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Figure 1: Multiple frames from river splash simulated with three simultaneous levels of detail, reducing the particle count from 23 million to
less than 3 million.

Abstract

We present a method for performing very high resolution, incom-
pressible fluid simulations at multiple resolutions of detail, simulta-
neously. The particle-based method supports user-defined regions
of refinement and can handle complex collision boundary condi-
tions while remaining smooth and stable. Conservation of mass
in refined detail levels is handled explicitly, overcoming mass-loss
problems of previous multi-scale SPH techniques. By restrict-
ing fine-resolution particles to regions defined relatively near to
the fluid surface and close to an observer, the computation time
and storage requirements for large simulations are significantly re-
duced. Compared to an equivalent single-scale simulation, our
method reduces the computational costs up to a factor of twelve.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Display Algorithms I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Radiosity;

Keywords: fluid simulation, smoothed particle hydrodynamics,
multi-scale

1 Introduction

The visual quality of a particle-based fluid simulation depends sub-
stantially on the number of particles that are used to discretize the
fluid volume. The results of previous work show clearly how the
underlying resolution affects the resulting surface complexity and
the amount of dissipation, indicating that high resolution simula-
tions are necessary to achieve the desired visual quality. Over the

past years, the particle number presented in the computer graph-
ics literature has increased considerably. However, it is still very
challenging to compute simulations in the order of tens of million
particles on desktop computers within a given time frame.

Adaptive methods are a very attractive technology because of the
considerable savings in computation time and memory consump-
tion as shown in, e.g., [Losasso et al. 2004] and [Chentanez and
Müller 2011] for grid-based solvers. These techniques allocate re-
sources to visually interesting regions only. This idea was adopted
in the two-scale method in [Solenthaler and Gross 2011] for a
particle-based solver, where two separate but coupled simulations
are used, one for each resolution level. Compared to previous merg-
ing and splitting approaches, e.g., [Desbrun and Cani 1999; Adams
et al. 2007], separate simulations offer more control over resource
allocation and allow much larger resolution ratios.

The two-scale method has shown to significantly increase the
overall efficiency. However, the method is inherently limited by
its boundary emission scheme to simple, box-shaped domains.
Complex collision boundaries produce instabilities as particles are
densely sampled in curvature regions. Another limitation is that
the single-scale SPH advantage of trivial mass conservation is lost,
since particles are dynamically added and removed in the high-
resolution region. Even in simple scenarios mass loss is observed,
and becomes particularly problematic around complex collision ge-
ometry and in areas of splashing.

This paper is inspired by the previous two-scale model, but ad-
dresses the aforementioned limitations. We believe that the pro-
posed components are necessary to improve the utility of the
method in practice. We present a novel particle emission strat-
egy that tracks the total mass and compensates for the volume
loss, hence retaining the advantage of single-scale particle solvers.
This necessarily requires an increase of emitted particles, and there-
fore sophisticated strategies are needed to handle dense and irreg-
ular sampling. With the proposed components, complex collision
boundaries can be handled. Furthermore, we present how the initial
model can be extended to arbitrary resolution levels, and demon-
strate the solver’s performance and level-of-detail capability in var-



ious complex examples with million of particles.

2 Previous Work

The standard SPH model, presented in [Monaghan 1992], benefits
from simplicity as it primarily handles the simulation of compress-
ible fluids. The pressures are related to the deviation from a ref-
erence density by the equation of state, and the fluid stiffness is
controlled by a single parameter. While this results in fairly effi-
cient simulations [Müller et al. 2003], the severe compressibility
artifacts prevent that the original model is used for realistic water
animations. Although incompressibility in SPH can be achieved by
increasing the stiffness value, referred to as weakly compressible
SPH (WCSPH) [Monaghan 1994; Becker and Teschner 2007], this
imposes a severe time step restriction and thus prevents the model
to be used for high-resolution simulations. This limitation has been
addressed in PCISPH [Solenthaler and Pajarola 2009], where den-
sity errors are iteratively predicted and pressure values are adapted
accordingly. Evidence shows that such an iterative scheme allows
time steps that are more than a magnitude larger than in WCSPH,
which is a pre-requisite for computing large particle numbers within
a reasonable time frame. The basic formulation of PCISPH has
been extended to allow adaptive time steps in [Ihmsen et al. 2010b].
Alternative approaches to enforce incompressibility use pressure
projection schemes, e.g., [Cummins and Rudman 1999; Shao 2006;
Bodin et al. 2012], or propose to apply the Poisson solve on a coarse
background grid and then refine the pressure values on the particles,
e.g., using PCISPH as in [Raveendran et al. 2011].

In order to reduce the computation time and memory consumption,
hashing and sorting methods for the neighbor search which run ef-
ficiently on multi-core CPUs have been analyzed [Ihmsen et al.
2010a]. Various GPU implementations have been presented as well,
mainly focusing on real-time performance with comparably small
particle numbers, e.g., [Harada et al. 2007; Goswami et al. 2010].

For high-resolution simulations, level-of-detail methods have been
presented reducing the overall particle count and thus the compu-
tational workload. The basic idea is to retain a high discretiza-
tion only in visually important areas of the fluid. This has been
achieved by merging and splitting particles dynamically, triggered
by either geometrical or physical criteria [Desbrun and Cani 1999;
Kitsionas and Whitworth 2002; Lastiwka et al. 2005; Adams et al.
2007; Hong et al. 2008]. With these approaches, particles of dif-
ferent sizes interact with each other, posing certain difficulties in
conserving momentum and retaining stability in the resulting pres-
sure field. This issue can be avoided by using distinct but cou-
pled simulations for each resolution level, as presented by the two-
scale method in [Solenthaler and Gross 2011]. In their work, large
resolution differences can be simulated stably with either SPH or
PCISPH, and a speed-up factor of three to six is reported compared
to the single-scale solution. Inherent limitations of the two-scale
method are, however, the restriction to box-shaped boundaries and
gradual mass loss as the total volume is not considered in the par-
ticle emitting strategy. The novel multi-scale method presented in
this paper builds upon the two-scale approach, and addresses the
intrinsic problems of the original formulation.

In Eulerian fluid simulations, adaptive methods are more common.
These approaches place more grid cells in visually interesting ar-
eas, as for example presented in [Losasso et al. 2004] where an
octree data structure is used, or in [Feldman et al. 2005; Klingner
et al. 2006] that include tetrahedral grids. Since the complexity of
the surface influences the visual quality significantly, [Kim et al.
2009] tracks the surface on a higher resolution grid than the un-
derlying simulation, resulting in high-frequency features and sur-
face sheets. In [Chentanez and Müller 2011], a layer of tall cells

is coupled with regular cubic cells on top of it, building upon the
previous work of [Irving et al. 2006]. Also hybrid methods have
been popular that couple, for example, a grid with fine SPH par-
ticles to achieve spray and droplets [Losasso et al. 2008], or the
FLIP model [Zhu and Bridson 2005] which allows multi-resolution
pressure solving on a single resolution of particles.

3 Two-Scale Overview

As the presented method builds upon the two-scale model of [So-
lenthaler and Gross 2011], we first give an overview of the original
approach. We briefly discuss SPH and the extension to two resolu-
tion levels in Section 3.1 and illustrate the particle creation process
in Section 3.2.

3.1 Solver and Resolution Levels

The fundamental equation of Smoothed Particle Hydrodynamics
(SPH) [Monaghan 1992] interpolates any scalar or vector field, Ai,
stored at a particle with position xi, from neighboring particles, j,
asAi =

P
jmj/ρjAjW (xi−xj , h). In this equation,mj denotes

the mass of particle j, ρj its density, and W (xi − xj , h) = Wij

the kernel function. We use the cubic spline kernel of [Monaghan
1992] with s being the particle spacing and h = 2s the kernel sup-
port, similar to [Solenthaler and Gross 2011]. A detailed introduc-
tion into SPH is given in [Monaghan 2005]. Instead of using Mon-
aghan’s equation of state to compute the pressures, incompressibil-
ity can be enforced with PCISPH [Solenthaler and Pajarola 2009]
where pressures are iteratively computed until all density errors are
below a threshold, e.g., 1%. Our proposed multi-scale method sup-
ports, but is not limited to, SPH and PCISPH.

The two-scale method introduced in [Solenthaler and Gross 2011]
is based on SPH and PCISPH and follows the idea to simulate two
different resolution levels in separate but coupled simulations. The
advantages of this representation over merging and splitting ap-
proaches are discussed in the original paper. Both resolution levels
are represented by a set of particles of a fixed radius per resolution.
They refer to the coarse level as L, and the fine level representing
only a subset of the fluid as H . The particles in L are marked as
either being active or inactive, depending if they lie within the
pre-defined, fine-scale area of the fluid. A third tag, boundary,
has been introduced between active and inactive. This setup is
illustrated in Figure 2. All fine particles in the boundary layer
are advected by their low-resolution parent particle until they en-
ter the active region. This serves as a boundary condition, defined
by L, for the fine-scale, active particles in H . Particles are dy-
namically added and deleted at the boundary layer as discussed in
Section 3.2.

3.2 Particle Creation and Total Mass

Within a single scale SPH simulation without refinement, mass con-
servation is trivial - each particle retains its per-particle mass, and
the particles are only deleted when they leave the simulation do-
main or enter a sink volume. This intrinsic conservation of mass
is one of the most attractive features of Lagrangian particle simula-
tions.

With multiple refinement scales, however, particles are being dy-
namically added and removed from the simulation. In [Solenthaler
and Gross 2011], fine children particles are emitted into the fluid
boundary region only in a time step where the coarse-parent has
just transitioned from inactive to boundary. Eight fine particles
are emitted in a cube configuration centered around the coarse par-
ticle, assuring to move these emitted particles outside solid objects.
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Figure 2: A two-scale example with the coarse and fine resolu-
tion levels. The fluid volume is shown in grey, and a user-specified
refinement volume in light yellow. Active particles are light blue,
boundary particles are blue, and inactive particles are dark blue.
In this illustration, and in all our multi-scale examples, only parti-
cles which are sufficiently close to the surface are refined.
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Figure 3: Mass conservation comparison. With the original two-
scale model, a mass loss of 22% is observed in our dam break ex-
ample, while the total mass is conserved with the proposed emission
strategy.

Applying the same strategy to complex geometries results in in-
stabilities as extensive oversampling near the solid is introduced.
Oversampled particles can also be observed at the boundary layer
of the fine level. Since those particles are advected, the dense sam-
pling is less critical in terms of stability. However, mass loss is
observed as it may happen that too many particles in H are deleted
if their parent in L changes from boundary to inactive. We see
gradual mass loss occurring over the course of a long simulation,
especially during very dynamic and splashy parts of the evolution.
In our dam break test, we observe a mass loss in one refinement
scale of 22% over six seconds of simulated time (see Figure 3, red
curve, and Figure 10, top row).

4 Multi-Scale Method

We have replaced many critical components of the two-scale model
that are necessary to simulate multiple resolution levels for complex
environments that are typical in production scenarios. We first dis-
cuss in Section 4.1 how we change the method to support arbitrary
numbers of levels. In Section 4.2, we then present a robust fluid
boundary emission which conserves the total mass and maintains
boundary integrity. As the emission strategy produces oversampled
particle regions, we present an elaborated relaxation in Section 4.3.
We introduce a particle-dependent relaxation coefficient, which is
considered in the SPH equations and the final displacement con-
trol. With this, the rest volume of a particle is gradually approached,
eliminating any instabilities caused by the irregular sampling. In or-
der to keep our refinement confined to regions near the fluid surface,

Figure 4: Example system definition. The solid bridge and riverbed
objects in white, a fluid initial state in blue. The simulation domain
bounds are in green, with two frustum-shaped regions of refinement
in purple and red.

we define an improved and temporally smooth fluid surface depth
calculation based on the equations for a level set in Section 4.4.
Lastly, we show how the top-level time-step for the system is orga-
nized in Section 4.5, which recursively computes all scales of detail
starting from the coarsest.

4.1 Terminology and Level Definition

In contrast to the two-scale model, our method is not restricted to
two resolution levels only. We label these levels, referred to as
states in the following, explicitly as (L0, L1, ..., Ln−1). Hence,
for any state Lr , the coarse-parent state is Lr−1 and the fine-child
state is Lr+1. The coarsest state, L0, has a user-specified particle
radius, r0, and each subsequent refined state’s particles are always
half the radius of the previous, coarser state’s, thus rr = 0.5rr−1.
This restriction on the refinement ratio, which is not applied by
the two-scale method in [Solenthaler and Gross 2011], reduces the
implementation complexity considerably.

At the coarsest state, the simulation environment is defined by a
static domain bound, a fluid initial state volume, static and mov-
ing collision volumes, fluid sources, and fluid sinks. Each subse-
quent refined state is additionally defined by a refinement volume,
which is user-defined and may be dynamically changing. Refine-
ment volumes can be designed by the user to represent, for exam-
ple, frustums of visibility relative to an observer or areas of interest
around a particular collision object, as illustrated in Figure 4. Each
of the refined states other than the coarsest are only defined inside of
their respective refinement volumes, and are furthermore restricted
to only a relatively shallow depth beneath the surface of the fluid
interface, as illustrated in Figure 2, which significantly decreases
the particle count.

As in the two-scale method, the particles of state Lr can be clas-
sified at a specific time according to the refinement volume of the
fine-children state Lr+1. Particles which are inside the refinement
volume and sufficiently close to the fluid surface are marked as ac-
tive. Particles which are not marked active, but are within a distance
of 4r of any neighboring active particle, are marked as fboundary,
and the remaining particles are marked inactive. Following the two-
scale approach, each refined particle has a single particle in the next
coarser state that it is coupled to, called the coarse-parent. We mark
each refined particle according to the classification of its coarse-
parent as pActive, pFboundary, or pInactive. We additionally allow
for refined particles to have no coarse-parent if they’re sufficiently



Figure 5: Children emission pattern. Purple and rose spheres are
the inner and outer tetrahedral points, respectively, and the green
sphere is the coarse point.

isolated, and these orphaned particles are marked pUndefined.

4.2 Mass Conserving Particle Emission

To solve the problem of mass conservation, we consider the entire
fluid boundary region as a target for emission of fine particles, and
we emit or delete fine particles from each coarse fboundary particle
to achieve a target fine particle density. Emission of new particles
is restricted to the fluid boundary region, in order to prevent visible
mass changes within the refinement volume.

In the coarse-parent state Lr−1, we can count the number of parti-
cles marked active and fboundary, which we labelNa

r−1 andNfb
r−1,

respectively. In this state Lr , we should expect to find exactly
8(Na

r−1 + Nfb
r−1) particles. Given the total number of particles

in Lr , Nr , the change in number of particles can be computed as

∆Nr = 8(Na
r−1 +Nfb

r−1)−Nr.

We count the number of existing pFboundary particles at this scale,
Npfb
r , add the change in number of particles ∆Nr , and then com-

pute a desired average number of children per coarse fboundary
parent:

NumChildrenavgr−1 = (Npfb
r + ∆Nr)/N

fb
r−1. (1)

For each coarse fboundary particle, we compare the desired average
number of children to the number of existing children, and then
either delete or emit new particles to achieve the desired number
of NumChildrenavgr−1, as computed in Equation (1). For a specific
coarse particle i, the change in number of children is given as

∆NumChildrenir−1 = NumChildrenavgr−1−NumChildrenir−1. (2)

If ∆NumChildrenir−1 is positive, we attempt to emit new children,
and otherwise we delete existing children.

Emitting new children particles is done by taking a fixed emission
pattern consisting of eight points, as seen in Figure 5, centering it
on the coarse parent particle, and randomly rotating it. We only
allow for a maximum of eight newly emitted fine points per each
coarse parent point, per iteration. Each point in the emission pat-
tern is considered a candidate point, and is tested against existing
fine particles. If any existing fluid particle overlaps a candidate par-
ticle by more than εsepf r, or any existing solid particle overlaps a
candidate particle by more than εsepsr, the candidate is not emitted.
For the case that not as many points as desired can be emitted in the
current time step, this procedure is repeated in the next time step. In
our implementation, we use εsepf = 0.5 and εseps = 0.1. Figure
6 shows a two-dimensional projection of the fine particle emission
process.

(a) (b)

(c) (d)

Figure 6: Emission strategy. The coarse active, fboundary, and in-
active particles are shown in light gray, gray, and dark gray. Fine
particles pActive, pFboundary, and emitCandidate are illustrated
in light blue, blue, and green. (a) Existing fine particles over coarse
parents. (b) Emission candidates for a single coarse boundary par-
ticle. (c) All emission candidates. (d) Final emitted pFboundary
particles.

Deleting fine child particles does not have any spatial constraints,
and therefore is more likely to occur than the corresponding emis-
sion of particles. In order to achieve an even deletion and emis-
sion of particles, we test a random roll for each deletion candidate
against a deletion probability. Based on measurements of the sim-
ulations, a deletion probability of pdel = 0.6 has proven to balance
the emission and deletion correctly.

4.3 Relaxation

The presented emission strategy typically results in over-
concentrated regions of particles in the pFboundary layer. At
this stage, this is not critical as particles are still advected by their
parent in the next coarser state. When a particle enters pActive,
however, high pressure forces are computed to counterbalance the
compression. For a smooth transition between the layers, we ap-
ply a relaxation scheme similar to [Solenthaler and Gross 2011].
As our emission strategy creates much more particles in order to
compensate the mass loss, and also due to the inclusion of complex
boundaries, an elaborated relaxation process is required.

Relaxation Coefficient. We introduce a relaxation coefficient ξi
for each particle, which represents how much sampling regularity
we expect from that particle. When the relaxation coefficient is
zero, as for pFboundary particles, it signifies that we expect zero
sampling regularity from this particle, and therefore zero pressure
force to correct overlapping. Conversely, when the relaxation co-
efficient is one, as for most pActive and all pUndefined particles, it
signifies that the particle is no longer near the fluid boundary, nor
recently part of the fluid boundary, and is expected to be evenly
sampled.

The relaxation coefficient ξi considers the age and the proximity
to the boundary, given by two coefficients ξagei and ξproxi , and is
defined as

ξi =

8><>:
0 if pFboundary,
1 if pUndefined,
min(ξagei , ξproxi ) if pActive.

(3)



The first relaxation coefficient, ξagei , corresponds to the normalized
number of simulation steps for which a particle has been marked
pActive, which is similar to the timestep-based relaxation in [So-
lenthaler and Gross 2011]. The second coefficient, ξproxi , is defined
by proximity to the fluid boundary region, with a value of 0 in or at
the fluid boundary, and gradually easing to 1 at a distance equal to
the kernel support radius s.

Blending Volumes. We compute an adjusted sampling volume V eq

for each particle, using ξi to blend between a sampling volume that
is fully normalized against the particle’s neighborhood at the be-
ginning of the time step, versus the regular, constant SPH volume
V0 = m/ρ0. Note that for incompressible fluids ρi = ρ0. This
condition may be violated near the boundary due to over-dense
sampling.

The sampling volume is computed with the SPH summation as
Vi = 1/

P
jWij , and is then used to blend between the sampled

volume and the rest volume, given as

V eqi = (1− ξi)Vi + ξiV0. (4)

Using V eqi , we can rewrite the original equations of ([Monaghan
1992]) for the density and acceleration due to pressure as

ρi = ρ0

X
j

V eqj Wij , (5)

∂vpi
∂t

= −
X
j

V eqj (
pi
ρi

+
pj
ρj

)∇Wij . (6)

Displacement Restriction. Similar to [Solenthaler and Gross
2011], we carefully blend the velocity computed from physics
v̂i(t + ∆t) and the velocity interpolated from the coarse parent
state ṽi(t+ ∆t) with

vi(t+ ∆t) = (1− ξi)ṽi(t+ ∆t) + ξiv̂i(t+ ∆t). (7)

We always use the physically computed velocity when updating the
position of particles, but save the mixed velocity for integration into
the next time step.

We restrict the final displacement due to pressure forces for parti-
cles undergoing relaxation by applying an intra-scale velocity con-
straint, which limits the difference between ṽ and v̂. The maximum
velocity difference is given as

||ṽi − v̂i|| ≤
εconstrainti r

∆t
, (8)

with εconstrainti = ξi + 1. Since we do not modify the computed
velocity if differences are less than the maximum allowable differ-
ence, there is no general damping effect. We use a tapering function
to limit the magnitude of the velocity difference smoothly, avoiding
visible and aesthetically unpleasing velocity clamps. The tapering
function is designed to be equal to the input x until some thresh-
old τ which we set to 0.6 and then to smoothly and asymptotically
approach 1:

taper(x, τ) =

(
x x ≤ τ,
τ + (1− τ) tanh(x−τ

1−τ ) x > τ.
(9)

4.4 Fluid Surface Detection

Our system calculates refinement only to a shallow depth beneath
the fluid-air interface, which in our implementation is nine times

Figure 7: 3-scale river simulation. In the lower image, rocks are
invisible to reveal the refinement.

the particle diameter, in order to maximize resource economy (see
for example Figure 7). The performance of the system is intimately
connected to the accuracy of the surface identification, as refined
particles will be emitted and deleted unnecessarily if the region is
identified noisily.

Various methods have been proposed in the literature for finding
particles which are near the surface, e.g., [Solenthaler et al. 2007;
Akinci et al. 2012a], but their results are temporally noisy, resulting
in significant extra work for the multi-level system. Therefore, we
base our detection on the following equations for a level set [Zhu
and Bridson 2005], which we evaluate at each particle position xi:

φ̃i = ||xi − x̄i|| − r̄i
x̄i =

P
j wijxj

r̄i =
P
j wijrj

wij = W (xi − xj , h)/
P
jW (xi − xj , h).

(10)

We use this measure to calculate an initial value for φ̃i, which we
then limit the difference of in a time step, also incorporating the
cutoff for a small number of neighbors:

φi(t) =

8>>><>>>:
−0.85r if num neighbors < 5

φmini (t) ifφ̃i(t) < φmini (t)

φmaxi (t) ifφ̃i(t) > φmaxi (t)

φ̃i(t) otherwise
φmini (t) = φi(t−∆t)−∆φmaxr
φmaxi (t) = φi(t−∆t) + ∆φmaxr.

(11)

The constant ∆φmaxr is the maximum amount of change, propor-
tional to the particle radius, of the level set from the previous time
step, and we set it to 1.5 in our simulations. We then mark any par-
ticle which has a level set value greater than or equal to −0.85r as
tmpFluidSurface, and all other particles as tmpFluidInterior.

We then iteratively propagate this level set solution out to adjacent
particles, as follows. For each particle that is marked tmpFluidInte-
rior, we search its neighbors in order of increasing proximity until



we find a neighbor that is marked tmpFluidSurface or tmpNearFlu-
idSurface. If a neighbor at a given index j is found, we mark the
particle tmpNearFluidSurface and then compute its level set value
as follows:

φi(t) = max(φj(t)− dist(xi,xj), φmin), (12)

where φmin represents the maximal level set value, which in our
case is −9(2r), corresponding to nine particle diameters. As be-
fore, we limit the maximum change of the level set from the previ-
ous time step, see Equation (11). This propagation sweep is contin-
ued until there are no changes in the level set values, and typically
requires 8 or 9 iterations.

4.5 Implementation

The main time step for a detail level Lr is shown in Algorithm 1,
which recursively calls the time step on its fine-children state Lr+1.
Thus, a single call to the time step at level L0 will fully update all
levels of detail in the simulation.

We utilize the compact hash map acceleration structure described in
[Ihmsen et al. 2010a]. We have a separate map for each resolution
level, each having access to the structures at other levels.

Collision objects, whether static or moving, are represented at each
level of detail as particles, just like the fluid, with the same radius
and volume. We take the same approach as in [Akinci et al. 2012b].
Collision objects may be unmoving (static), rigidly transformed, or
deforming.

5 Performance and Results

We demonstrate the effectiveness of our multi-scale method on a
dam break and a more complex river example. In both simulations,
we use a rather large particle count, with 2.7 and 23.7 million parti-
cles in their single-scale representations, respectively. All examples
use PCISPH and restrict the maximal volume compression to less
than 1%, as suggested in [Solenthaler and Pajarola 2009]. Compu-
tations are run on an Intel Xeon E5-2680 with 16-cores and 60GB
of RAM.

Level-of-detail. Our multi-scale implementations are designed to
restrict the fine-resolution particles to regions defined relatively
near to the fluid surface and the observer. This is illustrated with the
particle renderings for the river scene in Figure 7 and for the dam
break in Figure 8. In these images, the resolution states are color-
coded with purple corresponding to the coarsest state L0, blue to
L1, and cyan to the finest state L2. The resulting, reconstructed
surfaces shown in Figures 1 and 8 show clearly that it is sufficient
to calculate refinement only to a shallow depth without sacrificing
fine splashes and complex flow structures emerging at the surface.
This is emphasized by the close-up views in Figure 9.

The inclusion of the view frustum information allows to model
camera-dependent level-of-detail, as shown in the river example
where the complexity is decreased with increasing distance to an
observer. The reduced resolution in distant areas is unnoticed as
seen in Figure 1. Note that our implementation is not limited to
three scales but can handle an arbitrary number of resolution lev-
els. This allows an artist to gradually control the desired resolution
at given distances, depending on the targeted surface complexity
or the available computation time. Another notable advantage of
camera-dependent level-of-detail is that it allows to initialize parti-
cles on a very coarse level outside the viewing frustum, for example
in big water tanks. As soon as the particles enter the visible area
they can be smoothly refined until the desired resolution is reached.

Algorithm 1: SubTimeStep( Lr , t, t+ ∆t )
Data: Fluid state Lr
Result: Increment Lr and all refined levels {Lr+1, ...}

from time t to time t+ ∆t
begin

UpdateCompactHashMaps();
DeleteFluidFromSinks( t );
EmitFluidInSources( t );
if has coarse parent Lr−1 then

UpdateCoarseParentIndices();
TransferRegionsFromCoarse();
EmitPfboundaryParticles();

ReUpdateCompactHashMaps();
FindNeighborhoods();
RemoveSignificantOverlaps();
CalculateFluidSurfaceDepth( ∆t );
if has fine children Lr+1 then

CalculateRefinement( t );
CalculateFineFeedback();

if has coarse parent Lr−1 then
CalculateRelaxation( t );
InterpolateCoarseToFine();
CalculateFluidRestVolumes();

CalculateExternalForces( t );
CalculateViscousTensionAndPressureForces( t );
IntegrateVelocity( t, t+ ∆t );
if has coarse parent Lr−1 then

ConstrainVelocityToCoarse();

Output( Lr , t );
if has fine children Lr+1 then

SubTimeStep( Lr+1, t, t+ ∆t/2 );
IntegratePosition( t, t+ ∆t/2 );
SubTimeStep( Lr+1, t+ ∆t/2, t+ ∆t );
IntegratePosition( t+ ∆t/2, t+ ∆t );

else
IntegratePosition( t, t∆t );

Figure 8: Mesh (top) and particle renderings (bottom) of the 3-
scale dam break simulation.

In terms of visual quality, a current limitation of our system is the
limited functionality of our meshing toolkit for incorporating partial



Figure 9: Close-up views of the dam break simulation showing fine
details.

contributions from particles at different scales. This leads to mesh
artifacts at the refinement region edge in the river scene that are not
present in the particle renderings. A more robust meshing solution,
currently the subject of active development, will solve this issue.

Performance Comparison. The river example demonstrates the
solver in a high-resolution, complex scenario. The single-scale
reference solution consists of a maximum of 23.7 million parti-
cles, resulting in an average per-frame computation time of 4869.23
seconds, i.e., 81 minutes approximately. Apparently, computation
times of this magnitude are not acceptable in production environ-
ments where simulations have to finish within a given time. In con-
trast, using three resolution states, the total particle count is de-
creased by a factor of 8.1 to 2.9 million particles, with 370k, 713k,
1.8m particles in states L0, L1, and L2, respectively (see Table 1).
The result is an overall speed-up factor of 12, which is - with our
implementation - even more than the particle count factor because
of additional overhead associated with such high-resolution exam-
ples. In addition, the memory consumption is reduced by a factor of
2 from 16g to 7g. We observe less gain in the memory consumption
because the refined states have the solid boundary objects rasterized
throughout the entire refinement volume requiring a large amount
of storage.

Modest performance gains are achieved in the dam break example
regarding computation time (factor of 3) as well as memory con-
sumption (factor of 1.2), see Table 1. The lesser improvement is
because the water is very shallow and the entire domain is refined.
Thus, the performance gain scales with the fluid depth, or more
generally, with the reduction factor of the overall particle count.
The small difference in memory consumption is related to the large
overhead, relative to the refinement scale, of the solid collision ob-
jects in this scene.

Comparison of Mass Conservation. Our method conserves the
total mass even for long simulations compared to [Solenthaler and
Gross 2011] as illustrated by the green curve in Figure 3. The im-
pact on the visual result is demonstrated in Figure 10 where our
multi-scale result is compared to the original two-scale approach.

Figure 10: Comparison of our mass-conserving multi-scale
method (below) and the original 2-scale approach (above). Our
method conserves the mass of the coarse simulation (left) in the
refined particles (right).

6 Conclusion and Future Work

We have presented a multi-scale method that conserves the total
mass and maintains stability even if complex solid geometries are
included. The emission scheme tracks the total mass and gradually
compensates for the volume loss. The resulting over densely par-
ticle sampling is gradually resolved without degrading the stability
of the solver. By adding these critical components, the multi-scale
method could become a valuable tool for computing production-
quality scenarios, in particular, if complex collision environments
are included. The total particle count is decreased, and with this
memory consumption and computation time.

Although our results show a significant speed-up over the single
scale simulation, the potential is not yet fully exploited. Perfor-
mance is affected as the relaxation constraints impede the PCISPH
pressure solve, which results in slower convergence for those par-
ticular areas. The same effect was already observed in the previous
two-scale approach. In contrast to the two-scale method, the cal-
culation of interpolated data between multiple levels is slower and
further decreases the total performance gain.

An inherent problem of SPH is the fluid-air interface as incorrect
fluid quantities at the free surface lead to artifacts. This was ad-
dressed by the ghost fluid method presented in [Schechter and Brid-
son 2012], where a narrow layer of ghost particles is used around
the free surface. The presented multi-scale approach may offer a
new way to model air particles as the entire domain could be simu-
lated efficiently as a multi-scale fluid.
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