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1 Introduction

In a modern renderer, relying on recursive ray-tracing, the number of shader calls increases by one or
two order of magnitude compared to a straighforward rasterizer dealing only with camera visible objects.
Recognizing the potential overhead of RSL parsing in all these shader calls, this report evaluates different
C++ pre-compiled alternatives.

Most of our current shaders are written using RSL. The main advantage is ease of development and use:
the shader writer only needs to code a standard scalar version and the compiler is going to parallelize it
to run on multiple shading points of a grid. Since RSL is byte-code compiled, it can suffer a performance
penalty compared to binary compiled languages. However many shading points are run in parallel and
thus this cost has always been assumed to be leveraged.

Unfortunately with the introduction of ray-tracing, it is getting more and more difficult to shade multiple
points at once, since divergent rays are likely to hit completely different objects and shaders. In practice,
for an indoor scene, where almost every ray hits something, we found that 80% of the shaders can’t be
combined.

As shown in the statistics, the average grid size can drop to a few dozen shading points (or even less).
In this context the overhead of interpreting RSL becomes non negligible.

In part 2, we will discuss different versions of our shader and the cost of porting it to different languages.
In part 3, we will present the results of those different versions, and then conclude in part 4.

Figure 1: Grid Statistics
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2 Implementation

2.1 RSL to C++

In RSL, a shader is written as it is handling only one shading point, prman will automaticaly perform
the same operations on all the shading points of the grid. The shader only have to differentiate, per
grid operation and per shading point operation by using the 2 keywords uniform and varying in front
of each variables.

Usually the code is divided more or less clearly in 3 components :

• operations that need to run once per grid do per grid operations()

• operations that need to run per shading point do per shading point operations()

• operations needed per samples per shading point do per sample per shading point operations()

Those 3 functions have dependencies and need to be called in this particular order. In all the following
pseucode, we will consider that we have an M points grid and we are taking N samples on each of these
shading points.

uniform v a r g r i d = d o p e r g r i d o p e r a t i o n s ( )

vary ing va r shad ing po in t = d o p e r s h a d i n g p o i n t o p e r a t i o n s ( v a r g r i d )

f o r ( i =0. .N)
{

d o p e r s a m p l e p e r s h a d i n g p o i n t o p e r a t i o n s ( var g r id , va r shad ing po in t )
}

When porting this code to C++, it is now up to the shader writer to perform the loop over the shading
points of the grid. The 3 different functions are now in 3 different parts of the loops (the grid operations
are completely outside).

v a r g r i d = d o p e r g r i d o p e r a t i o n s ( )

f o r ( j =0. .M)
{

va r shad ing po in t = d o p e r s h a d i n g p o i n t o p e r a t i o n s ( v a r g r i d )

f o r ( i . . N)
{

d o p e r s a m p l e p e r s h a d i n g p o i n t o p e r a t i o n s ( var g r id , va r shad ing po in t )
}

}

The translation to C++ is pretty straighforward and easy, RSL syntax being very close to C in the first
place. Just porting the code to C++ gives more than 20% speedup for large grids and more than 60%
on small grids.
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Figure 2: prman memory layout

2.2 Optimizing C++

The previous implementation is far from being optimal, the biggest reason is related to how the arrays
are handled by prman. For a varying array C of size l, the memory layout inside the renderer is:

P0C0 P1C0 . . . PmC0 P0C1 P2C1 . . . . PmC1 P0C2 . . . . . . PmCl

That means it is far more efficient to perform adjacent read per shading points, than read per samples.
When reading per samples, we have to jump m elements every access. A naive way to do per shading
point reads is to just interchange the loops:

v a r g r i d = d o p e r g r i d o p e r a t i o n s ( )

f o r ( i =0. .N)
{

f o r ( j =0. .M)
{

va r shad ing po in t = d o p e r s h a d i n g p o i n t o p e r a t i o n s ( v a r g r i d )
d o p e r s a m p l e p e r s h a d i n g p o i n t o p e r a t i o n s ( var g r id , va r shad ing po in t )

}
}

Unfortunately the do per shading point operations() is now repeated NxM times instead of the
needed M times. This can lead to slower execution than our first version. We have to extract that code
and make a second loop:

v a r g r i d = d o p e r g r i d o p e r a t i o n s ( )

va r shad ing po in t [M]

f o r ( j =0. .M)
{

va r shad ing po in t [ j ] = d o p e r s h a d i n g p o i n t o p e r a t i o n s ( v a r g r i d )
}

f o r ( i =0. .N)
{

f o r ( j =0. .M)
{

d o p e r s a m p l e p e r s h a d i n g p o i n t o p e r a t i o n s ( var g r id , va r shad ing po in t [ j ] )
}

}
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One difficulty here is that in do per sample per shading point operations(), we usually need to use
the result from do per shading point operations(). We have to store the values computed in the
first loop to be used in the second loop. Since we want to avoid doing a malloc every shader call (which
can be called billions of time), we reserve a memory pool in a per thread memory storage. This is
possible since the shader is not reentrant.

Changing the loop order gives us an additional 20% speedup for large grids and 10% for small grids.

2.3 C++ to ispc

ispc is the new intel spmd program compiler. It uses a C like syntax and generates a .o file that we
can link as usual into a DSO. The difference between ispc and other parallel programming librairies
is that ispc operates on SIMD lanes, while others are focusing on utilizing multicores. ispc performs
optimizations and tranforms the program in a vector intermediate representation of LLVM. Then the
final compilation is handled by LLVM.

Internally ispc is going to run multiple instances of the program at once. The group of running program
instances is called a gang.

Porting C++ code to ispc is really easy, it is almost a carbon copy-paste. The only changes are the
loop declarations: instead of using the classic for() loop, we use the ispc specific foreach(). Also we
now have 2 extra qualifiers for variables: uniform and varying.

One thing to be aware of is that the uniform and varying qualifiers have a slightly different meaning in
ispc and in RSL. In RSL varying means varying between shading points. In ispc, varying means varying
between program instances within a gang. So a varying element in RSL, is likely to be an uniform array
in ispc. Pointers to this uniform array are going to be varying, since every program instance is going to
process different locations in this array.

To summarize :

• all the input variables including arrays are uniforms, RSL’s varying inputs become uniform arrays

• all the output variables including arrays are uniforms, RSL’s varying outputs become uniform
arrays

• all intermediate loop dependent variables are varying like in RSL

• you should specify uniform for all loop independent variables, ispc can benefit from those by
optimizing uniform code

uniform v a r g r i d = d o p e r g r i d o p e r a t i o n s ( )

uniform var shad ing po in t [m]

f o r each ( j =0. .m)
{

va r shad ing po in t [ j ] = d o p e r s h a d i n g p o i n t o p e r a t i o n s ( v a r g r i d )
}

f o r each ( i =0. .n , j =0. .m)
{

d o p e r s a m p l e p e r s h a d i n g p o i n t o p e r a t i o n s ( var g r id , va r shad ing po in t [ j ] )
}

Just porting the code as-is to ispc provides a 30% speedup for large grids and 20% for small grids.
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Figure 3: ispc memory access

2.4 Optimizing ispc

We can make the ispc code even faster.

uniform conditionals are optimized in ispc but ispc also provide an improved if for varying conditionals.
These are called consistent branchings (cif, cwhile) and hint the compiler that the result is likely going
to be the same for all the points. This will create a special optimized code path for this branching.

We can also optimize the memory layout to have faster SIMD loads and stores by using structure of
arrays instead of arrays of structure. An array of colors is usually an array of structure of the following
type:

r0g0b0 r1g1b1 r2g2b2 . . . r l g l b l

That means every time we load a vector, we need to perform a gather operation. If we organize the
structure to be an structure of arrays, we can benefit from faster loads:

r 0 r1 r2 . . . r l g0g1 . . . g lb0b1 . . . b l

Changing the array memory layout is going to have an impact on the whole shader system so this time
we only modified the layout of local arrays.

By doing those 2 changes (consistent branching and optimized memory layout), we were able to get an
additional 25% speedup for large grids and 15% for small grids.
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Figure 4: Shader Execution Time

3 Results

For large grids ˜200 shading points, the move from RSL to ispc gave us a 3x speedup. For small grids
˜20 shading points which are likely in a raytracing context, the speedup is more than 5x. The speedup
ratios when going from C++ to the slightly optimized ispc code are respectively 2.5x and 1.7x.

Table 1: Shader Evaluation Time (in seconds).

Average Grid Size RSL C++ Opt. C++ ISPC Opt. ISPC

21.88 187 67 58 45 39
36.23 116 51 46 33 27
57.49 86 46 38 29 23
78.78 72 42 36 26 21

137.74 59 41 33 22 18
208.31 53 41 32 22 17

4 Discussion

Shader execution time is largely dominant in our renders. When people are complaining about the cost
of ray-tracing, it is usually the cost of ray-hit shading that is the bottleneck. In an indoor scene, the
ratio ray-shading time over ray-tracing time can reach 10 pretty easily (5 hours of tracing, 50 hours of
shading). Right now, this cost is masked by using exclusively the radiosity cache at ray hits, meaning
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we are giving up all view dependent (specular, reflection, ...) components in secondary contexts. If in
the future we want to perform ”full” ray-tracing, we need to address the shading time problem. Porting
our shaders to ispc might be one part of the solution.

A few important remarks:

• ispc is picky in the handling of consistent ifs. Compilation time goes from 5s to 50s by using only
a few of them. If replacing all the ifs by cifs, we were not even, after an hours, able to get a
full compilation.

• ispc generates an optimized code for each cif scenario, so the .o can get pretty big. In our case
the object file doubled in size, which is still reasonable, but it might become a problem if we use
use too many of them.

• from the coding point of view, almost all of difficulty in porting shaders from RSL to ispc was in
the second step, when reverting the 2 loops. Compared to this step, going from RSL to C++ and
then from C++ to ispc is relatively easy and is likely to be be less than a day of work for any
experienced programmer.

• Intel MIC/Larabee2 will have hardware gather/scatter. It may then become less important to
have to convert arrays of structs (such as colors) into structs of arrays (per component arrays).

• Going from RSL to C++, we naturally get bigger gains for small grids. However, once in C++,
we can still optimize large grids by vectorizing and optimizing the memory accesses. Overall we
are able to speedup all cases.
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A Spherelight Example

The following function emissionAndPDF() is from the spherelight production shader.

A.1 RSL Code

pub l i c void emissionAndPDF ( Dif fGeometryStruct diffGeom ;
BSDFSamplesStruct bs ;
output LightEmiss ionStruct l e )

{
// I n i t i a l i z e l i g h t emis s ion s t r u c t u r e
f l o a t numValidSamples = bs−>numValidGeneratedSamples ;
uniform f l o a t numSamples = getNumSamples ( bs ) ;
l e−> i n i t i a l i z e ( numSamples ) ;

// Check whether we are i n s i d e or not
vec to r l i gh tCente rD i r = m center − diffGeom−>P;
f l o a t d2 = l i gh tCente rD i r . l i gh tCente rD i r ;
i f ( ( d2 − m radius2 ) < 1e−4 )

re turn ;

// Precompute ext ra d i s t f a l l o f f
f l o a t a c t i o n f a l l o f f = 1 . 0 ;
i f ( minDist >= rad iu s && minDist < maxDist )

a c t i o n f a l l o f f −= smoothstep ( minDist , maxDist , s q r t ( d2 ) ) ;

// I n t e r s e c t l i g h t
uniform f l o a t i ;
f o r ( i = 0 ; i < numValidSamples ; i += 1 )
{

// Di r e c t i on towards the l i g h t
vec to r l i g h t D i r = bs−>d i r [ i ] ;

po int l i g h t P t ;
f l o a t pdf ;
f l o a t d i s t ;

// Find po int on the l i g h t
i f ( IntersectAndComputePDF ( diffGeom−>P, l i gh tD i r , l i ghtPt , pdf , d i s t ) )
{

l e−>P[ i ] = l i g h t P t ;
l e−>pdf [ i ] = pdf ;
l e−>Cl [ i ] = m l ightCo lor ∗ a c t i o n f a l l o f f ;

i f ( f o c u s F a l l o f f > 0 .0 )
{

// cons t ruc t NdotD f o r f o cu s f a l l o f f
f l o a t NdotD = normal ize ( m center − l i g h t P t ) . l i g h t D i r ;
l e−>Cl [ i ] ∗= pow( NdotD , f o c u s F a l l o f f ) ∗

( 1 . 0 + (PIDIV2−1.0) ∗ f o c u s F a l l o f f ) ;
}

}
}

}
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A.2 C++ Code

i n t EmissionAndPDF ( RslContext∗ rs lContext , i n t argc , const RslArg∗ argv [ ] )
{

// di f fgeom point
Rs lSt ruct diffGeom ( argv [ 1 ] ) ;
const RslArg∗ diffGeomPArg ( diffGeom [ 0 ] ) ;
f l o a t ∗ diffGeomP ;
i n t di f fGeomPStride ;
diffGeomPArg−>GetData(&diffGeomP , &dif fGeomPStride ) ;

// get arguments
// . . . . . . . . . .

unsigned i n t numVals ;
const RslRunFlag ∗ runFlags = rs lContext−>GetRunFlags(&numVals ) ;

EmissionAndPDFdata∗ data = getEmissionAndPDFdata ( r s lContext ) ;
data−>r e s i z e ( numVals ) ;
f l o a t ∗ l i gh tCente rD i r = data−>l i gh tCente rD i r ;
f l o a t ∗ a c t i o n f a l l o f f = data−>a c t i o n f a l l o f f ;
i n t ∗ a c t i v e = data−>a c t i v e ;

// non array dependent computation
f o r ( i n t g=0; g<numVals ; ++g )
{

i f ( runFlags [ g ] )
{

l i gh tCente rD i r [ 3∗ g ] = sphereCenter [ 0 ] − diffGeomP [3∗ g ] ;
l i gh tCente rD i r [ 3∗ g+1] = sphereCenter [ 1 ] − diffGeomP [3∗ g +1] ;
l i gh tCente rD i r [ 3∗ g+2] = sphereCenter [ 2 ] − diffGeomP [3∗ g +2] ;

a c t i v e [ g ] = 0 ;

f l o a t d2 = ( l i gh tCente rD i r [ 3∗ g ] ∗ l i gh tCente rD i r [ 3∗ g ]
+ l i gh tCente rD i r [ 3∗ g+1] ∗ l i gh tCente rD i r [ 3∗ g+1]
+ l i gh tCente rD i r [ 3∗ g+2] ∗ l i gh tCente rD i r [ 3∗ g+2] ) ;

i f ( ( d2 − ∗ sphereRadius2 ) >= 1e−4 )
{

i f ( (∗maxdist ) <= (∗ rad iu s ) | | ( d2 − (∗maxdist2 ) ) <= 0 . f )
{

a c t i v e [ g ] = 1 ;

// Precompute ext ra d i s t f a l l o f f
a c t i o n f a l l o f f [ g ] = 1 . f ;
i f ( (∗mindist ) >= (∗ rad iu s ) && (∗mindist ) < (∗maxdist ) )

a c t i o n f a l l o f f [ g ] −= smoothstep ( (∗mindist ) ,
(∗ rad iu s ) , s q r t f ( d2 ) ) ;

}
}

}
}



10 Pixar Technical Memo 12-08

// array dependent computation
f o r ( i n t i =0; i< i l s i z e ; ++i )
{

i n t o f f = i ∗numVals ;

f o r ( i n t g=0; g<numVals ; ++g )
{

i f ( runFlags [ g ] )
{

l p d f [ g+o f f ] = 0 ;

i f ( a c t i v e [ g ] )
{

f l o a t pdf ; f l o a t d i s t ; f l o a t l i g h t P t [ 3 ] ;

i f ( IntersectAndComputePDF ( sphereCenter , ∗ sphereRadius2 ,
diffGeomP+3∗g , bsDir +3∗(g+o f f ) ,
lP+3∗(g+o f f ) , l p d f [ g+o f f ] , d i s t ) )

{
lC [ 3∗ ( g+o f f ) ] = sphereColor [ 0 ] ∗ a c t i o n f a l l o f f [ g ] ;
lC [ 3∗ ( g+o f f )+1] = sphereColor [ 1 ] ∗ a c t i o n f a l l o f f [ g ] ;
lC [ 3∗ ( g+o f f )+2] = sphereColor [ 2 ] ∗ a c t i o n f a l l o f f [ g ] ;

i f ( (∗ f o c u s f a l l o f f ) > 0 .0 f )
{

// cons t ruc t NdotD f o r f o cu s f a l l o f f
f l o a t rad iusDi r [ 3 ] ;
r ad iusDi r [ 0 ] = sphereCenter [ 0 ] − lP [ 3∗ ( g+o f f ) ] ;
r ad iusDi r [ 1 ] = sphereCenter [ 1 ] − lP [ 3∗ ( g+o f f )+1 ] ;
rad iusDi r [ 2 ] = sphereCenter [ 2 ] − lP [ 3∗ ( g+o f f )+1 ] ;

f l o a t radiusLen = s q r t ( rad iusDi r [ 0 ] ∗ rad iusDi r [ 0 ]
+ rad iusDi r [ 1 ] ∗ rad iusDi r [ 1 ]
+ rad iusDi r [ 2 ] ∗ rad iusDi r [ 2 ] ) ;

f l o a t NdotD = ( rad iusDi r [ 0 ] ∗ l i gh tCente rD i r [ 3∗ g ]
+ rad iusDi r [ 1 ] ∗ l i gh tCente rD i r [ 3∗ g+1]
+ rad iusDi r [ 2 ] ∗ l i gh tCente rD i r [ 3∗ g+2] )
/ radiusLen ;

f l o a t mixedColor [ 3 ] ;
mixedColor = powf ( NdotD , ∗ f o c u s f a l l o f f )

∗ ( 1 . f + ( 0 . 5 f ∗M PI−1. f ) ∗ (∗ f o c u s f a l l o f f ) ) ) ;

lC [ 3∗ ( g+o f f ) ] ∗= mixedColor [ 0 ] ;
lC [ 3∗ ( g+o f f )+1] ∗= mixedColor [ 1 ] ;
lC [ 3∗ ( g+o f f )+2] ∗= mixedColor [ 2 ] ;

}
}

}
}

}
}

re turn 0 ;
}
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A.3 ispc Code

export void ISPCSphereEmissionAndPDF ( uniform i n t numVals ,
const uniform unsigned i n t runFlags [ ] ,
uniform Tr ip l e c en te r [ ] ,
uniform Tr ip l e diffGeomP [ ] ,
uniform f l o a t d2 [ ] ,
uniform i n t a c t i v e [ ] ,
uniform f l o a t maxdist ,
uniform f l o a t maxdist2 ,
uniform f l o a t neard i s t2 ,
uniform f l o a t radius ,
uniform f l o a t radius2 ,
uniform f l o a t lvalidNumSamples [ ] ,
uniform i n t numSamples ,
uniform f l o a t mindist ,
uniform f l o a t a c t i o n f a l l o f f [ ] ,
uniform f l o a t one over d [ ] ,
uniform f l o a t sincosThetaMax [ ] ,
uniform f l o a t pdf [ ] ,
. . . )

{
uniform f l o a t f o c u s f a l l o f f A c t i v e = ( ( f o c u s f a l l o f f ) > 0 .0 f ) ;

// non array dependent computation
fo r each ( g=0 . . . numVals )
{

c i f ( runFlags [ g ] )
{

l i ghtCenterDirX [ g ] = sphereCenter [ 0 ] − diffGeomP [ g ] . x ;
l ightCenterDirY [ g ] = sphereCenter [ 1 ] − diffGeomP [ g ] . y ;
l i ghtCenterDi rZ [ g ] = sphereCenter [ 2 ] − diffGeomP [ g ] . z ;

a c t i v e [ g ] = 0 ;

f l o a t d2 = ( l ightCenterDirX [ g ] ∗ l i ghtCenterDirX [ g ]
+ l ightCenterDirY [ g ] ∗ l i ghtCenterDirY [ g ]
+ l ightCenterDi rZ [ g ] ∗ l i ghtCenterDi rZ [ g ] ) ;

c i f ( ( d2 − sphereRadius2 ) >= 1e−4 )
{

c i f ( ( maxdist ) <= ( rad iu s ) | | ( d2 − ( maxdist2 ) ) <= 0 . f )
{

a c t i v e [ g ] = 1 ;

// Precompute ext ra d i s t f a l l o f f
a c t i o n f a l l o f f [ g ] = 1 . f ;
i f ( ( mindist ) >= ( rad iu s ) && ( mindist ) < ( maxdist ) )

a c t i o n f a l l o f f [ g ] −= smoothstep ( ( mindist ) ,
( r ad iu s ) , s q r t ( d2 ) ) ;

}
}

}
}
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// array dependent computation
fo r each ( i=0 . . . i l s i z e , g=0 . . . numVals )
{

c i f ( runFlags [ g ] )
{

i n t i g = g+i ∗numVals ;

l p d f [ i g ] = 0 ;

c i f ( a c t i v e [ g ] )
{

f l o a t pdf ; f l o a t d i s t ; Tr ip l e l i g h t P t ;

i f ( IntersectAndComputePDF ( sphereCenter , sphereRadius2 ,
diffGeomP [ g ] , bsDir [ i g ] ,
l i ghtPt , pdf , d i s t ) )

{
lC [ i g ] . r = sphereColor [ 0 ] ∗ a c t i o n f a l l o f f [ g ] ;
lC [ i g ] . g = sphereColor [ 1 ] ∗ a c t i o n f a l l o f f [ g ] ;
lC [ i g ] . b = sphereColor [ 2 ] ∗ a c t i o n f a l l o f f [ g ] ;
l p d f [ i g ] = pdf ;
lP [ i g ] = l i g h t P t ;

i f ( ( f o c u s f a l l o f f ) > 0 .0 )
{

// cons t ruc t NdotD f o r f o cu s f a l l o f f
f l o a t rad iusDi r [ 3 ] ;
r ad iusDi r [ 0 ] = sphereCenter [ 0 ] − lP [ i g ] . x ;
rad iusDi r [ 1 ] = sphereCenter [ 1 ] − lP [ i g ] . y ;
rad iusDi r [ 2 ] = sphereCenter [ 2 ] − lP [ i g ] . z ;

f l o a t radiusLen = s q r t ( rad iusDi r [ 0 ] ∗ rad iusDi r [ 0 ]
+ rad iusDi r [ 1 ] ∗ rad iusDi r [ 1 ]
+ rad iusDi r [ 2 ] ∗ rad iusDi r [ 2 ] ) ;

f l o a t NdotD = ( rad iusDi r [ 0 ] ∗ l i ghtCenterDirX [ g ]
+ rad iusDi r [ 1 ] ∗ l i ghtCenterDirY [ g ]
+ rad iusDi r [ 2 ] ∗ l i ghtCenterDi rZ [ g ] )
/ radiusLen ;

f l o a t mixedColor [ 3 ] ;
mixedColor = pow( NdotD , f o c u s f a l l o f f )

∗ ( 1 . f + ( 0 . 5 f ∗PI−1. f ) ∗ f o c u s f a l l o f f ) ) ;

lC [ i g ] . r ∗= mixedColor [ 0 ] ;
lC [ i g ] . g ∗= mixedColor [ 1 ] ;
lC [ i g ] . b ∗= mixedColor [ 2 ] ;

}
}

}
}

}
}


