre Wilmot, and Connelly Barnes. 2017. Stable and Controllable Neural

Texture Synthesis and Style Transfer Using Histogram Losses. http://arxiv.org/

abs/1701.08893 arXiv:1701.08893 [cs].

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer.

2022. High-Resolution Image Synthesis with Latent Diffusion Models. Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
2022-June (Dec. 2022), 10674–10685. https://doi.org/10.1109/CVPR52688.2022.

01042 ISBN: 9781665469463 _eprint: 2112.10752.

Omry Sendik and Daniel Cohen-Or. 2017. Deep Correlations for Texture Synthesis.

ACM Transactions on Graphics 36, 5 (Oct. 2017), 1–15. https://doi.org/10.1145/

3015461

Falong Shen, Shuicheng Yan, and Gang Zeng. 2018. Neural Style Transfer via Meta

Networks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
IEEE, Salt Lake City, UT, 8061–8069. https://doi.org/10.1109/CVPR.2018.00841

Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. 2023.

MVDream: Multi-view Diffusion for 3D Generation. 2 (2023), 1–18. http:

//arxiv.org/abs/2308.16512 arXiv: 2308.16512.

Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for

Large-Scale Image Recognition. (2014). https://doi.org/10.48550/ARXIV.1409.1556

Publisher: arXiv Version Number: 6.

Arunachalam Somasundaram, Levi Biasco, and Damon Riesberg. 2023. Dynamic

Mesh Sharpening. In ACM SIGGRAPH 2023 Talks. ACM, Los Angeles CA USA, 1–2.

https://doi.org/10.1145/3587421.3595428

Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Pro-
ceedings of the fifth Eurographics symposium on Geometry processing (SGP ’07).
Eurographics Association, Goslar, DEU, 109–116.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2014.

Going Deeper with Convolutions. https://doi.org/10.48550/arXiv.1409.4842

arXiv:1409.4842 [cs].

Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor Lempitsky. 2016. Texture

networks: feed-forward synthesis of textures and stylized images. In Proceedings of
the 33rd International Conference on International Conference on Machine Learning -
Volume 48 (ICML’16). JMLR.org, New York, NY, USA, 1349–1357.

Xin Wang, Geoffrey Oxholm, Da Zhang, and Yuan-Fang Wang. 2017. Multimodal

Transfer: A Hierarchical Deep Convolutional Neural Network for Fast Artistic

Style Transfer. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, Honolulu, HI, 7178–7186. https://doi.org/10.1109/CVPR.2017.759

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun

Zhu. 2023. ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with

Variational Score Distillation. (2023), 1–34. http://arxiv.org/abs/2305.16213 arXiv:

2305.16213.

Kangxue Yin, Jun Gao, Maria Shugrina, Sameh Khamis, and Sanja Fidler. 2021.

3DStyleNet: Creating 3D Shapes with Geometric and Texture Style Variations.

In 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Mon-

treal, QC, Canada, 12436–12445. https://doi.org/10.1109/ICCV48922.2021.01223

Hang Zhang and Kristin Dana. 2019. Multi-style Generative Network for Real-Time

Transfer. In Computer Vision – ECCV 2018 Workshops. Vol. 11132. Springer Interna-
tional Publishing, Cham, 349–365. https://doi.org/10.1007/978-3-030-11018-5_32

Series Title: Lecture Notes in Computer Science.

Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu, Eli Shechtman, and Noah

Snavely. 2022. ARF: Artistic Radiance Fields. https://doi.org/10.48550/arXiv.2206.

06360 arXiv:2206.06360 [cs].

Yizhong Zhang, Huamin Wang, Shuai Wang, Yiying Tong, and Kun Zhou. 2012. A

Deformable Surface Model for Real-TimeWater Drop Animation. IEEE Transactions

on Visualization and Computer Graphics 18, 8 (Aug. 2012), 1281–1289. https:

//doi.org/10.1109/TVCG.2011.141

Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel Cohen-Or, and Hui Huang.

2018. Non-stationary texture synthesis by adversarial expansion. ACM Transactions
on Graphics 37, 4 (Aug. 2018), 1–13. https://doi.org/10.1145/3197517.3201285

http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/2209.14988
http://arxiv.org/abs/2306.17843
https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.48550/arXiv.2007.08501
https://doi.org/10.1145/3588432.3591503
http://arxiv.org/abs/1701.08893
http://arxiv.org/abs/1701.08893
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1145/3015461
https://doi.org/10.1145/3015461
https://doi.org/10.1109/CVPR.2018.00841
http://arxiv.org/abs/2308.16512
http://arxiv.org/abs/2308.16512
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.1145/3587421.3595428
https://doi.org/10.48550/arXiv.1409.4842
https://doi.org/10.1109/CVPR.2017.759
http://arxiv.org/abs/2305.16213
https://doi.org/10.1109/ICCV48922.2021.01223
https://doi.org/10.1007/978-3-030-11018-5_32
https://doi.org/10.48550/arXiv.2206.06360
https://doi.org/10.48550/arXiv.2206.06360
https://doi.org/10.1109/TVCG.2011.141
https://doi.org/10.1109/TVCG.2011.141
https://doi.org/10.1145/3197517.3201285

Controllable Neural Style Transfer for Dynamic Meshes SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

(a) Original Mesh (b) Displacement (c) Displacement→ Color (d) Color→ Displacement

Figure 11: Displacement and color optimizations. (b) only runs vertex displacement optimization on the original mesh (a) with
the angular spiral style image (inset). (c) runs color optimization with (b) as initialization. (d) runs color optimization, and use
it as initialization for the displacement optimization. ©Disney/Pixar.

(a) Original Mesh (b) Triangle Style (c) Fur Style (d) Starry Night Style (w/ Color)

Figure 12: Liquid stylization. Our method is able to stylize animated liquid meshes without any special treatment. Since it
directly modifies the mesh surface vertices, it can create sharper results than previous liquid stylization techniques.

(a) Original Mesh (b) User-defined Mask (c) Unmasked Stylization (d) Masked Stylization

Figure 13: Controllable masking examples on Manticore. Masking the facial features of the original mesh (a) allows us to
maintain the sculptor’s desired look. The unmasked result (c) shows clear volume loss on the teeth and background horns,
while the masked version (d) enables proper stylization with smooth transitions between deformations. ©Disney/Pixar.

(a) Original Mesh (b) Angular Spiral Style (c) Fire Style (d) Foam Style (e) Triangle Style

Figure 14: Style transfers on Lost Soul. All experiments run ourmesh style transfer on the animated character. The displacement
optimization is performed first, and color optimization later. ©Disney/Pixar.

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Neural Neighbor Style Transfer
	3.2 Multi-level Optimization through Laplacian Smoothing
	3.3 Guided Stylization with Orientation Fields
	3.4 Enforcing Temporal Coherency
	3.5 Volume Conservation Regularization

	4 Experiments And Results
	4.1 Color and Displacement Guidance Priors
	4.2 Comparisons with Previous Approaches
	4.3 Artistic Control Inputs
	4.4 Stylization on Animated Meshes

	5 Conclusions
	References

