
Engine-eering a Procedural Pipeline with USD
Michael Rice

michaelr@pixar.com
Pixar Animation Studios

Joshua Jenny
joshj@pixar.com

Pixar Animation Studios

Will Harrower
wharrower@pixar.com
Pixar Animation Studios

ABSTRACT
Typical cache-based non-procedural methods can have downsides
within a production studio. Modifications to pre-cached data can
introduce an expensive feedback loop between departments (e.g.
Layout pushing work back to FX). Proceduralism solves this by al-
lowing artists themselves to make their own modifications, without
need for a new cache delivery from another department. Another
benefit to procedural generation of data is reduced disk space us-
age particularly for heavy datasets like volumes. In this case, they
no longer need to be cached to disk, but instead created from a
procedural ‘recipe’ on-demand.

Historically, there was a high bar to introducing proceduralism
into various parts of our pipeline, requiring custom engineering
efforts on a case-by-case basis. Now, we leverage Houdini Engine
(HE) [SideFX 2023], a toolkit from SideFX, together with USD [Pixar
2023], to provide a general procedural framework. By removing
the engineering bottlenecks of creating procedurals, we can more
easily allow artists to create their own, allowing them to iterate
more quickly on design within a creative context.

CCS CONCEPTS
• Computing methodologies→ Graphics systems and inter-
faces.

ACM Reference Format:
Michael Rice, Joshua Jenny, and Will Harrower. 2023. Engine-eering a Pro-
cedural Pipeline with USD. In Special Interest Group on Computer Graphics
and Interactive Techniques Conference Talks (SIGGRAPH ’23 Talks), August
06–10, 2023, Los Angeles, CA, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3587421.3595442

1 PROCEDURAL HOUDINI MODELS
Houdini Digital Assets (HDAs) are represented in USD using a light-
weight prim schema: PxHoudiniEngine. The schema has a handful
of fundamental attributes, including a SdfAssetPath to the HDA
file on disk, input relationships (for input geometry and cameras),
and attributes representing HDA parameter values which will be
evaluated when the HDA is cooked.

We define the concept of an "FX Model" as a USD prim hier-
archy containing one or more PxHoudiniEngine USD primitives.
Additionally, this FX Model can include proxy meshes, cached (i.e.
non-procedural) data under variants, materials and their bindings
(see Figure 2).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’23 Talks, August 06–10, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0143-6/23/08.
https://doi.org/10.1145/3587421.3595442

Figure 1: ©Disney/Pixar. A Houdini Engine and USD pipeline was
used to create procedural volumetric characters in Pixar’s Elemental.

The USD representation of these models, along with the HDAs
that they reference, is consistent with non-HE models within the
studio and can be published and versioned within the studio’s asset
management system. Models can be "pinned" to a specific version
or left unpinned to automatically pick up the latest.

Since an HDA can produce multiple outputs (for example, mul-
tiple meshes, volumes, etc), artists will often want the ability to
control both the material bindings, and the visibility of those sub-
components. To this end, a separate USD prim schema –
PxHoudiniEngineMaterialTarget – represents sub-components of
the HDA, which can then have materials bound or visibility set.

We utilize an SdfFileFormat plugin for the HDA file path (via
a payload) in order to dynamically generate these material target
prims as children of the PxHoudiniEngine prim at USD composition
time.

2 MODEL CATALOG
Once created, FX Models are registered in a model catalog, which
artists can browse and load models from as cached proxies or as
interactive procedurals. HDAs can query which host app they are
running in and vary their behavior accordingly (e.g. lower resolu-
tion for interactive display).

FX Model instances can be dressed as stand-alone pieces around
a set or embedded as parts of other models. Set-dressing artists
on Pixar’s Elemental embedded fire models into buildings and in-
stanced smoke plume models across a city-scape. Variation was
achieved by adjusting HDA parameters for plume height, radius,
etc., giving artists a higher level of control over look and shape
than a standard affine transformation on a non-procedural model.

3 SHOT-CONVERSION
Any FX Models which have been added to a Presto scenegraph will
participate in the studio’s "shot-conversion" process, where Presto’s
internal menva format is converted to USD for consumption by other
departments and for rendering. The resulting USD will include a

https://doi.org/10.1145/3587421.3595442
https://doi.org/10.1145/3587421.3595442


SIGGRAPH ’23 Talks, August 06–10, 2023, Los Angeles, CA, USA Rice et al.

Figure 2: An example of a USD FX Model

def Xform "FxFire" (
variants = { string modelVariant = "procedural" }
append variantSets = "modelVariant"

) {
def Scope "Looks" {

def Material "FireVolumeMaterial" { }
}
variantSet "modelVariant" = {

"cached" {
def Xform "Geom" {

def Xform "CachedFire" (
prepend references = @FxFire.cached.usd@

) { }
}

}
"procedural" {

def Xform "Geom" {
def PxHoudiniEngine "ProceduralFire" (

hdaParams = { token _payloadmode = "materialtargets" }
payload = @houdiniengine:ProceduralFire.hda@

) {
custom string parameters:flameType = "GroundFire"
custom double parameters:smokeDensity = 5.2

over "VOL_flames" {
rel material:binding = </FxFire/Looks/FireVolumeMaterial>

}

def Mesh "proxy" { ... }
}

}
}

}
}

"references" layer, containing a reference to the original FX Model
for each corresponding location in the Presto scenegraph. An addi-
tional layer will record any variant selections or HDA parameter
changes made in Presto as USD over opinions. The layer will also
translate input geometry and camera relationships in Presto to USD
Relationships which target analogous locations in USD.

3.1 PxHoudiniEngine Visualization
It can often be useful to visualize the output of procedural FXModels
together with the rest of a USD scene, for which we use Pixar’s open-
source usdview application. Our initial approach was to leverage a
SdfFileFormat plugin to run HE and create child USD primitives.
Because the plugin ultimately produces USD primitives, this ap-
proach provides a straightforward solution for "baking" procedural
FX Models to non-procedural USD. We’ve abandoned this approach
in favor of a Hydra HdGpGenerativeProcedural plugin [Cauchois
and LaVietes 2022]. Running HE in Hydra provides a more perfor-
mant and seamless user experience, and we favor a more flexible
system for baking procedural data than our C++ SdfFileFormat

plugin affords.

4 HOUDINI WORKFLOWS
Departments with Houdini workflows (e.g. Crowds, FX, Sim) may
need to work with procedural FX Models in Houdini, whether for
adjustment or replacement. We provide two workflows to support
this. In one workflow, Houdini users can apply USD overrides to
the model’s PxHoudiniEngine primitives, whether for parameter
changes or to override the HDA path itself. Another workflow
allows users to "capture" the HDA and its parameter state from
USD to their interactive Houdini session, allowing them to modify

or replace the procedural output and write that back to USD as
non-procedural data.

5 LIGHTING AND RENDERING
For lighting and rendering at Pixar, Katana and RenderMan are
used. We provide a HE node in Katana for viewing and overriding
HDA parameter values. The Katana node does not cook HE, instead,
a RenderMan procedural is used to evaluate HE at render time, with
the procedural directly producing a RenderMan Rix node graph.

The USD payload mechanism will cause material target children
to be created within the Katana scenegraph hierarchy on USD im-
port. These child locations can have materials bound, be targeted
as Gaffer mesh lights, have their visibility set, or be pruned. Pruned
or invisible children will not have their corresponding Houdini
OBJ node cooked at render time, allowing them to be separated effi-
ciently into render passes. They can also accept PrmanObjectStatements
attributes, meaning custom render settings (such as dicing options)
can be set on, and vary between, different outputs of a single HDA.

5.1 Shared Memory Data Transfer
Volumetric (VDB) data is large; transferring it from HE to Render-
Man through HAPI is costly and bottlenecks on a single thread. To
alleviate this we developed a method of passing data from HE to
RenderMan through Linux shared memory. A custom SOP node
writes VDB data to a shared memory buffer and adds attributes to
the HE output identifying the buffer. These attributes are read via
HAPI by the RenderMan host code, and the VDB data is loaded from
the shared memory buffer instead of HAPI. In a typical production
case, switching from HAPI to shared memory reduces the overall
HE cook and data transfer time by a third.

Shared memory transfer is also utilized for passing input geome-
try from Katana to HE. Katana input locations are serialized into a
temporary in-memory USD stage, which is then dumped to a shared
memory buffer. The stage ID is passed to HE and loaded with a USD
Import SOP. In addition to providing a performance advantage, this
approach also causes any USD transformations performed by the
USD Import SOP to be applied to input geometry transferred to HE.
For example, creaseweights on subdivision meshes are stored as de-
tail index array attributes in USD/Katana, but Houdini expects them
as edge-pair vertex attributes. Using HAPI_SetAttributeXYZData()

functions would require the same transform to be performed within
the HE host process.

6 HYDRA PROCEDURAL
Our current development efforts are focussed on utilizing Hydra’s
new "Generative Procedural" system [Cauchois and LaVietes 2022],
and executing HE inside of Hydra. Since this can run inside of any
Hydra-enabled application, it is a single codebase to maintain (only
how parameters are shown in the UI is application-specific).

REFERENCES
TomCauchois and Steve LaVietes. 2022. Modular Scene Filtering via the Pixar Hydra 2.0

Architecture. In ACM SIGGRAPH 2022 Talks (Vancouver, BC, Canada) (SIGGRAPH
’22). Association for Computing Machinery, New York, NY, USA, Article 44, 2 pages.
https://doi.org/10.1145/3532836.3536280

Pixar. 2023. Universal Scene Description. graphics.pixar.com/usd
SideFX. 2023. Houdini Engine. www.sidefx.com/products/houdini-engine

https://doi.org/10.1145/3532836.3536280
graphics.pixar.com/usd
www.sidefx.com/products/houdini-engine

	Abstract
	1 Procedural Houdini Models
	2 Model Catalog
	3 Shot-conversion
	3.1 PxHoudiniEngine Visualization

	4 Houdini Workflows
	5 Lighting and Rendering
	5.1 Shared Memory Data Transfer

	6 Hydra Procedural
	References

