
Physically Based Lighting at Pixar

by Christophe Hery and Ryusuke Villemin
Pixar Animation Studios

Figure 1: Mike looks both physical and illuminated! Monsters University, c�Disney/Pixar 2013.

1 Introduction

For Monsters University and more recently for The Blue Umbrella, the lighting pipeline at Pixar was
completely rewritten and switched to a physically based and ray-traced system. Although ray-tracing
was already used in some cases—in the movie Cars for example—we were still using point lights,
shadow maps, ad hoc shading models, etc. Over the years, the original pipeline has gotten more and
more complex, with thousands of lights and shader tweaking in every shot. The idea was to let the
computer handle all this complexity, freeing the lighter to concentrate on the artistic side.

Moving to physically based shaders, the main focus is now to solve the rendering equation1:

L(x, !

o

) =
Z

⌦
f(x,!

i

, !

o

)L(x,!

i

) cos(✓)d!

In this equation there are two components that need to be updated, so that they cooperate in creating
physically based lighting: the light, L, representing the energy emitted in the scene, and the BRDF,
f , describing how the light will react in the scene. It is crucial that both work in tandem; physically

1For simplicity, in this paper we will focus on reflection only, ignoring all transmission e↵ects like refraction, sub-surface
scattering, and volumetric phenomena.

1

correct lights interacting with non-normalized BRDFs, or correct BRDFs interacting with incorrect
lights, won’t make much sense. In fact you will probably end up with more disadvantages, without
seeing the full potential benefits.

We typically use Monte Carlo ray-tracing to solve this equation in the general case, but a naive
implementation would lead to unbearable render times. To avoid this, di↵erent strategies are used—
depending on what light path we consider—in order to optimize the convergence time. The equation
is divided into sub-components, each of which will be resolved by a specific coshader2 we call an
integrator.

L(x, !

o

) =
Z

⌦
f(x, !

i

, !

o

) (L
direct

(x,!

i

) + L

indirect

(x,!

i

)) cos(✓)d!

L(x, !

o

) =
Z

⌦
f(x, !

i

, !

o

)L
direct

(x,!

i

) cos(✓)d!

+
Z

⌦
(f

diffuse

(x, !

i

, !

o

) + f

specular

(x,!

i

, !

o

)) L

indirect

(x,!

i

) cos(✓)d!

L(x, !

o

) =
Z

⌦
f(x, !

i

, !

o

)L
direct

(x,!

i

) cos(✓)d!

+
Z

⌦
f

diffuse

(x, !

i

, !

o

)L
indirect

(x,!

i

) cos(✓)d!

+
Z

⌦
f

specular

(x, !

i

, !

o

)L
indirect

(x,!

i

) cos(✓)d!

That is:
L(x, !

o

) = L

direct

+ L

indirectDiffuse

+ L

indirectSpecular

L(x,!

o

) radiance from x in the !

o

direction [Wm

�2
sr

�1]
L(x,!

i

) radiance to x in the !

i

direction [Wm

�2
sr

�1]
f

s

(x,!

i

, !

o

) surface BRDF at x from direction !

i

to direction !

o

[sr�1]
✓ angle between the surface normal N and !

i

[r]

Table 1: Notations

L

direct

is resolved by the directLighting integrator (light path = E{D,S}L, using [Heckbert 1990]
path notation3). L

indirectDiffuse

is resolved by the indirectDiffuse integrator (light path = ED{D,S}*L),
L

indirectSpecular

by the reflection integrator (light path = ES{D,S}*L). To take advantage of Render-
Man’s capabilities, the indirectDiffuse integrator is then divided into sub parts. The caustic integra-
tor is going to solve specular paths ending with a di↵use bounce (EDS*L). For multiple di↵use bounces,
we can either use the photon integrator or recursively use the indirect integrator (EDD*L). The pho-
ton and caustic integrators make use of photon mapping capability [The RenderMan Team 2013b];
the indirectDiffuse integrator uses the radiosity cache (described in [Christensen et al. 2012]) and
some irradiance caching technology.

2A coshader is a specialized object construct in Pixar’s RenderMan: for more information, refer
to [The RenderMan Team 2009].

3Eye(E), specular(S), di↵use(D), light(L).

2

L

indirectDiffuse

(x, !

o

) =
Z

⌦
f

diffuse

(x,!

i

, !

o

)L
indirect

(x,!

i

) cos(✓)d!

=
Z

⌦
f

diffuse

(x,!

i

, !

o

)
✓ Z

⌦
f

specular

(x,!

i

, !

o

)L
specular

(x,!

i

) cos(✓)d!

+
Z

⌦
f

diffuse

(x,!

i

, !

o

)L
diffuse

(x,!

i

) cos(✓)d!

◆
cos(✓)d!

The same recursive algorithm applies for the reflection integrator.
Breaking down the equation into parts that are solved by coshader integrators lets us create a

very versatile and expandable system, in which we can change parts without rebuilding anything. For
example, we recently added volumetric integrators; when plugged into our system, everything worked
with minimal changes, since they solve non-overlapping parts of the same problem. You’ll notice that
there are di�cult light paths that we choose to ignore for now; in the future we plan to solve those using
bidirectional path-tracing and vertex merging techniques. We end up with four main integrators4:

• directLighting integrator

• indirectDiffuse integrator

• reflection integrator

• photonCaustic integrator

In these course notes, we are going to focus on the implementation of the directLighting integrator,
which—even in the case of global illumination—represents the major part of the lighting. It is also
the part we can optimize the most; contrary to indirect integrators that usually don’t5 have a-priori
knowledge of the scene (before shooting rays into it), the direct lighting integrator knows about the
light sources.
The direct lighting computation can be decomposed into three main parts:

• Light coshader

• BRDF coshader

• Integrator coshader

The integrator coshader is the main shader that will compute the final lighting result using Multiple
Importance Sampling (see [Veach and Guibas 1995]). The light and the BRDF shaders are responsible
for providing all the samples and weights with respect to their sampling strategies. There is a nice
symmetry between the two: they both have a sample function for generating samples using their own
strategy, and respective emissionAndPDF and valueAndPDF functions to generate values corresponding
to the other strategy.

We provide many light and BRDF shaders in our library. To name a few, we have: lambertianDiffuse,
orenNayarDiffuse, kajiyaHairDiffuse, beckmannIsotropicSpecular, beckmannAnisotropicSpecular,
gtrIsotropicSpecular6, ggxAnisotropicSpecular and marschnerHairSpecular. For lights, we
have dome7, portal, rect, disk, sphere and distant types. As coshaders, they are all abstracted in
our system and interchangeable in the scene descriptions.

4Alongside the specialized volumes, transmission and sub-surface scattering integrators.
5See [The RenderMan Team 2013b] for exceptions.
6This is the generalized Trowbridge-Reitz model introduced by [Burley 2012].
7Similar to [Pharr and Humphreys 2004].

3

Figure 2: Note the various luminaires in this shot (neon signs, car headlights and various street lights).
The Blue Umbrella, c�Disney/Pixar 2013.

Figure 3: Di↵erent area light types.

4

The pieces of data (samples) are passed between these coshaders using structs of arrays:

• LightSampleStruct contains the results of the light sampling:

sample position P on the light

normalized vector Ln from the shading point to P

sample color Cl

sample pdf pdf

• BSDFSampleStruct contains the results of the BRDF sampling:

weighted sample value (value/pdf) weight

sample pdf pdf

sample direction dir

• LightEmissionStruct contains the light-side values of the BRDF sampling:

sample position P on the light

sample color Cl

sample pdf pdf

• BSDFValueStruct contains the BRDF-side values of the light sampling:

sample value value

sample pdf pdf

Direct Integrator

Light BRDF

sample()

emissionAndPDF() valueAndPDF()

sample()

Li
gh
tS
am

pl
eS
tru
ct

BRDFSam
pleStruct

Lig
ht
Em

iss
ion
St
ru
ct BRDFValueStruct

Figure 4: How the various structures communicate data between the three main coshaders.

5

This document will first detail two examples and their implementations: the sphere area light
in section 2 and the beckmannIsotropicSpecular BRDF in section 3. For anyone interested in our
marschnerHairSpecular approach, we invite you to check [Hery and Ramamoorthi 2012]. Later, in
section 4, we will show exactly how the sampling data is pulled together inside our direct integrator.

2 Sphere Area Light

Figure 5: A nice (sphere) moon scene. Monsters University, c�Disney/Pixar 2013.

The sphere area light is our simplest illumination object, and we provide algorithms below for sam-
pling and evaluating this particular luminaire. Originally these functions were written in RenderMan’s
Shading Language ([The RenderMan Team 1987-2013]); for ultimate performance, we later ported
some of them to C++ (see [Villemin and Hery 2012]) and leveraged Intel’s new ispc compiler—freely
available here [Pharr and Mark 2012].

6

2.1 Sphere Area Light Sampling

First (lines 7 to 9), we compute the ideal number of samples, with a heuristic based on the solid angle
observed from the shading point P. Also, from the importance of the ray (rayWeight in the code), we
reduce this number of samples in recursion. Then for sampling, we roughly follow [Shirley et al. 1996]—
a straightforward approach, where we distribute samples within the solid angle. At lines 14 and 16 of
the algorithm, we rely on two random numbers8: ⇠1 and ⇠2. If P is inside the light (see lines 3 and 26),
no samples are valid.

Algorithm 1. (Generating samples from a sphere area light)
void sample (out LightSamplingStruct ls)1

// Check whether we are inside or not

vector lightCenterDir = lightCenterPos� P;2

float d2 = lightCenterDir · lightCenterDir;3

if (d2� radius2) � 1e-4 then4

float d =
p

d2;5

// Build an orthonormal basis towards the center of the sphere

vector ONBU, ONBV, ONBW;6

CreateBasisFromW (lightCenterDir / d, ONBU, ONBV, ONBW);7

// Determine desired number of samples, between min and max and handle recursion

float solidAngle = 1�
q

d2
radius2+d2

; // Actually, the solid angle is 2⇡ times this quantity8

int numSamples = ceil(rayWeight ⇤ solidAngle ⇤ (maxSamples�minSamples));9

ls ! numValid = numSamples;10

float costhetamax =
q

1� radius2

d2 ;11

float pdf = 1/(2⇡ ⇤ (1� costhetamax));12

for int i = 0; i < numSamples; i += 1 do13

float costheta = 1 + ⇠1[i] ⇤ (costhetamax� 1);14

float sin2theta = 1� costheta2;15

vector lightDir = SphericalDir(
p

sin2theta, costheta, 2⇡ ⇤ ⇠2[i]);16

lightDir = TransformFromBasis(lightDir,ONBU,ONBV,ONBW);17

float � =
p

radius2 � sin2theta ⇤ d2 ;18

ls ! P[i] = P + (costheta ⇤ d��) ⇤ lightDir;19

ls ! Ln[i] = lightDir;20

ls ! pdf[i] = pdf;21

ls ! Cl[i] = lightColor;22

end23

end24

else25

ls ! numValid = 0;26

end27

8These numbers can, for instance, be generated via [Kensler 2013].

7

2.2 Sphere Area Light Evaluation

Here is the evaluation method of the light, given an array of BRDF samples as input. We use a simple
quadratic formula, lines 15-19, to check on the potential hits to the light. If a given BRDF sample
direction does not see the light (through this intersection routine), we mark the record with a PDF
value of 0 (line 30).

Algorithm 2. (Evaluating BRDF samples on a sphere area light)
void emissionAndPDF (in BSDFSamplingStruct bs; out LightEmissionStruct le)1

if bs ! numValid = 0 then2

return;3

end4

// Check whether we are inside or not

vector lightCenterDir = P� lightCenterPos;5

float d2 = lightCenterDir · lightCenterDir;6

if (d2� radius2) � 1e-4 then7

float costhetamax =
q

1� radius2

d2 ;8

float pdf = 1/(2⇡ ⇤ (1� costhetamax));9

// intersect light

for int i = 0; i < numValid; i += 1 do10

boolean isValid = false;11

vector dir = bs ! dir[i]; // direction towards the light12

float b = 2 ⇤ dir · lightCenterDir;13

float c = lightCenterDir · lightCenterDir � radius2;14

float � = b

2 � 4 ⇤ c;15

if � > 0 then16

float t = �b�
p

�
2 ;17

if t < 1e-5 then18

t = �b+
p

�
2 ;19

end20

if t � 1e-5 and t 1e20 then21

// we have a hit

isValid = true;22

le ! P[i] = P + t ⇤ dir;23

le ! Cl[i] = lightColor;24

le ! pdf[i] = pdf;25

end26

end27

if isValid = false then28

le ! Cl[i] = color(0);29

le ! pdf[i] = 0;30

end31

end32

end33

8

2.3 Sphere Area Light Di↵use Convolution

This function is used in the integrator for the control variates method (refer to 4.5). We follow [Snyder 1996].
Note that we check on the surface type to determine whether we can provide a valid convolution or not.

Algorithm 3. (Di↵use convolution of a sphere area light)
boolean diffConvolution (out color di↵Conv)1

// Check whether we can provide a diffuse convolution to the integrator

if enableControlVariates = false or isHair = true then2

return false;3

end4

di↵Conv = color(0);5

if lightColor ! = color(0) then6

// Check whether we are inside or not

vector lightCenterDir = lightCenterPos� P;7

float d2 = lightCenterDir · lightCenterDir;8

float cosTheta = lightCenterDir·Np
d2

;9

if (d2� radius2) � 1e-4 then10

float sinAlpha = radiusp
d2

;11

float cosAlpha =
p

1� sinAlpha2;12

float alpha = asin(sinAlpha);13

float theta = acos(cosTheta);14

// we use the faster cubic formula

if theta < (⇡

2 � alpha) then15

di↵Conv = cosTheta ⇤ sinAlpha2;16

end17

else if theta <

⇡

2 then18

float g0 = sinAlpha3; // d19

float g1 = 1
⇡

⇤ (alpha� cosAlpha ⇤ sinAlpha);20

float gp0 = �cosAlpha ⇤ sinAlpha2 ⇤ alpha; // c21

float gp1 = �sinAlpha2 ⇤ alpha/2;22

float a = gp1 + gp0� 2 ⇤ (g1� g0);23

float b = 3 ⇤ (g1� g0)� gp1� 2 ⇤ gp0;24

float y = (theta� (⇡

2 � alpha))/alpha;25

di↵Conv = g0 + y ⇤ (gp0 + y ⇤ (b + y ⇤ a)); // ay

3 + by

2 + cy + d26

end27

else if theta < (⇡

2 + alpha) then28

float g0 = 1
⇡

⇤ (alpha� cosAlpha ⇤ sinAlpha); // d29

float gp0 = �(sinAlpha2 ⇤ alpha)/2; // c30

float a = gp0 + 2 ⇤ g0;31

float b = �3 ⇤ g0� 2 ⇤ gp0;32

float y = (theta� ⇡

2)/alpha;33

di↵Conv = g0 + y ⇤ (gp0 + y ⇤ (b + y ⇤ a)); // ay

3 + by

2 + cy + d34

end35

// else leave di↵Conv at 0

end36

di↵Conv *= lightColor;37

end38

return true;39

9

3 Beckmann BRDF

This particular specular model was derived with a view towards simplicity and e�ciency. It is largely
inspired by [Walter et al. 2007], and also has much in common with the grand-daddy of all mod-
els: [Cook and Torrance 1982].

We decided to employ the trusted Beckmann distribution, with a roughness term ↵ (between 0 and
1). For an arbitrary microfacet normal m, using ✓

m

as the angle between this m direction and the
macroscopic surface normal n, the distribution is expressed as:

D

b

(m) =
e

� tan2(✓m)/↵

2

⇡ ↵

2 cos4(✓
m

)
=

e

(n·m)2�1

↵2(n·m)2

⇡ ↵

2 (n · m)4

As we saw in [Ho↵man 2013], microfacet BRDFs always evaluate normal distributions at h, the halfway
vector from the light direction l and the view direction v. [Walter 2005] derives a sampling strategy for
the dominant term in D

b

, i.e. the exponential. In this scheme, each sample is picked with a probability:

pdf =
D

b

(h) (n · h)
4 (v · h)

Suppose we have our full BRDF model (which has many terms in addition to D

b

), and use “value” to
denote its evaluation for a given set of l, v and n (and consequently h). By definition of radiance and
sampling, we have:

color =
value (n · l)

pdf

One desirable property of a BRDF model in a production environment is that it preserves energy as
much as possible. A common verification method is the “white furnace” test9, which should produce
a uniformly white result. Mathematically, this translates to:

value (n · l)
pdf

= 1

In other words:

f

µ

(l,v) = value =
pdf

n · l =
Db(h) (n·h)

4 (v·h)

n · l =
D

b

(h) (n · h)
4 (n · l) (v · h)

Accounting for Fresnel, F , this gives us our BRDF:

f

µ

(l,v) =
F (l,h)D

b

(h) (n · h)
4 (n · l) (v · h)

In practice, we pull out the Fresnel term from this definition and incorporate the regular n · l cosine
instead. This cancels out, leaving:

f

⇤
µ

(l,v) =
D

b

(h) (n · h)
4 (v · h)

= pdf

This has the advantage of being a very simple (and fast) expression and it also guarantees that we
pass the furnace test, at least as far as the Beckmann distribution goes. With small roughness values,
say ↵ 0.1, D

b

(and thus f

µ

) will indeed abide by the furnace requirement. For larger values, we still
lose some energy at grazing angles. This is the reason for pulling the Fresnel term out: artists can use
it to compensate for the loss. In summary, our BRDF (with built-in cosine) is:

f

⇤
µ

(l,v) =
e

(n·h)2�1

↵2(n·h)2

4 ⇡ ↵

2 (n · h)3(v · h)
A perfect Distribution-based BRDF! (See [Ashikhmin and Premoze 2007].)

9A pure white object is uniformly lit without shadows under a pure-white dome.

10

Figure 6: Beckmann specular: increasing roughness values from 0.001 to 1.0

3.1 Beckmann BRDF sampling

Now that we have our target distribution, we show how BRDF samples are generated using that dis-
tribution. Note that we do not enforce energy conservation between the various lobes: this is left as
an “exercise” for the shading artist, who has to guarantee (or not) that the sum of the K terms is 1.
In the algorithms below, it is assumed that Fresnel is baked externally into specColor and that the
facing-ratio test, V ·Ng, has been done prior to the call. Lines 8 and 14 are directly from [Walter 2005].

Algorithm 4. (Sampling of a Beckmann specular lobe)
void sample (in vector wi; in int lobeSamples; out BSDFSamplingStruct bs)1

// Note that we already rejected earlier the cases where V · Ng < 0

if specColor = color(0) or lobeSamples = 0 then2

return; // no need to sample3

end4

// Need to rectify the probabilities from the fact that I am sampling all lobes at once

float ratio = bs ! numSamples/lobeSamples;5

int numCurrent = bs ! numValid; // we will add to the list from there6

for int i = 0; i < lobeSamples; i += 1 do7

// Sample angle theta

float tantheta2 = � ln ⇠1[i] ⇤ roughness2;8

float costheta = 1p
1+tantheta2

;9

// Create a halfvector

vector H = SphericalDir(
p

1� costheta2
, costheta, 2⇡ ⇤ ⇠2[i]);10

float VdotH = wi · H;11

// Compute incident direction by reflecting about H

vector wo = �wi + 2 ⇤ VdotH ⇤ H;12

if wo · N > 0 then13

// ⇠1[i] represents the Beckmann exponential term

bs ! pdf[numCurrent] = ⇠1[i]⇤ratio
4⇡⇤costheta3⇤roughness2⇤abs(VdotH) ;14

// weight = value⇤LdotN
pdf

, which becomes by design:

bs ! weight[numCurrent] = specColor
ratio ;15

// Corresponding sampling direction

bs ! dir[numCurrent] = wo;16

numCurrent += 1;17

end18

end19

bs ! numValid = numCurrent;20

11

3.2 Beckmann BRDF evaluation

Our BRDF must also be able to evaluate the contribution of samples generated from the lighting
distribution. Some light samples may resolve to zero contribution, because they face the wrong way
(line 17). Also, remember that our returned value at line 13 is actually the product of the BRDF by
the cosine.

Algorithm 5. (Evaluation of a beckmann specular lobe)
boolean valueAndPDF (in vector wi; in vector wos[]; out BSDFValueStruct bv)1

boolean hasValidValues = false;2

// Note that we already rejected earlier the cases where V · Ng < 0

if specColor = color(0) then3

return hasValidValues; // no valid values4

end5

for int i = 0; i < bv ! numSamples; i += 1 do6

vector wo = wos[i];7

if wo · N > 0 then8

hasValidValues = true;9

// Compute the microfacet distribution (Beckmann)

vector H = normalize(wo + wi);10

float costheta = H · N;11

float pdf = e

costheta2�1
roughness2⇤costheta2

/(4⇡ ⇤ costheta3 ⇤ roughness2 ⇤ (wi · H));12

bv ! value[i] = specColor ⇤ pdf;13

bv ! pdf[i] = pdf;14

end15

else16

bv ! value[i] = color(0);17

bv ! pdf[i] = 0;18

end19

end20

return hasValidValues;21

12

4 Direct lighting integrator

The directLighting integrator will gather all the samples from the BRDF coshaders and the light
coshaders, and will compute the final result. For robustness, we combine these two sampling strategies
using Multiple Importance Sampling (MIS). As described in the introduction, this integrator focuses on
direct lighting only, so the computation is optimized for this sole task, completely ignoring all indirect
e↵ects. Since the BRDF’s sampling is independent of the lights, it is done once outside of the light
loop. Notice that we return two BSDFSampleStructs here, one for “normal” area lights and one for
infinite lights (see 4.3). Depending on the light type we will use bs or bsbvh. The bsbvh will only
contain samples that are hitting at least one light. We still need the original sets of samples for infinite
lights that are potentially hit by any direction. Then the results for all lights are accumulated into
the final result. One important point here is that although we have area lights, by default they don’t
have any geometric representation in the scene and thus are not themselves visible. This is also why
we have a separate acceleration structure for those lights.

Algorithm 6. (Direct Lighting Integration)
color integrate ()1

// Get BSDF samples -- sample according to BRDF strategy

IntegrateBrdf(bs, bsbvh, numSpecLobes, numSpecSamples);2

// Light loop

for int l = 0; l < lightCount; l += 1 do3

shader li = lights[l];4

// Get Light samples -- sample according to Light strategy

if li ! hasInfiniteBounds then5

IntegrateLight(li, bs, numSpecLobes, numSpecSamples, finalDi↵, finalSpec);6

end7

else8

IntegrateLight(li, bsbvh, numSpecLobes, numSpecSamples, finalDi↵, finalSpec);9

end10

resultDi↵ += finalDi↵;11

resultSpec += finalSpec;12

result += finalDi↵ + finalSpec;13

end14

return result;15

13

4.1 BSDF Struct

The BSDFStruct is a structure that contains all of the BRDF lobes for a given material10. We combine
them in this struct for code clarity, and also for performance reasons. For di↵use components, in
order to optimize computation, we “flatten” all the lobes into one, by using a merged albedo instead
of multiple di↵erent albedos (if the lobes are standard Lambertian di↵use). Even if we have more
complicated (potentially view-dependent) di↵use, we still have a gain by sampling all the lobes at once
using a single strategy—uniform or cosine-weighted, for example. For specular lobes, since they each
will use a di↵erent strategy (either because it is a set of distinct BRDF models or if they have di↵erent
roughnesses), we need to sample them separately, but we can still store all the samples in one common
struct. Once we have all the samples and their corresponding values and PDFs, we don’t really need to
know where and how they were computed: the values are enough to perform MIS. valueAndPDF Spec
is shown here, valueAndPDF Diff is equivalent:

Algorithm 7. (BSDFStruct valueAndPDF Spec)
void valueAndPDF Spec (out BSDFValueStruct bv)1

for int i = 0; i < numSpecularBRDFs; i += 1 do2

boolean hasValidValues = specularBRDFs[i]! valueAndPDF(wi,wouts, onebv);3

if hasValidValues = false then4

int numDirections = arraylength(wouts);5

for int k = 0; k < numDirections; k += 1 do6

onebv ! value[k] = color(0);7

onebv ! pdf[k] = 0;8

end9

end10

push(bv, onebv);11

// one struct of arrays per lobe for MIS on specular

end12

Algorithm 8. (BSDFStruct sample)
void sample ()1

// Sample each specular BRDF

for int i = 0; i < numSpecularBRDFs; i += 1 do2

int thisNumSamples = specularSamples[i];3

if thisNumSamples > 0 and facingRatio � 0.0 then4

specularBRDFs[i]! sample(wi, thisNumSamples, bs);5

end6

end7

10If this was not obvious, let’s state here that our materials can contain arbitrary numbers of lobes, each of arbitrary
types.

14

4.2 Light integrator

This is the integration code for a single light. We assume that the BRDF sampling has already been
done outside and has been passed here as an input parameter. First we compute the samples according
to the light strategy. This is done using the sample function in the light coshader (as in section 2.1).
Then, in order to use MIS, we will compute the corresponding values and PDFs for BRDF sampling.
This is done through the emissionAndPDF function, that takes the valueAndPDF function for each of
the BRDF coshaders. These will give us the first pair of values. Next we compute the corresponding
light values for the BRDF samples that were passed as inputs. Since the BRDF sampling was already
done outside, we only need to call the emissionAndPDF on the light coshader side. This, combined
with the input samples of the BRDF, will give us the second pair of values for MIS.

The computeMIS function will then calculate the final values and weights for each of those samples.
At this stage we have the results without any visibility taken into account. The final step is to compute
the visibility term for all the resulting samples. Shadowing is done at the very end because it is usually
the most expensive step, and doing it after everything enables to use the final weighting of each sample
to optimize its computation using a cuto↵ (or Russian Roulette if we want to stay unbiased). This is
also true if we have enabled resampling: the final number of samples will be reduced before doing the
shadowing calculation.

Algorithm 9. (Light Integration)
color integrateLight (shader li; out BSDFSamplesStruct bs; out int numSpecLobes; out int1

numSpecSamples; out color lightDi↵, lightSpec)

// Light sampling

li! sample(ls);2

// Check generated samples

int numGeneratedLightSamples = ls ! numValid;3

int numActiveSpecSamples = bs ! numValid;4

// BRDF evaluation

if numGeneratedLightSamples > 0 then5

// No MIS on diffuse: do all diffuses together

bsdf ! valueAndPDF Diff(di↵Values);6

// On the other hand, return an array for the specular lobes

bsdf ! valueAndPDF Spec(specValues);7

end8

// Light evaluation

li! emissionAndPDF(bs, lightValues);9

// Importance sampling

computeMIS(ls, di↵Values, specValues, bs, lightValues,Cdi↵,Cspec,CspecBRDF);10

// Light shadows

if numGeneratedLightSamples > 0 then11

computeLightShadows(Cdi↵,Cspec, di↵PerLight, di↵PerLightNoShad, specPerLight, specPerLightNoShad);12

end13

// BRDF shadows

if numActiveSpecSamples > 0 and facingRatio � 0.0 then14

computeBRDFShadows(CspecBRDF, specPerLight, specPerLightNoShad);15

end16

// Per light integration output

lightDi↵ = mix(di↵PerLightNoShad, di↵PerLight, shadowDensity);17

lightSpec = mix(specPerLightNoShad, specPerLight, shadowDensity);18

15

4.3 BRDF integrator

The BRDF’s integration is done for all the specular lobes at once. The number of lobes is returned
in numSpecLobes, and the number of samples per lobe is returned in an array numLobeSamples. Each
BRDF can have a variable number of samples based on its properties (roughness, etc.). An optimization
is performed at that stage: all the samples are tested against an acceleration structure containing all
of the area lights. If a BRDF sample does not hit any light, it is discarded. This optimization is not
required, but is recommended as the sampling can become very expensive if you have thousands of
lights in the scene. We still keep the original set of samples, to use against infinite lights (dome area
light in particular); the direct lighting integrator is responsible for passing the right sample set to the
light depending on its type.

Algorithm 10. (BRDF Integration)
color integrateBrdf (out BSDFSamplesStruct bs; out BSDFSamplesStruct bsbvh; out int numSpecLobes;1

out int numSpecSamples)

// Get BSDF samples -- sample according to BRDF strategy

bsdf ! getNumSpecSamples(numLobeSamples, numSpecSamples);2

numSpecLobes = arraylength(numLobeSamples);3

if numSpecLobes > 0 then4

bs = bsdf ! sample();5

// Early reject BRDF samples (through bvh query) that do not intersect any lights

bsbvh = BVHReduce(P, bs);6

end7

(a) Light integration result (b) BRDF integration result

Figure 7: Two sampling strategies

16

4.4 MIS integrator

Once we have all the samples from the two strategies—Light and BRDF—we can perform MIS. (For
di↵use lobes, we usually only use light sampling11.) Our integrator also has the possibility to perform a
resampling step12, or resampled MIS (as in [Talbot et al. 2005]) in the case of MIS. This is sometimes
useful to reduce the number of shadow rays to trace, especially if a lot of samples were necessary to
solve a high frequency pattern in the emission of the light.

Algorithm 11. (Compute MIS)
color computeMIS (LightSampleStruct ls; BSDFValueStruct di↵Values; BSDFValueStruct specValues;1

BRDFStruct bs; LightEmissionStruct lightValues; out color Cdi↵, Cspec, CspecBRDF)

if di↵ResampPercentage � 1.0 then2

integrateIS(di↵Values, ls,Cdi↵);3

end4

else5

integrateRIS(di↵ResampPercentage, di↵Values, ls,Cdi↵);6

end7

if facingRatio � 0.0 then8

if specResampPercentage � 1.0 then9

integrateMIS(ls, specValues, numLobeSamples,Cspec, bs, lightValues,CspecBRDF);10

end11

else12

integrateRMIS(specResampPercentage, ls, specValues, numLobeSamples,Cspec, bs, lightValues,CspecBRDF);13

end14

end15

(a) with shadowing (b) without shadowing

Figure 8: MIS integration result

11We still might want to perform MIS even on di↵use lobes when a light source is very close to the shading point. In
that case, the light sampling integral has a peak because of the division by the squared distance. Using BRDF sampling
will get rid of this singularity.

12Because the resampling can be costly, we do this in an optimized DSO, which in RSL is a specialized function directly
written in C/C++ to expand the language or for performance gains.

17

4.5 Shadow integrator

Light shadowing is done using ray-tracing of transmission (shadow) rays that are optimized to only
compute visibility. This is not shown here, but specialized shadowing strategies can be implemented
here. As long as the strategies do not overlap each other (i.e., not creating double shadows), we can
have multiple calls to di↵erent shadowers. For example, after shadow tracing against standard objects
in the scene, one can use a specialized Spherical Harmonics visibility scheme for heavy vegetation,
and/or ray-march inside shadow maps for large hair objects (see [The RenderMan Team 2011]).

An additional step is done using control variates13 if the light was able to provide an analytical
solution of its non-shadowed lighting. This usually relies on a contour integral computation or a
texture map pre-convolution. Common techniques, albeit somehow approximate, to obtain a di↵use
convolution can make use of a Spherical Harmonics representation ([Ramamoorthi and Hanrahan 2001]
and [Mehta et al. 2012]). Refer to 2.3 for an example on our Sphere area light.

The idea here is that we want to calculate:

I =
Z

fv

with f being the product of the incoming radiance and the BRDF, and v, the visibility term. Without
any changes, I can be rewritten as:

I =
Z

fv + ↵

✓Z
f �

Z
f

◆
,8↵

If we have a way to calculate analytically G =
R

f , this leads to:

I =
Z

fv + ↵

✓
G�

Z
f

◆

For instance, we can take ↵ = v̄, the average visibility. The advantage is that if v̄ is 1 (i.e., v is 1
everywhere), then I is exactly G. On the other hand, if v̄ is exactly 0, then I is the original sampling.
If v̄ is between 0 and 1, there is still variance reduction, as long as the correlation between f and fv

is high enough. Here:

• G is our di↵use preconvolved solution, diffConv

•
R

fv is diffPerLight

•
R

f is diffPerLightNoShad

We direct the reader to [Clarberg and Akenine-Möller 2008], which describes a strategy for estimating
an approximate and e�cient v̄ term.

13A classic Monte Carlo technique well documented in [Kalos and Whitlock 1986].

18

(a) Control variates o↵ (b) Control variates on

Figure 9: Control variates on di↵use. Observe the reduction of variance in the non-shadowed regions.

Algorithm 12. (Compute Light Shadows)
color computeLightShadows (color Cdi↵[], Cspec[]; out color di↵PerLight, di↵PerLightNoShad,1

specPerLight, specPerLightNoShad)

color Lvis[];2

avgVis = AreaShadowRays(ls ! P, ls ! pdf, Lvis);3

for int i = 0; i < numGeneratedLightSamples; i += 1 do4

di↵PerLight += Cdi↵[i] ⇤ (color(1)� Lvis[i]);5

di↵PerLightNoShad += Cdi↵[i];6

end7

if facingRatio � 0.0 then8

for int i = 0; i < numGeneratedLightSamples; i += 1 do9

specPerLight += Cspec[i] ⇤ (color(1)� Lvis[i]);10

specPerLightNoShad += Cspec[i];11

end12

end13

// Check diffuse convolution

if li! diffuseConvolution(di↵Conv) = true then14

// Do control variates

di↵Conv *= bsdf ! albedo();15

di↵PerLight += (color(1)� avgVis) ⇤ (di↵Conv � di↵PerLightNoShad);16

di↵PerLightNoShad = di↵Conv;17

end18

BRDF shadowing is straightforward: there is no special trick here, we just trace all the shadow
rays and add the results to the specular accumulation. The same method applies here if we want to
use multiple shadowing strategies (SH, shadow maps, etc.), i.e. this is the place to run them.

19

Algorithm 13. (Compute BRDF Shadows)
color computeBRDFShadows (color CspecBRDF[]; out color specPerLight, specPerLightNoShad)1

color LvisBRDF[];2

color AreaShadowRays(lightValues ! P, bs ! pdf, LvisBRDF);3

for int i = 0; i < numActiveSpecSamples; i += 1 do4

specPerLight += CspecBRDF[i] ⇤ (color(1)� LvisBRDF[i]);5

specPerLightNoShad += CspecBRDF[i];6

end7

5 Conclusion

RenderMan’s versatility allows the shader writer to create his very own integrators, lights and BRDFs.
One can thus develop a full physically based system—such as what we outlined in this document—
without touching at the guts of the renderer. However, if you don’t need this level of customization,
or simply want the render engine to take care of all the implementation details and performance op-
timization, you can use the built-in integrators of RenderMan 17.0 [The RenderMan Team 2012], and
the new geometric arealights API in RenderMan 18.0 [The RenderMan Team 2013a].

We want to acknowledge here the work of all the shading, lighting and rendering artists on Mon-
sters University and The Blue Umbrella, and in particular want to thank their respective Directors of
Photography (Jean-Claude Kalache on Monsters University and Brian Boyd for The Blue Umbrella).
We also want to express our gratitude to the full RenderMan team and to the group of TDs that were
part of the “GI” project.

Quote from Jean-Claude Kalache, the lighting Director of Photography on Monsters University:
“Physically based lights simplified our setups dramatically. Our master lighting productivity doubled
and our shot lighting e�ciency went up by 55%. We used multi-threading for interactive and batch
renders. The overwhelming feedback we got from lighters was that the new lights were easy to use
and provided more time for artistic exploration. We also used the physically based lights to create
meaningful pre-vis lighting for the Sets Shading department. Every major set was pre-vised with these
lights on average in 1-2 days. We used IBL14 techniques for the Character department, providing half
a dozen lighting setups. The lighting setups for both departments were normalized, which resulted in
more robust shader behavior under any lighting conditions.”

Quote from Chris Bernardi, the set shading lead on Monsters University:
“Physical shading required us to unify Specular and Reflection from the shading side: we had to re-
think many long-held approaches, but the result was a more coherent representation of specular across
our sets. There were far fewer adjustments that needed to be made in the context of lighting and
our materials became far more portable as a result. A secondary result, was that since the lighting
rigs became simpler to work with, it was easier for Lighting to deliver customized lighting setups for
individual sets. This gave us the opportunity to fine tune our shaders in the context of some mean-
ingful lighting, which also helped us deliver cleaner shading inventory in return. The combination of
rendering with HDR15 and the energy conservation of the specular model made it easier to hit a wider
variety of materials and most of the tweaking was primarily with the roughness control.”

14Image Based Lighting: this is the illumination mode triggered by our dome area light
15High Dynamic Range texture on the dome light

20

Figure 10: Monsters University: daylight scene c�Disney/Pixar 2013

Figure 11: The Blue Umbrella: nightime rainy scene c�Disney/Pixar 2013

21

References

[Ashikhmin and Premoze 2007] Ashikhmin, M., and Premoze, S. 2007. Distribution-based
BRDFs. Tech. rep., Program of Computer Graphics, Cornell Uni-
versity.

[Burley 2012] Burley, B., 2012. Physically-based shading at Disney. http:
//selfshadow.com/s2012-shading/.

[Christensen et al. 2012] Christensen, P. H., Harker, G., Shade, J., Schubert, B.,
and Batali, D., 2012. Multiresolution radiosity caching for ef-
ficient preview and final quality global illumination in movies.
http://graphics.pixar.com/library/RadiosityCaching/.

[Clarberg and Akenine-Möller 2008] Clarberg, P., and Akenine-Möller, T. 2008. Exploiting
Visibility Correlation in Direct Illumination. Computer Graphics
Forum (Proceedings of EGSR) 27, 4.

[Cook and Torrance 1982] Cook, R. L., and Torrance, K. E. 1982. A reflectance model
for computer graphics. ACM Trans. Graph. 1, 1 (Jan.), 7–24.

[Heckbert 1990] Heckbert, P. S. 1990. Adaptive radiosity textures for bidi-
rectional ray tracing. SIGGRAPH Comput. Graph. 24, 4 (Sept.),
145–154.

[Hery and Ramamoorthi 2012] Hery, C., and Ramamoorthi, R. 2012. Importance sampling
of reflection from hair fibers. Journal of Computer Graphics Tech-
niques (JCGT) 1, 1 (June), 1–17.

[Ho↵man 2013] Hoffman, N., 2013. Background: Physics and math of shading.
http://selfshadow.com/s2013-shading/.

[Kalos and Whitlock 1986] Kalos, M. H., and Whitlock, P. A. 1986. Monte Carlo
Methods. John Wiley Sons.

[Kensler 2013] Kensler, A. 2013. Correlated multi-jittered sampling. Tech.
Rep. TM-13-01, Pixar Animation Studios.

[Mehta et al. 2012] Mehta, S. U., Ramamoorthi, R., Meyer, M., and Hery,
C. 2012. Analytic tangent irradiance environment maps for
anisotropic surfaces. Comp. Graph. Forum 31, 4 (June), 1501–
1508.

[Pharr and Humphreys 2004] Pharr, M., and Humphreys, G., 2004. Infinite area light source
with importance sampling. http://www.pbrt.org/plugins/
infinitesample.pdf.

[Pharr and Mark 2012] Pharr, M., and Mark, W. R., 2012. ispc: A SPMD compiler
for high-performance cpu programming. http://llvm.org/pubs/
2012-05-13-InPar-ispc.html.

[Ramamoorthi and Hanrahan 2001] Ramamoorthi, R., and Hanrahan, P. 2001. An e�cient
representation for irradiance environment maps. In Proceedings of
the 28th annual conference on Computer graphics and interactive
techniques, ACM, New York, NY, USA, SIGGRAPH ’01, 497–500.

22

[Shirley et al. 1996] Shirley, P., Wang, C., and Zimmerman, K. 1996. Monte carlo
techniques for direct lighting calculations. ACM Trans. Graph. 15,
1 (Jan.), 1–36.

[Snyder 1996] Snyder, J. M. 1996. Area light sources for real-time graph-
ics. Tech. Rep. MSR-TR-96-11, Microsoft Research, Advanced
Technology Division, Microsoft Corporation, One Microsoft Way,
Redmond, WA 98052.

[Talbot et al. 2005] Talbot, J. F., Cline, D., and Egbert, P. K. 2005. Impor-
tance resampling for global illumination. In Proc. EGSR.

[The RenderMan Team 1987-2013] The RenderMan Team, 1987-2013. Shading language
(RSL). http://renderman.pixar.com/resources/current/
rps/shadingLanguage.html.

[The RenderMan Team 2009] The RenderMan Team, 2009. Shader objects and co-
shaders. http://renderman.pixar.com/resources/current/
rps/shaderObjects.html.

[The RenderMan Team 2011] The RenderMan Team, 2011. Area shadowing sup-
port. http://renderman.pixar.com/resources/current/rps/
areaShadow.html.

[The RenderMan Team 2012] The RenderMan Team, 2012. Physically plausible shading in
RSL. http://renderman.pixar.com/resources/current/rps/
physicallyPlausibleShadingInRSL.html.

[The RenderMan Team 2013a] The RenderMan Team, 2013. Geometric area lights.
http://renderman.pixar.com/resources/current/rps/
geometricAreaLights.html.

[The RenderMan Team 2013b] The RenderMan Team, 2013. New photon mapping fea-
tures. http://renderman.pixar.com/resources/current/rps/
newPhotonMapping.html.

[Veach and Guibas 1995] Veach, E., and Guibas, L. J. 1995. Optimally combining
sampling techniques for monte carlo rendering. In Proceedings of
the 22nd annual conference on Computer graphics and interactive
techniques, ACM, New York, NY, USA, SIGGRAPH ’95, 419–428.

[Villemin and Hery 2012] Villemin, R., and Hery, C., 2012. Porting RSL to
C++. http://renderman.pixar.com/resources/current/rps/
portingRSLtoC.html.

[Walter et al. 2007] Walter, B., Marschner, S. R., Li, H., and Torrance,
K. E. 2007. Microfacet models for refraction through rough
surfaces. In Proceedings of the 18th Eurographics conference on
Rendering Techniques, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, EGSR’07, 195–206.

[Walter 2005] Walter, B. 2005. Notes on the Ward BRDF. Tech. Rep. PCG-
05-06, Program of Computer Graphics, Cornell University.

23

