
Point-Based Color Bleeding

Per Christensen

Pixar Animation Studios

June 2009

Overview

• What is color bleeding?

• Other computation methods

• Point-based color bleeding
– generating direct illumination point cloud

– rendering using point cloud

• Examples of use in movies

• Variations and extensions

Color bleeding

• Soft indirect illumination between matte
surfaces

Computation methods

• Faking it: adding extra light sources
– tedious; labor intensive

• Radiosity (finite elements)
– requires entire scene geometry in memory

• Ray tracing
– requires many rays + shader evaluations: slow

• Point-based
– little memory, no shader evaluations

Computation methods

• Faking it: adding extra light sources
– tedious; labor intensive

• Radiosity (finite elements)
– requires entire scene geometry in memory

• Ray tracing
– requires many rays + shader evaluations: slow

• Point-based
– little memory, no shader evaluations

Point-based color bleeding

• Handles complex geometry (including
dense polygon meshes, hair, leaves,
displacement), many light sources,
complex surface shaders, ...

• Very movie-production friendly

• Part of Pixar’s RenderMan renderer

Point-based color bleeding

• Two steps:

• Generate point cloud of directly
illuminated surface colors (radiosity)

• Render: compute color bleeding at each
shading point

A point cloud

• Each point: position, normal, radius, color:
a colored disk

• Terminology: “point” or “disk”?

point cloud
point cloud

Generate point cloud

• Render direct illumination image

• Generate point cloud file at same time

point cloud, 560K points (various views)rendered image

Generate point cloud

• Point cloud files from “Up”

key light fill lights

Compute color bleeding at a point

• Basic idea: add up color from all other
points!

Compute color bleeding at a point

• For efficiency: use cluster of points for
distant points

• For higher accuracy: ray trace close
points

Compute color bleeding at a point

• Problem: if all points are added up, even
points “hidden” behind other points will
contribute

Compute color bleeding at a point

• Solution: rasterize colors contributing to
a point -- world “as seen” by that point

• Raster cube examples:

point on teapot lidpoint on ceiling

Compute color bleeding at a point

• Multiply all raster pixel colors by
reflectance function (BRDF); add

• Result is color bleeding at point

Color bleeding results

direct illum direct illum + color bleeding

Use in movies

• Pirates of the Carribean 2 & 3, Eragon,
Surf’s Up, Spiderman 3, Harry Potter 5 & 6,
Chronicles of Narnia, Fred Claus, Beowulf,
Spiderwick Chronicles, Ironman, Indiana
Jones, 10,000 BC, Batman: Dark Knight,
Quantum of Solace, Cloverfield, Doomsday,
Hellboy 2, Inkheart, Wall-E, Star Trek,
Terminator 4, The Boat that Rocked, Fast &
Furious 4, Angels and Demons, Up, ...

Davy Jones

“Pirates of the Carribean: Dead Man’s Chest”
(Courtesy of Industrial Light & Magic)

“Up” example without color bleeding

“Up” example with color bleeding

“Up” example without color bleeding

“Up” example with color bleeding

“Up” example without color bleeding

“Up” example with color bleeding

Variations and extensions

• Glossy reflection

• Area light sources

• Environment illumination

• Multiple light bounces

• Ambient occlusion, reflection occlusion

• Volumes

Glossy reflection

• Only collect illumination from within a
small cone of directions

• Raster cube example:

• Multiply raster pixel colors by glossy
reflectance function (BRDF)

Glossy reflection

wide glossy reflectionnarrow glossy reflection

Glossy reflection

point cloud glossy reflection

Area light sources

• Treat area light sources the same as
surfaces: generate point cloud with color
data

• Light sources can have arbitrary shape and
colors

• Also write (black) points for shadow-casting
objects

Area light sources

area light illumination

area lights

Environment illumination

• Use environment color for raster pixels not
covered by points

HDRI env map

raster cube

Multiple light bounces

• Run the algorithm n times

• (For efficiency: first n-1 times can be
computed at fewer points)

n = 0 n = 1 n = 2 n = 3

Special case: Ambient occlusion

• Fraction of hemisphere above a point
that’s covered

• Similar to shadows on overcast day

• Values between 0 and 1

Ambient occlusion

• Generate point cloud with only position,
normal, radius (no colors)

Ambient occlusion

Ambient occlusion (and reflections)

Ambient occlusion

“Surf’s Up” test (Courtesy of Sony Imageworks)

Special case: reflection occlusion

• As ambient occlusion, but narrow cone of
directions (around reflection direction)

narrow reflection wider reflection

Other result types

• Given the raster cube it is also fast to
compute:
– average unoccluded direction (“bent normal”)

– average illumination direction

Color bleeding in volumes

• Points don’t have normals: spheres,
not disks

• Color bleeding from all directions:
entire raster cube

• surface volume

• volume volume

Optimization: interpolation

• If the color bleeding varies only a little in
an area (<2%), we simply interpolate it

• Technique known from ray tracing
(“irradiance cache”)

Optimization: interpolation

• Compute color bleeding at the 4 corners of
surface patch

• Is the difference between 4 values small?
– yes: interpolate on patch

– no: split patch in 2; recurse

surface patch

Parallel computation

• Color bleeding at each point is
independent

• Ideal for parallel execution

• Observed speedups:
– 4 cores: 3.6

– 8 cores: 6.6

Summary

• Point-based color bleeding is fast and can
handle complex production scenes

• Also works for glossy reflection, area lights,
env. map illumination, multiple bounces,
ambient occlusion, reflection occlusion,
volumes

• In Pixar’s RenderMan

• Is gaining widespread use in production

More information

• “Point-Based Graphics” book by Gross &
Pfister

• Pixar technical report #08-01: “Point-based
approximate color bleeding”

• Talk this afternoon: Making of “Partly
Cloudy” and “Up”

Acknowledgments

• RenderMan team, Jean-Claude Kalache

• Rene Broca, Cedric Guiard, Marine Lamblin

• You for listening

Thanks!

Questions?

