
Character Articulation through Profile Curves
FERNANDO DE GOES, Pixar Animation Studios, USA
WILLIAM SHEFFLER, Pixar Animation Studios, USA
KURT FLEISCHER, Pixar Animation Studios, USA

Fig. 1. Profile Mover: Examples of poses for a Panda character generated by our novel rigging technique that first articulates characteristic profiles of the
deforming surface arranged into curvenets (displayed in black), and then computes the articulated character in a subsequent step by optimizing the mesh
deformation that reconstructs surface details while interpolating the profile curves. ©Disney/Pixar

Computer animation relies heavily on rigging setups that articulate charac-
ter surfaces through a broad range of poses. Although many deformation
strategies have been proposed over the years, constructing character rigs
is still a cumbersome process that involves repetitive authoring of point
weights and corrective sculpts with limited and indirect shaping controls.
This paper presents a new approach for character articulation that produces
detail-preserving deformations fully controlled by 3D curves that profile the
deforming surface. Our method starts with a spline-based rigging system in
which artists can draw and articulate sparse curvenets that describe surface
profiles. By analyzing the layout of the rigged curvenets, we quantify the de-
formation along each curve side independent of the mesh connectivity, thus
separating the articulation controllers from the underlying surface repre-
sentation. To propagate the curvenet articulation over the character surface,
we formulate a deformation optimization that reconstructs surface details
while conforming to the rigged curvenets. In this process, we introduce a
cut-cell algorithm that binds the curvenet to the surface mesh by cutting
mesh elements into smaller polygons possibly with cracks, and then derive
a cut-aware numerical discretization that provides harmonic interpolations
with curve discontinuities. We demonstrate the expressiveness and flexibility
of our method using a series of animation clips.

CCS Concepts: • Computing methodologies → Animation.

Authors’ addresses: Fernando de Goes, fernando@pixar.com, Pixar Animation Stu-
dios, USA; William Sheffler, sheffler@pixar.com, Pixar Animation Studios, USA; Kurt
Fleischer, kurt@pixar.com, Pixar Animation Studios, USA.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
0730-0301/2022/7-ART139
https://doi.org/10.1145/3528223.3530060

Additional Key Words and Phrases: character articulation, rigging, surface
deformation, curvenet, mesh cutting.

ACM Reference Format:
Fernando de Goes, William Sheffler, and Kurt Fleischer. 2022. Character
Articulation through Profile Curves. ACM Trans. Graph. 41, 4, Article 139
(July 2022), 14 pages. https://doi.org/10.1145/3528223.3530060

1 INTRODUCTION
Rigging plays a central role in character animation by defining the
articulation setup that drives the deformation of digital characters.
Over the last decades, character rigs have been built predominantly
based on skinning schemes combined with corrective blend shapes.
Despite the broad adoption in industry, these techniques are labori-
ous to author with artists often hand-crafting weights and sculpts
one pose at a time. Moreover, shaping character deformations in-
volves repetitive trial and error in order to preserve surface details
while neutralizing skinning artifacts. Another major challenge is
the frequent need to repair the rig configuration after modeling
updates, especially in areas of increased mesh resolution to avoid
faceting artifacts. Consequently, designing high-quality character
rigs remains a costly and specialized task in feature animations.

Our work is motivated by the observation that artists tend to iter-
ate over the articulation setup by inspecting characteristic profiles of
the character surface as the rig is exercised. Therefore, we propose
to compute the character articulation by first rigging profile curves
drawn by the user and propagating the curve deformation over
the surface mesh afterwards (Figure 1). To this end, we introduce
curvenets as a new rigging representation formed by the profile
curves that separates the articulation controllers from the deforming
surface. We construct curvenets using cubic Bézier splines traced

ACM Trans. Graph., Vol. 41, No. 4, Article 139. Publication date: July 2022.

https://doi.org/10.1145/3528223.3530060
https://doi.org/10.1145/3528223.3530060

139:2 • de Goes et al.

Fig. 2. Face Rig: By directly manipulating curvenets, our method generates a broad range of face deformations as shown in this sequence of expressions for
the Panda character. Note how the curvenet layout is sparser than the underlying surface mesh, while providing prominent shaping controls. ©Disney/Pixar

near the character surface and arranged into connected components
with no restrictions on their topological structure.

Equipped with curvenets, we can assemble the character rig by
parts (e.g., hands, body, face) and independent of the mesh con-
nectivity, thus facilitating concurrent work between modelers and
riggers. We also exploit the curvenet layout to compute frames at
the net intersections accompanied by a scaling amount per axis,
which are then interpolated along the profile curves, bypassing the
need for any curve optimization or manual authoring of normals
and handles. Importantly, we estimate distinct scaled frames for
each side of the profile curves so that the surface deformation is
localized per curve side. As a result, curvenets significantly reduce
the number of control points to be weighted or sculpted within the
rig, while still producing a broad range of deformations.
To interpolate the curvenet deformation over the character sur-

face, we draw inspiration from previous efforts for surface modeling
and editing based on 3D curves [Gal et al. 2009; Nealen et al. 2007;
Zhou et al. 2011]. Although these methods provide surface defor-
mations through direct curve manipulation, they rely on workflows
that are unsuited for character rigging. For instance, the work of
Nealen et al. [2007] favors the generation of smooth shapes instead
of preserving local details of a reference pose, while Gal et al. [2009]
refits curve edits in order to restore spatial properties commonly
found in man-made and engineered models but less relevant for
articulated characters. Additionally, existing methods assume that
the control curves are attached to mesh edges, thus limiting the
deformation setup to a specific mesh resolution.

Instead, we present a novel deformation technique that produces
detail-preserving character articulations driven by the rigged cur-
venet detached from the edges of the underlying surface mesh. In
order to propagate the deformation from both sides of the profile
curves, we develop a new mesh cutting algorithm that conforms the
character surface to the curvenet by splitting the mesh polygons
crossed by the profile curves into multiple sub-polygons possibly
with cracks. We then extend the polygonal discretization introduced

by de Goes et al. [2020] to construct cut-aware discrete differential
operators over the resulting cut-mesh. Finally, we formulate a shape
optimization adapted to the cut-mesh that computes the deforma-
tion of the character surface by interpolating the distortion and the
pose of the rigged curvenet over the input mesh vertices.
By combining the curvenet representation (§3) with the surface

deformation (§4), the technical contributions of our work are:
• A method for character articulation based on curvenets that
reduces the number of control points and decouples the rig
setup from the connectivity of the surface mesh.

• Construction of frames and non-uniform scaling at curvenet
intersections followed by smooth interpolation along both
sides of the profile curves.

• An algorithm for cutting polygonal meshes by curvenets that
extends the Cartesian cut-cell method [Berger 2017; Tao et al.
2019] to curved surfaces.

• A mesh optimization that generates detail-preserving surface
deformation while interpolating discontinuous constraints
imposed by each side of the profile curves.

2 RELATED WORK
Before delving into our contributions, we briefly recap prior work
that relates to our approach. Since character articulation has been
tackled by a broad variety of techniques, we focus our exposition on
recent methods for surface deformation, curve-based representation,
and numerical discretization with cut discontinuities.

Spatial methods: Skinning is the prevalent approach for character
rigging in the industry, blending articulation controllers such as
joints, skeletons, and lattices directly to the deforming mesh vertices
[McLaughlin et al. 2011]. Although various weighting strategies
have been considered [Jacobson et al. 2014], these techniques noto-
riously introduce deformation artifacts, which are often mitigated
through pose-space sculpting [Lewis et al. 2000] and post-process re-
laxation [Mancewicz et al. 2014]. Some methods have also attempted

ACM Trans. Graph., Vol. 41, No. 4, Article 139. Publication date: July 2022.

Character Articulation through Profile Curves • 139:3

Fig. 3. Biped Rig: Poses for a character articulated by our method using a body curvenet (in black) and a pair of symmetric hand curvenets (in gray). Curvenets
simplify the authoring of complex articulations such as the combo between shoulder, neck, and head, free of any corrective surface sculpts. ©Disney/Pixar

to reduce skinning artifacts by coupling space deformations with
surface smoothing [Le and Lewis 2019; Le et al. 2021], elasticity
optimizations [Jacobson et al. 2012; Kavan and Sorkine 2012], and
contact-aware projections [Vaillant et al. 2013, 2014]. More recently,
learning approaches were proposed for skeleton-based deformation
by generating skinning weights and blend shapes together [Li et al.
2021; Xu et al. 2020]. In common, these spatial methods offer limited
and indirect control over surface features. In sharp contrast, we
construct the character rig by directly manipulating curves that
profile the deforming surface.

Cage-based deformations: Character articulation can also be com-
puted using generalized barycentric coordinates attached to cage
meshes. Many approaches have focused on the generation of cage
coordinates, either evaluated analytically [Lipman et al. 2008; Thiery
et al. 2018] or optimized numerically [Joshi et al. 2007; Wang and
Solomon 2021]. Other methods have investigated the assembly of
cage meshes based on reusable template rigs [Ju et al. 2008] and
bounding proxies [Calderon and Boubekeur 2017]. Despite their
lower resolution, cages must form closed manifold meshes that
loosely encapsulate the deforming character and define spatial de-
formations agnostic to surface details. We instead propose curvenets
as a more flexible rigging representation with no structural con-
straints that produces detail-preserving deformations.

Detail preservation: Several surface-based methods have been de-
veloped in order to produce detail-preserving deformations [Botsch
and Sorkine 2008]. For instance, Yu et al. [2004] proposed a Poisson
editing scheme that propagates handle transformations using geo-
desic distances, while Zayer et al. [2005] and Lipman et al. [2007]
computed local rotations through harmonic interpolations. In [Lip-
man et al. 2005], geometric features were restored by reconstruct-
ing local frames through discrete fundamental forms, whereas the

method of Sorkine et al. [2004] employed rotated Laplacian coordi-
nates. Non-linear techniques have also been devised at the cost of
iterative optimizations [Botsch et al. 2006; Sorkine and Alexa 2007].
Our approach builds upon previous methods by presenting a modi-
fied Poisson solver that generates detail-preserving deformations
conforming to a net of rigged curves.

Curve-based editing: Similar to our work, some research efforts
have also advocated for sparse curves as a more expressive interface
for surface deformation. In [Singh and Fiume 1998], space defor-
mations were computed driven by prominent surface curves but
agnostic to geometric features. The work of Nealen et al. [2005] com-
bined detail-preserving deformation with silhouette curves for mesh
editing. A sketching system interleaved with surface remeshing was
also presented by Nealen et al. [2007] for free-formmodeling. In [Gal
et al. 2009], an analyze-and-edit scheme was customized for man-
made shapes by annotating and refitting representative curves based
on spatial properties. This method was later extended by Zhou et al.
[2011] using curvature feature curves such as surface ridges and val-
leys. Unfortunately, many of these methods restrict control curves
to mesh edges, thus entangling the deformation setup with the mesh
connectivity. Instead, our curvenet construction is detached from
the underlying mesh and produces reliable deformations for any
tessellation of the character surface.

Curve networks: In addition to deformations, curve networks are
also relevant in other geometry processing applications. For in-
stance, Campen [2017] surveys approaches for generating curve
networks used by quad meshing algorithms. The work of Gori et al.
[2017] extracted curve networks for abstracting man-made shapes,
while de Goes et al. [2011] proposed a user-assisted segmentation
that computes a surface exoskeleton. In [Pan et al. 2015], a technique

ACM Trans. Graph., Vol. 41, No. 4, Article 139. Publication date: July 2022.

139:4 • de Goes et al.

for surfacing curve networks was presented by minimizing curva-
ture variation. The lofting approach described by Schaefer et al.
[2004] also interpolates curve networks but using a modified scheme
for Catmull-Clark subdivision surfaces. Our work is complementary
to these prior methods since we target character rigging and assume
that the surface mesh and curves are given as user inputs. In partic-
ular, our curvenet representation is intended to convey deformation
profiles, even if the individual curves do not depict perceptual cues.
As an example, Figure 1 includes a curve surrounding the belly of a
Panda character, which may not be considered a shape descriptor
but it provides meaningful shaping controls.

Frames from curves: Another important aspect in articulating sur-
faces based on curves is how to estimate the orientation and the
stretch of the deforming curves. A naive approach is to incorporate
an extra rigging component for posing transformation handles along
curves at the expense of more manual authoring. Rotation mini-
mizing frames [Wang et al. 2008] can also offer consistent curve
orientations, but it relies on prior knowledge of the normals at
the curve endpoints and lacks stretching estimates. Alternatively,
Nealen et al. [2007] proposed a curve optimization that relaxes user
edits by favoring as-rigid-as-possible deformations. The work of
Huang et al. [2019] infers smooth normals and curvature values
from unstructured curves through a costly implicit function fitting.
We instead leverage the curvenet layout to compute scaled frames
on both curve sides. Notably, we account for frame differences on
each curve side in order to bound the surface deformation.

Diffusion curves: Our approach for smooth interpolation with
curve discontinuities is closely related to the concept of diffusion
curves, which was originally presented in [Orzan et al. 2008] to gen-
erate resolution-independent image gradients. Various extensions
to diffusion curves have been proposed including flexible boundary
conditions [Boyé et al. 2012], random-access image evaluation via
the fast multipole method [Sun et al. 2014], and diffusion surfaces for
volume modeling [Takayama et al. 2010], to cite a few. Surprisingly,
computing diffusion curves on non-flat surface meshes remains far
less explored. One exception is the work of Lucquin et al. [2017]
that produces parametrization cuts by approximating user strokes
as harmonic field discontinuities. In this method, input strokes are
duplicated, moved apart by an adjustable parameter, and then used
as soft constraints in the harmonic interpolation. However, these
displaced curves can introduce overlaps between nearby curves and
at curve intersections, damaging the interpolation smoothness. In
contrast, we present a new mesh cutting algorithm that enables the
exact enforcement of curve discontinuities. Our approach can be
interpreted as an extension of the cut-cell method [Berger 2017; Tao
et al. 2019], commonly used to clip Cartesian grids against boundary
geometry, but now adapted to polygonal surface meshes.

Cut-aware discretizations: Finally, we point out that numerical
methods for meshes with cuts have been broadly investigated in
computational mechanics [Fries and Belytschko 2010] as well as in
graphics [Wu et al. 2015]. While many approaches have addressed
tearing and cracking in physically based simulations, we focus on
the numerical discretization of Poisson problems with interface

Fig. 4. Curvenet: Example of a curvenetmodeled over a quad-dominant sur-
face mesh of a hand model. Observe how the curves resemble deformation
profiles such as the hand ligaments and knuckles, while forming intersec-
tions and T-junctions detached from the mesh connectivity. ©Disney/Pixar

discontinuities. The work of Burman et al. [2015] proposed to dupli-
cate mesh elements intersected by curves and impose discontinuous
boundary conditions via ghost penalty terms. In extended finite
element methods (see, e.g., [Moës et al. 1999]), cut discontinuities
are captured by incorporating enrichment basis functions, which are
approximated using adaptive numerical integration. To support mul-
tiple branched curves, Mousavi et al. [2011] precomputed harmonic
enrichment functions encoded by auxiliary texture images within
each mesh element. More recently, Benvenuti et al. [2019] intro-
duced the extended virtual element method that adapts enrichment
functions over 2D polygons with improved numerical stability. De-
parting from previous methods, our approach bypasses enrichment
functions and cubature schemes while handling complex surface
cutting. To this end, we modify the assembly of discrete differential
operators presented by de Goes et al. [2020] in order to account for
arbitrary 3D polygons with cuts.

3 CURVENETS
In this section, we introduce curvenets as a new rigging represen-
tation for character articulation. We begin by presenting the key
definitions and detailing our approach for modeling, rigging, and
sampling curvenets. In addition, we describe a routine for estimating
local frames and scales aligned to curvenets, which we then use to
quantify the deformation between different curvenet poses.

Definition: We define a curvenet as a collection of 3D curves that
can intersect each other. These curves are intended to represent char-
acteristic profiles of a surface mesh we wish to articulate. In order to
support flexible designs, we devise curvenets free of any topological
restriction, including curves with open endpoints, intersections of
arbitrary valence, and multiple connected components. Moreover,
the individual curves are not required to be aligned to mesh edges
or embedded onto the underlying surface. As a result, curvenets are
agnostic to the mesh connectivity and the surface topology. This is
in sharp contrast to previous curve network representations that
rely on a selection of mesh edges [Gori et al. 2017] and partition

ACM Trans. Graph., Vol. 41, No. 4, Article 139. Publication date: July 2022.

Character Articulation through Profile Curves • 139:5

surfaces into patches [Campen 2017]. Figure 4 shows a curvenet
built over a quad-dominant mesh of a hand model. Observe how
the curves cross mesh elements in order to delineate deformation
profiles, while some regions such as the webbing space between
fingers are surrounded but not cut by any curve.

Modeling: To construct curvenets, we implemented a modeling
interface based on cubic Bézier splines inside a rigging package. The
system starts with the surface mesh we want to deform in a neutral
pose. The user can then insert control points at arbitrary locations
on the surface and click-and-drag curves resembling surface profiles.
Note that the individual profile curves lie near the surface mesh but
are not explicitly attached to the mesh connectivity. When creating
a cubic Bézier spline, we allocate two interior control points forming
tangent handles and initialize them perpendicular to the surface
normals. Importantly, we allow endpoints to be shared by multiple
splines. To this end, we encode each cubic Bézier spline as a tuple of
four indices mapping to a pool of control points with their respective
3D positions. Our toolkit also includes operations such as split and
merge splines, weld and break control points, project endpoints to
the surface mesh, and flatten tangents, to cite a few.

Rigging: Interleaved with modeling, our implementation also en-
ables the user to articulate curvenets by simply posing their control
points based on preexisting rigging techniques such as skinning and
sculpting. Since curvenets have fewer points than a typical surface
mesh, the resulting rig is more compact and simpler to setup, while
keeping the same articulation controllers and authoring workflows.
Curvenets can be further exploited as direct surface manipulators,
similar to curve handles used by modeling and editing methods [Gal
et al. 2009; Nealen et al. 2007], thus enhancing rigs with surface-
based shaping controllers. We point the reader to the supplemental
video for an interactive session of our system showcasing the con-
struction and articulation of curvenets.

Intersections, anchors & curves: Once the curvenet is modeled, we
identify every endpoint shared by three or more splines and denote
them as intersections. We also gather endpoints incident to a single
spline and mark them as anchors. Using these labeled endpoints,
we rearrange the curvenet by grouping splines into curves, each
one formed by a sequence of connected splines bridging between
intersections and/or anchors. We also group any remaining spline
connected solely by unlabelled endpoints, thus forming isolated
closed curves. Finally, we precompute a list mapping each intersec-
tion to its emanating curves sorted counter-clockwise based on their
corresponding tangent vectors projected orthogonal to the normal
of the closest surface point in a neutral pose.

Sampling: Given control points positioned by the rig, we approx-
imate the curvenet shape by converting its cubic Bézier splines
into polylines with evenly spaced sample points. Each spline is first
refined uniformly in parametric space and then resampled evenly
based on arc-length. The number of samples inside each spline is
set to a user-specified value (default to 5) multiplied by the ratio
between the length of the polyline connecting the spline’s control
points and the mean edge length of the underlying surface mesh,
both calculated in a neutral pose. With this sampling strategy, we

Fig. 5. Scaled Frames: In these images, we use deformed boxes to display
the orthogonal frames with axis-aligned scales deduced from our curvenet
representation. Red-green-blue boxes indicate the scaled frames on one
curve side and the complementary cyan-yellow-magenta colors refer to the
reverse curve side. Note how the scaled frames are oriented and sized based
on the normals and widths estimated at every corner of intersecting curves.

obtain a piecewise-linear representation of the curvenet with resolu-
tion proportional to the size of surface mesh elements and adaptive
to the length of the undeformed splines. Hereafter, we refer to a
segment as a pair of consecutive sample points within a curve of
the discretized curvenet.

Normal & width at intersections: Along a piecewise-linear curve,
we can use the sample positions to calculate the unit tangent vector
ts and the length ls for each segment s . However, the individual
curves are not sufficient to estimate a normal orientation or a width
for any curve segment. To address this issue, we leverage the inter-
section points and their precomputed list of incident curves available
in the curvenet. We denote the ordered list of tangent vectors and
lengths for the segments {si } emanating from an intersection point
by {(ti , li)}. For every corner of consecutive tangents at an inter-
section, we define the corner vector ci = ti×ti+1 and set the corner
normal to mi =ci/∥ci ∥. In the special case of a corner with parallel
tangents (e.g., at T-junctions), we resolve the degenerate normal
by including adjacent corners via mi = (ci+1+ci−1)/∥ci+1+ci−1∥.
These corner normals provide two normal candidates to every seg-
ment outgoing an intersection. Therefore, we assign the normal
vector n+i =mi to the left side and n−i =mi−1 to the right side of
each segment si at an intersection. We can also use the alignment
between tangent vectors in each intersection corner to estimate a
width per segment side, thus implicitly describing curvenets as a net
of ribbons with a scale along and across its segments. We assign the
width for the left side of the segment si to w+i =li+∥ci ∥(li+1−li),
while its right side is set tow−

i =li+∥ci−1∥(li−1−li). Notice that the
width in each segment side is a positive scale with an anisotropy
relative to the segment length proportional to the length difference
and the orthogonality of its intersection corner.

Normal & width interpolation: We can further interpolate the nor-
mal and width estimates from the intersection segments to each side
of their corresponding curves. For clarity, we omit below the left (+)
and right (−) superscripts from our notation, but the interpolation

ACM Trans. Graph., Vol. 41, No. 4, Article 139. Publication date: July 2022.

139:6 • de Goes et al.

scheme applies to both curve sides. First, we consider a curve made
of k segments with one end at an intersection and the other end at
an anchor. Starting at the intersection, we parallel transport the nor-
mal from a segment si to the next segment si+1 using the smallest
rotation matrix Ri mapping ti to ti+1. As a result, we can express the
normal ni at the segment si in terms of the normal n1 from the inter-
section segment s1, i.e., ni =Ωin1, where Ωi =

∏i−1
j=1 Rj indicates the

accumulated rotation along the curve up to the segment si . Since this
curve ends at an anchor, we simply copy the width from the inter-
section segment to every other segment, thus producing a uniform
width along each curve side. When a curve has intersections at both
ends, the normal Ωkn1 of the last segment sk computed through
parallel transport may not match the normal nk estimated at the in-
tersection corner. This discrepancy amounts to the torsion induced
by the curvenet shape over the curve, and the total torsion angle is
given by θ =atan((Ωkn1)

t
(nk × tk)/(Ωkn1)

tnk). To blend the tor-
sion along the curve, we calculate the normalized curve arc-length
αi =

(∑i−1
j=1 lj

)
/
(∑k

j=1 lj
)
for each segment si , and assemble the tor-

sion matrix Θi as the rotation by the angle αiθ around the tangent
vector ti . The interpolated normal at segment si is then assigned to
ni =ΘiΩin1. Similarly, we employ the arc-length values to interpo-
late the width for each segment si , yielding wi = (1−αi)w1+αiwk .
To complete the frame with axis-aligned scales per segment si , we
associate the widthwi with the binormal vector bi =ni×ti and set
the geometric mean hi =

√
liwi to be the scale along the normal vec-

tor ni . We can also arrange these axis vectors into the columns of an
orthonormal matrix Bi =

[
ti bi ni

]
and the respective axis-aligned

scales into a diagonal matrix Si =diag(li ,wi ,hi), thus defining the
scaled frame per segment si as the matrix BiSi . Figure 5 illustrates
scaled frames generated by different curvenet poses.

Deformation Gradient: Since we approximate each curve with a
fixed number of evenly spaced samples per spline, these samples
define an one-to-one mapping between the segments of different
curvenet poses. With this correspondence, we can measure the
distortion of a deformed curvenet relative to an undeformed con-
figuration by evaluating the deformation gradient at each segment.
The deformation gradient is a matrix Fi that quantifies the amount
of rotation and stretching deforming a rest segment to its respective
posed segment. For curves incident to intersections, we compute
the deformation gradient for each side of a segment si as the matrix
Fi = (BiSi)(B̆i S̆i)

-1 that transforms the rest scaled frame B̆i S̆i to the
posed scaled frame BiSi . We can further expand the deformation
gradient matrix using axis vectors and scales, yielding

Fi = (li/l̆i)(ti ⊗ t̆i) + (wi/w̆i)(bi ⊗ b̆i) + (hi/h̆i)(ni ⊗ n̆i), (1)

where the symbol ⊗ denotes the outer product between two vec-
tors. Once again, we omit the superscript ± encoding each segment
side for conciseness. Note that the deformation gradient in Eq. (1)
includes a tangential rotation, a normal twist, and non-uniform scal-
ing all deduced directly from the curvenet representation. Moreover,
the matrices for both segment sides share the same tangential trans-
formation but they can have different twisting and non-tangential
stretching amounts. In the case of isolated curves, either closed
or with both ends at anchors, there is no curvenet structure that
complements the tangent and the length of the curve segments. We

Algorithm 1 Surface deformation via rigged curvenet.
// precomputation

1: Compute cut-mesh (§4.1).
2: Assemble matrices {L,C,V} (§4.2).
3: Factorize Laplacian matrix Vt LV (§4.3).

// at runtime
4: Compute curvenet deformation (§3).

a: Evaluate target position qi for every sample i .
b: Estimate deformation gradient matrices (F+s , F

−
s) for both sides

of every segment s .
5: Rearrange deformation gradients into constraint matrix fc .
6: Solve for deformation gradient fv at mesh vertices via Eq. (4).
7: Compute matrix yh with deformed cut-face polygons.
8: Compute matrix xc with displaced curvenet samples.
9: Solve for deformed vertex positions xv via Eq. (5).

thus compute the deformation gradient for a segment si in these
simplistic curves using the smallest rotation from the rest tangent
t̆i to the posed tangent ti multiplied by the uniform scaling given
by the length ratio li/l̆i .

4 SURFACE DEFORMATION
We now present our approach to compute the deformation of the
character surface by propagating the curvenet articulation through
the input mesh. We assume the character surface is given by an
oriented manifold mesh, possibly with boundaries, formed predom-
inantly by triangles and quadrilaterals, as commonly found in char-
acter animation. Our method involves a precomputation step per-
formed in a neutral pose that combines the surface mesh with the
sampled curvenet, followed by a runtime solve that produces the de-
formed surface based on the rigged curvenet. Algorithm 1 provides
a pseudocode with an overview of our deformation routine.

4.1 Mesh Cutting
We begin by precomputing the binding of the piecewise-linear cur-
venet onto the surface mesh representing the character model in a
neutral pose. In order to capture the different values estimated from
each side of the curvenet segments, we propose an adaptation of the
Cartesian cut-cell method [Berger 2017; Tao et al. 2019] to curved
surfaces that cuts the input polygonal mesh by tracing curvenet
segments. The resulting cut-mesh retains the input mesh vertices
as well as the curvenet samples, while splitting the mesh faces into
smaller polygons, which can be non-planar, non-convex, and even
include cracks (see an example in the bottom row of Figure 13).
We implement the cut-mesh using a customized halfedge data

structure that annotates halfedges with their corresponding oriented
curvenet segments, thus defining a mapping from the cut-mesh to
the sampled curvenet. We also include a bitmask to encode if each
cut-vertex refers to a mesh vertex, a curvenet sample, or an inter-
section between a curvenet segment and a mesh edge. To indicate
cracks cutting a polygon, we permit cut-edges to branch out of the
cut-face boundary with their respective pairs of opposite halfedges
both pointing to the same cut-face.

ACM Trans. Graph., Vol. 41, No. 4, Article 139. Publication date: July 2022.

Character Articulation through Profile Curves • 139:7

curvenet sample
curvenet segment

mesh edge

segment-edge intersection

mesh vertex

Fig. 6. Mesh Cutting: To cut a mesh polygon by a curvenet segment, we
enumerate different arrangements between the curvenet samples and the
mesh elements. The first column shows a segment with both samples in-
cident to the same mesh edge, which subdivides the cut-edge for every
sample located inside the edge. The second column corresponds to a cur-
venet segment that divides the mesh polygon into smaller cut-faces. The
third column illustrates cracks in the mesh polygon formed by the curvenet
segment, which can be completely inside the cut-face or slicing its boundary.
The fourth column exemplifies a segment traced through multiple mesh
elements that inserts new cut-vertices at the segment-edge intersections.

After initializing the cut-mesh with a copy of the input polygonal
mesh, we project the neutral position q̆ for each curvenet sample to
the closest point p̆ on the surface mesh. Based on the mesh element
hit by the projection, we categorize each sample as a vertex, edge,
or face-sample. In our implementation, we detect if a projected
sample is at a vertex or within an edge using a numerical tolerance
of 0.001% of the diagonal length of the surface bounding box. We
employ the vertex-samples to tag the bitmask of their coincident cut-
vertices. We also subdivide every cut-edge containing edge-samples
by inserting new cut-vertices at their respective projected locations.
The face-samples are allocated as isolated cut-vertices and later
connected by curvenet segments.

To incorporate the curvenet segments into the cut-mesh, we reuse
the sample-to-mesh categories and enumerate all possible sample
combinations per segment (Figure 6). The simplest scenario is when
a segment corresponds to an existing cut-edge that connects vertex
and/or edge-samples (left column). The other scenarios require
creating new cut-edges that pass across the input polygons. To this
end, we first insert new cut-edges with halfedge pairs pointing to
the same cut-face, and in a subsequent step we update the cut-mesh
by splitting the affected cut-faces. If the segment has samples at
the boundary or contained by the same mesh face, we place the
new cut-edge inside the corresponding cut-face (middle columns).
When the segment samples do not share a mesh face, we adopt the
method of Polthier and Schmies [1998] and trace the straightest
path between the projected sample points over the surface mesh.
As a result, the segment is rasterized into a chain of new cut-edges

with cut-vertices added at the intersections between the segment
path and the input mesh edges (right column).

Next, we update the cut-mesh connectivity in order to identify the
split cut-faces produced by the curvenet segments. We approach this
task by computing a tangent space for each cut-vertex, projecting its
incident halfedges onto the tangent space, and then sorting the pro-
jected halfedges counter-clockwise. To compute the tangent spaces,
we take advantage of the fact that the cut-mesh is constructed on
top of the input polygonal mesh. Therefore, we can assign the tan-
gent space for any cut-vertex by referring to the corresponding
point on the surface mesh. More concretely, when a cut-vertex is
inside a mesh face, the tangent space is set to the plane orthogonal
to the normal of the underlying polygon. In case the cut-vertex
lies inside a mesh edge, we define the tangent space by unfolding
the pair of faces sharing the mesh edge to a common plane. Other-
wise, if the cut-vertex is at a mesh vertex, we flatten the one-ring
of faces incident to the mesh vertex. With sorted halfedges at the
cut-vertices, we can circulate from one halfedge to the next and
reset the cut-mesh with new cut-faces for every loop of halfedges.
Lastly, we address the special case that arises

when the curvenet has clusters of segments held
entirely inside individual faces of the input mesh
(see inset). These clusters indicate holes that cut
the interior of the mesh polygons. Since we have
inserted every segment into the cut-mesh, we can detect these cur-
venet islands by computing connected components of the cut-mesh
formed exclusively by face-samples attached to the same mesh face.
In our implementation, we remove every element of the cut-mesh
incident to these isolated components, because they represent a
level of detail finer than the resolution of the surface mesh.

4.2 Discretization
The cut-mesh provides a discrete representation of the input surface
that conforms to the curvenet. We describe next how to leverage this
conforming mesh as a computational domain in which the curvenet
deformation is interpolated over the vertices of the surface mesh.
In particular, we present a numerical discretization tailored to the
cut-mesh that handles polygons with cracks, thus enabling smooth
interpolations with localized discontinuities.
We start by discretizing the space of functions defined over the

cut-mesh. In order to convey discontinuities, we represent discrete
functions by assigning a scalar value for each corner of a cut-face,
akin to the typical encoding of uv-coordinates on surface meshes.
Since face-corners can be indexed by halfedges, we assemble the
discrete version of a scalar function ϕ by a vector ϕh of size equal
to the number of halfedges nh in the cut-mesh. These values are
interpolated linearly along the halfedges forming each cut-face
and the discontinuities are indicated by any cut-vertex that reads
different values from its incident halfedges.
To evaluate the smoothness of a discrete function, we base our

approach on the polygonal discretization introduced by de Goes et al.
[2020], which assumes that the mesh polygons are simple. At first
sight, the cut-mesh seems to fail this requirement because the cut-
edges can depict cracks inside the mesh polygons. To accommodate

ACM Trans. Graph., Vol. 41, No. 4, Article 139. Publication date: July 2022.

139:8 • de Goes et al.

polygons with cracks, we construct the polygon
of a cut-face using the ordered list of face-corners
defined by the loop of halfedges outlining the cut-
face (see inset). By doing so, crack edges are split
into pairs of halfedges, cut-vertices are duplicated
and, consequently, the cut-face is represented by
a simple polygon of arbitrary shape.

Given a cut-face f formed by a loop of nf halfedges, we assemble
the matrix X̆f of size nf × 3 containing the 3D points that define
the simple polygon associated with f ordered counter-clockwise,
stacked row-wise, and in a neutral pose. As detailed in the Appendix
A, we employ the matrix X̆f to compute the polygonal Laplacian
matrix Lf of size nf × nf . We then define the cut-mesh Laplacian
as the matrix Lh of size nh × nh that gathers the contribution of
every cut-face Laplacian Lf . Finally, we measure the smoothness of
a discrete function ϕh over the cut-mesh via the Dirichlet energy:

ED (ϕh) = ϕt
h Lh ϕh . (2)

Since our goal is to compute an interpolation from the curvenet to
the input mesh, we restrict the solution space of discrete functions
so that discontinuities are imposed as constraints by the curvenet,
while mesh vertices are assigned to smooth values shared by their
incident halfedges. To this end, we organize the cut-vertices into
two groups based on their bitmasks. The first group defines the
interpolation unknowns represented by every cut-vertex coincident
to a mesh vertex. We arrange these unknowns as a vector ϕv of size
nv and introduce the matrix V of size nh × nv that copies values
from these cut-vertices to their adjacent halfedges. Conversely, the
second group includes every cut-vertex corresponding to a curvenet
sample or created by the intersection of a curvenet segment and a
mesh edge. Note that some of the halfedges emanating from these
cut-vertices are annotated by curvenet segments and, therefore,
indicate constraints to be set onto the cut-mesh. We denote by ϕc
the vector with the values of the curvenet samples estimated from
each side of every curvenet segment. In total, the size nc of the
vector ϕc is twice the sum of the number of samples per curve. We
also assemble the matrix C of size nh × nc that maps these sample
values to their adjacent halfedges. In the case of a cut-vertex incident
to both a mesh vertex and the curvenet, we give precedence to the
curvenet constraint, thus ensuring that VtC=0. By construction,
the matrices V and C define a partition of unity, i.e., V1v +C1c =1h ,
where 1x indicates a constant vector of ones of size nx (x ∈ {v, c,h}).
By combining these terms, we write our restricted solution space as
discrete functions of the form

ϕh = Vϕv + Cϕc . (3)

With the cut-mesh discretization, we can now present our method
that computes the final shape of the surface mesh based on the defor-
mation of the sampled curvenet, as detailed in the next subsection.

4.3 Mesh Optimization
We approach the deformation of the surfacemesh induced by the cur-
venet articulation as a two-step optimization. Given the undeformed
and deformed configurations of the sampled curvenet indicated by
their respective sample positions q̆ and q, we first interpolate the

deformation gradients from the curvenet segments to the mesh ver-
tices, and then we compute the vertex positions that best match the
interpolated deformation gradients while preserving surface details
and reproducing the target curvenet samples.

In the first optimization step, we make use of the deformation gra-
dient matrices (F+s , F

−
s) estimated from each side of every curvenet

segment s , as previously described in §3. We remap these matrices
from the segments to their incident samples. For a sample inside
a curve, we set its left and right matrices by averaging the values
from the previous and next segments along the curve. When the
sample is a curve endpoint, we make a copy of the sample for every
incident segment and assign each copy to the values from the left
and the right side of the corresponding segment. With these sample-
based deformation gradients, we assemble the curvenet constraints
as a matrix fc of size nc × 9 that flattens the deformation gradient
matrices into row-vectors. We then compute the matrix fv with the
flattened deformation gradients at the mesh vertices by solving

minfv ED (V fv + C fc). (4)

The optimization in Eq. (4) produces a harmonic interpolation
over the cut-mesh for each column in fv with discontinuities at the
curvenet samples prescribed by fc . After combining the interpolated
and constrained matrices fv and fc via Eq. (3), we obtain the defor-
mation gradient for the corner of every cut-face in the cut-mesh. We
then average the corner values within each cut-face f and unfold
the resulting row-vector back into a 3 × 3 matrix denoted by Ff .
The deformation gradient Ff per cut-face f indicates how the rest
configuration X̆f of the simple polygon associated with f should
be rotated and stretched. Since every halfedge is incident to a single
cut-face, we can gather the deformed polygons X̆f F

t
f from every

cut-face f into a matrix yh of size nh × 3.
Our second optimization step seeks new vertex positions that

approximate the transformed cut-face polygons given by yh , while
enforcing the sample locations constrained by the posed curvenet.
In particular, we must account for the residual vector defined be-
tween each rest sample point q̆ and its projected point p̆ so that the

Projection Pose Simulated Mesh Curvenet Deformation

Fig. 7. Surface Editing: Our method can be used as an interactive shap-
ing tool well-suited for post-simulation editing. We start by drawing the
curvenet over the original model, defining the projection pose used in the
precomputation of our solver (left). We then warp the curvenet to the simu-
lated mesh, which indicates the undeformed surface configuration (middle).
By directly manipulating the curvenet, we can edit the surface mesh while
preserving the cloth details produced by simulation (right). ©Disney/Pixar

ACM Trans. Graph., Vol. 41, No. 4, Article 139. Publication date: July 2022.

Character Articulation through Profile Curves • 139:9

Fig. 8. Robustness to mesh connectivity: Using the same curvenet rig, our technique allows the articulation of multiple tessellations of a hand model. From
left to right, we show the front and back deformations for a coarse quad-dominant mesh, a triangulated mesh, a subdivision cage, an one-level subdivided
surface, and a high-resolution sculpted mesh. Observe that our curvenet deformation preserves different levels of surface details as well as the residual sample
offsets caused by the loose spacing between the surface discretizations and the sampled curvenet. ©Disney/Pixar

deformed surface mesh preserves the offset relative to the deformed
curvenet. To this end, we consider the copy of each curvenet sample
with target position qi and its corresponding deformation gradient
matrix Fi indicated by the unfolded i-th row from the constraint
matrix fc . We then estimate the target projected position of the cur-
venet sample as pi = qi − Fi (q̆i − p̆i). Note that the left and right
copies of each curvenet sample may receive different projection
offsets based on the deformation gradient matrix from each side of
the curvenet segments. We rearrange these adjusted sample points
{pi } into the rows of the matrix xc of size nc × 3 representing the
curvenet positional constraints, and then compute the matrix of
positions xv for the mesh vertices via

minxv ED (Vxv + Cxc − yh). (5)

Finally, we point out that both Eqs. (4) and (5) correspond to
unconstrained convex optimizations and, therefore, they can be
minimized by solving a sequence of linear systems of the form{

(Vt LhV) fv = −VtLh (C fc),

(Vt LhV) xv = −VtLh (Cxc − yh).
(6)

Notice that the shared left-hand side matrix Vt LhV defines a modi-
fied Laplacian operator restricted to the vertices of the input surface
mesh that incorporates the contributions of the sub-polygons gener-
ated by the mesh cutting with the sampled curvenet, while retaining
an one-ring sparsity pattern similar to the original polygonal mesh.
Since this Laplacian matrix is assembled only once in the neutral

pose, we can precompute a sparse factorization of this matrix and
find the solutions of Eq. (6) through a direct solver.

5 RESULTS
In this section, we present a series of examples showcasing the visual
quality, performance, and versatility of our method for character
articulation based on curvenets. We also point the reader to the
accompanying video which provides several animation sequences
and interactive sessions using our technique.

Implementation: We developed the tools for modeling and rigging
curvenets as well as our surface deformation solver as C++ plug-
ins within the Pixar animation system (Presto). Once the character
model is loaded, the user can construct curvenets by drawing cubic
Bézier splines with shared endpoints over the surface and weight
their knots to animation controllers using archetypal spatial deform-
ers, as previously described in §3. The supplemental video includes
a live session illustrating the creation and the articulation of a cur-
venet for the elbow of a human model. For optimized performance,
we precompute the cut-mesh and the factorization of its Laplacian
matrix only once using the neutral pose in which the curvenet is
built. The surface deformation is then generated at runtime as the
animator exercises the curvenet rig. Both the sparse matrix decom-
position and the linear solves in Eq. (6) are computed using [Chen
et al. 2008]. In Table 1, we report timings for all our examples split
into mesh cutting, matrix factorization, and surface deformation,

ACM Trans. Graph., Vol. 41, No. 4, Article 139. Publication date: July 2022.

139:10 • de Goes et al.

Fig. 9. Hybrid Rig: This example shows a hybrid rig setup that combines a
curvenet body articulation with a face rig made of patch and joint deformers.
The top row indicates the neutral configuration used as the projection pose in
our precomputation step (left), followed by the head deformation produced
by our method (right). The bottom row illustrates the expression generated
using the face rig (left), which defines the rest pose used by our solver to
compute the layered face-head deformation (right). ©Disney/Pixar

clocked on a 2.3 GHz Intel Xeon E5-2699 with 18 cores. Note that our
solver achieves interactive rates even on high-resolution meshes.

Examples: Figure 1 shows a sequence of poses for a Panda charac-
ter entirely articulated by our method, followed by facial animations
in Figure 2. In this Panda rig, we used one curvenet for the torso
and limbs and a second curvenet for the face, which we built with
extra curves around the eyebrows and lips in order to provide more
localized shaping controls. We also included additional curvenets for
posing the detached ear meshes. Figure 8 shows a hand deformation
computed on various polygonal tessellations, demonstrating that
our method produces qualitatively similar results robust to the mesh
connectivity. These hand meshes were all articulated using the same
rigged curvenet displayed in Figure 4. We present in Figure 3 several
calisthenic poses for a human model articulated by a pair of hand
curvenets and a body curvenet. In particular, the body component
was constructed enclosing the head but with no curve on the face.
Since our approach bounds the deformation on each curve side, we
can use the curves surrounding the face to isolate the facial features
while tracking the head deformation. Our method is also well-suited
for handling overlapping articulations such as the neck and shoulder
combo. This is in sharp contrast to traditional rigging schemes that
can involve multiple corrective sculpts to resolve blending artifacts.
Please see our supplemental video for complete animation clips and
additional examples.

Projection versus Rest: So far we have used the same neutral pose
for projecting the curvenet onto the surface mesh and also to de-
fine the undeformed surface configuration. However, some rigging
setups may benefit from hybrid approaches that layer the curvenet
articulation with other surface deformations. In order to support
more flexible rigs, we devised a small modification of our algorithm
that accounts for different projection and rest poses of the input
surface mesh. We indicate the projection pose as the surface shape
in which the curvenet is designed, e.g., the model T-pose. After
constructing the curvenet, we employ the projection pose to re-
sume precomputing the cut-mesh and the Laplacian-based linear
solver. Conversely, the rest pose represents the result of any sur-
face deformation performed before the curvenet articulation. Since
the curvenet and the cut-mesh are created in the projection pose,
we warp both of them to the shape of the rest surface by reusing
the binding of the curvenet samples onto the closest points of the
surface mesh previously cached by our cutting routine. Given these
warped poses, we evaluate the rest pose values for the scaled frames
along the sampled curvenet as well as the undeformed cut-face
polygons, which are then used by our surface optimization. Figure
9 shows a hybrid setup that combines a face rig made of patch and
joint deformers with the body deformation controlled by curvenets.
In this example, we also include separate meshes for the hair, brows,
and eyeballs attached to the body surface. Figure 7 presents another
layered deformation that edits a garment mesh via curvenets after
running a cloth simulation. This rig configuration is useful for incor-
porating shot-specific and view-dependent corrections by directly
manipulating the simulated shapes instead of rerunning the offline
simulation. Since the projection pose is persistent throughout the
animation frames, we can deform these simulated shapes efficiently
by leveraging our precomputed curvenet solver.

Blend Shapes: In addition to hybrid rigs, our method can also be
coupled with blend shapes that enhance the surface deformations
with mesh-specific details finer than the curvenet resolution. We
superpose blend shapes as vertex offsets relative to the rest surface
mesh and then use vertex frames to reconstruct these displacements
on top of the shape produced by the curvenet deformation. Figure 10
exhibits snarling sculpts triggered by the curvenet rig when posing
the curves associated with the muzzle of the Panda model. Note

Deformation Added Muzzle Sculpt Close-ups

Fig. 10. Blend Shapes: Curvenet rigs can be superposed by blend shapes
sculpted on the high-resolution surface mesh. The left image shows a face
articulation of the Panda character fully controlled by the curvenet, while
the middle image exhibits muzzle sculpts applied on top of the curvenet de-
formation that emphasizes the snarling expression. Close-ups of the muzzle
before and after the sculpt are displayed in the right column. ©Disney/Pixar

ACM Trans. Graph., Vol. 41, No. 4, Article 139. Publication date: July 2022.

Character Articulation through Profile Curves • 139:11

that we represent blend shapes separated from the surface rest pose
so that vertex sculpts can be animated without recomputing the
curvenet deformation, but they can also be included as part of the
rest configuration if preferred by the rigger. It is also worth pointing
out that we add sculpts only when high frequency mesh details are
needed, in contrast to typical pose-space deformation methods that
employ blend shapes to resolve deformation artifacts.

Discussion: Our formulation for character articulation bears many
similarities with existing detail-preserving deformation techniques
[Botsch and Sorkine 2008]. In particular, we adopt a two-step op-
timization akin to [Zayer et al. 2005] that first interpolates local
transformations using harmonic functions and then reconstructs the
surface mesh via a Poisson solve. However, we account for arbitrary
deformation gradient matrices including non-uniform stretching,
while previous methods employed specialized parametrizations lim-
ited to similarity transformations. Moreover, we advocate for sepa-
rate boundary conditions imposed on each curve side and estimated
directly from a rigged curvenet, instead of prescribing pointwise
constraints via user handles. Figure 11 compares the deformed sur-
face produced by discontinuous versus averaged curve constraints.
Observe how the latter leads to an undesirable bowing shape (see
side-view), mixing the deformation from one curve side to the other,
while our result enforces the hinge discontinuity keeping the mesh
planar on both curve sides. Another key difference is our surface
discretization that cuts the input mesh through the profile curves.
By implementing a cut-aware Laplacian (see Appendix A), we ob-
tain smooth interpolations robust to the presence of irregular and
cracked mesh polygons, bypassing any need for mesh repairs. As
a byproduct, our approach can also be used to compute diffusion
curve attributes over non-flat polygonal surfaces. Figure 13 shows
an example of discontinuous colors diffused from a collection of
closed curves over a quadrangulated shirt mesh.

Limitations: Our solver tends to cause volume loss when the cur-
venet is under large twisting deformations. Figure 12 illustrates

Fig. 11. Discontinuous curve constraints: The left image shows the sur-
face mesh computed by our method that interpolates distinct rotation con-
straints imposed on each curve side. In contrast, the right image displays the
result of interpolating the averaged rotation assigned to the central curve.
Observe in the side-views that our approach reproduces the piecewise-flat
mesh configuration instead of introducing an undesirable bowing shape
that diffuses the averaged hinge orientation towards the outline curves.

Fig. 12. Limitation:Our approach to propagate the curvenet articulation to
the surface mesh can cause volume loss under large twisting deformations.
In this example, a cylindrical surface (left) has its volume reduced to 93%
of the original value after deforming the curvenet by a twist of 90 degrees
(middle), and to 81% after a twist of 180 degrees (right).

surface meshes deformed by a curvenet twist of 90 and 180 de-
grees with volumes reduced to 93% and 81% of the original value,
respectively. We note that prior Poisson-like methods have reported
similar issues and attempted to remediate them via corrective steps
in exchange of increased computational cost [Lipman et al. 2007;
Sorkine and Alexa 2007]. We also argue that the twist shapes gen-
erated by our method are superior than the typical linear blend
skinning deformation and are competitive to skinning variants like
those surveyed by Jacobson et al. [2014]. Although our implementa-
tion supports multiple curvenets cutting the same surface mesh, we
assume these curvenets do not overlap each other. Moreover, we
focus our discretization on control curves that cut across multiple
mesh elements, as expected by characteristic surface profiles, but
our Laplacian assembly (Appendix A) can be generalized to support
cut-faces with interior boundaries defined by curvenet islands inside
individual mesh faces. Pointwise handles are also straightforward
to incorporate into our formulation via soft constraints weighted by
barycentric coordinates. Finally, we point out that, even though cur-
venets can be densely constructed in order to shape local features,
our approach is most advantageous when rigging curves represent-
ing broad surface deformations and then add mesh-specific details
using spatial deformers or blend shapes.

6 CONCLUSION
We have presented a new technique for character articulation that
generates detail-preserving deformations controlled by curvenets.
Our curvenet representation simplifies the construction of character
rigs by detangling the articulation controllers and skinning weights
from the surface mesh connectivity. As a result, we can author char-
acter deformations consistent across different mesh tessellations
by directly manipulating prominent surface profiles and using rigs
with orders of magnitude fewer weighted points. At its core, our
approach introduces a novel mesh cutting scheme accompanied by a
robust polygonal discretization that allows the numerical optimiza-
tion of surface deformations constrained by curve discontinuities.

ACM Trans. Graph., Vol. 41, No. 4, Article 139. Publication date: July 2022.

139:12 • de Goes et al.

In addition to conforming surface meshes to curvenets, we have
also described how to combine curvenet-based articulations with
other deformation workflows such as skeletal rigs, sculpting, and
offline simulations. We have demonstrated our method on a number
of character animations used in production settings.
As future work, we are interested in speeding up our solver by

computing localized solutions a la [Herholz et al. 2017] that up-
date the mesh deformation per patches triggered by changes in
nearby curvenet segments. We are also investigating extensions
of our surface interpolation using higher-order smoothness terms
[Stein et al. 2020] and including more flexible boundary conditions
with discontinuities [Boyé et al. 2012]. It would also be interesting
to revisit tearing and cracking simulations based on our polygo-
nal discretization, since we can handle complex cut layouts while
avoiding quadrature approximations [Nguyen-Thanh et al. 2018].
Finally, combining surface cutting with shape optimization is an
exciting direction in order to devise robust curve-aware geometry
processing applications.

ACKNOWLEDGMENTS
We are grateful to Danielle Feinberg and Christian Hoffman for their
support in adopting our technique in Pixar’s feature film Turning
Red. Andrew Butts provided invaluable assistance with the Presto
animation system and Emma Staniforth helped with the UI devel-
opment. We thank Jared Fong, Jeremie Talbot, and Kris Campbell
for feedback during early deployment on Onward and Soul. We also

Fig. 13. Diffusion Curves: Our cut-aware discretization offers an exten-
sion of diffusion curves [Orzan et al. 2008] to non-planar surface meshes.
The top-left image shows blue and red closed curves tracing the ACM SIG-
GRAPH logo on top of a quadrangulated shirt mesh. The top-right image
displays the diffusion curve shading generated by our method that smoothly
interpolates the curve colors outside the logo while keeping the inside and
the surface boundaries white. The bottom row overlays the diffused colors
with a wireframe of the cut-mesh, including close-ups of the split polygons
with the curve discontinuities.

Table 1. Timing: Wall clock time in milliseconds spent by our method
to generate the cut-mesh (Cutting), assemble and factorize the cut-aware
Laplacian matrix (Factor), and compute the surface deformation (Solve), all
measured on a 2.3 GHz Intel Xeon E5-2699 with 18 cores. We also report
the statistics for the surface mesh resolution, the number of Bézier knots
used by the curvenets, and the sample count discretizing the curvenets in
our examples. Note that curvenets simplify the character rig using orders
of magnitude fewer knots than vertices in the surface mesh.

Model #Faces #Verts #Knots #Samples Cutting Factor Solve

Panda 22388 22390 2535 34157 149.1 97.8 9.7
Human 17650 17649 894 24079 101.8 69.9 7.9
Jacket 22354 11778 220 4795 32.8 45.3 6.2
Hand Quad 1376 1387 448 3577 17.9 8.9 1.2
Hand Tri 2896 1459 448 3439 33.4 11.8 1.4
Hand Shell 2606 2618 448 5041 27.3 14.6 1.5
Hand Subd 10426 10447 448 10610 51.1 46.2 6.3
Hand Dense 93895 93991 448 32460 153.7 408.2 35.4

thank Francesco Olcese, Grace Gilbert, Jacob Speirs, Jason Davies,
Mark Piretti, Michael Comet, and Michael Nieves for their collabora-
tion on Lightyear. Finally, we thank Mark Meyer, Mathieu Desbrun,
and Doug L. James for proofreading this document.

REFERENCES
E. Benvenuti, A. Chiozzi, G. Manzini, and N. Sukumar. 2019. Extended virtual element

method for the Laplace problem with singularities and discontinuities. Computer
Methods in Applied Mechanics and Engineering 356 (2019), 571–597.

M. Berger. 2017. Chapter 1 - Cut Cells: Meshes and Solvers. In Handbook of Numerical
Methods for Hyperbolic Problems, R. Abgrall and C.-W. Shu (Eds.). Handbook of
Numerical Analysis, Vol. 18. Elsevier, 1–22.

M. Botsch, M. Pauly, M. Gross, and L. Kobbelt. 2006. PriMo: Coupled Prisms for Intuitive
Surface Modeling. In Symposium on Geometry Processing. 11–20.

M. Botsch and O. Sorkine. 2008. On Linear Variational Surface Deformation Methods.
IEEE Transactions on Visualization and Computer Graphics 14, 1 (2008), 213–230.

S. Boyé, P. Barla, and G. Guennebaud. 2012. A Vectorial Solver for Free-Form Vector
Gradients. ACM Transactions on Graphics 31, 6, Article 173 (2012), 9 pages.

E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing. 2015. CutFEM: Discretiz-
ing geometry and partial differential equations. Internat. J. Numer. Methods Engrg.
104, 7 (2015), 472–501.

S. Calderon and T. Boubekeur. 2017. Bounding Proxies for Shape Approximation. ACM
Transactions on Graphics 36, 4, Article 57 (2017), 13 pages.

M. Campen. 2017. Partitioning Surfaces into Quadrilateral Patches: A Survey. In Proc.
of the European Association for Computer Graphics: Tutorials. Article 5, 25 pages.

Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. 2008. Algorithm 887:
CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. ACM
Trans. Math. Software 35, 3 (2008), 14 pages.

F. de Goes, A. Butts, and M. Desbrun. 2020. Discrete Differential Operators on Polygonal
Meshes. ACM Transactions on Graphics 39, 4, Article 110 (2020), 14 pages.

F. de Goes, S. Goldenstein, M. Desbrun, and L. Velho. 2011. Exoskeleton: Curve Network
Abstraction for 3D Shapes. Computer and Graphics 35, 1 (2011), 112–121.

T.-P. Fries and T. Belytschko. 2010. The extended/generalized finite element method:
An overview of the method and its applications. Internat. J. Numer. Methods Engrg.
84, 3 (2010), 253–304.

R. Gal, O. Sorkine, N. J. Mitra, and D. Cohen-Or. 2009. iWires: An Analyze-and-Edit
Approach to Shape Manipulation. ACM Transactions on Graphics 28, 3, Article 33
(2009), 10 pages.

G. Gori, A. Sheffer, N. Vining, E. Rosales, N. Carr, and T. Ju. 2017. FlowRep: Descriptive
Curve Networks for Free-Form Design Shapes. ACM Transactions on Graphics 36, 4,
Article 59 (2017), 14 pages.

P. Herholz, T. A. Davis, and M. Alexa. 2017. Localized Solutions of Sparse Linear
Systems for Geometry Processing. ACM Transactions on Graphics 36, 6, Article 183
(2017), 8 pages.

Z. Huang, N. Carr, and T. Ju. 2019. Variational Implicit Point Set Surfaces. ACM
Transactions on Graphics 38, 4, Article 124 (2019), 13 pages.

A. Jacobson, I. Baran, L. Kavan, J. Popović, and O. Sorkine. 2012. Fast Automatic
Skinning Transformations. ACM Transactions on Graphics 31, 4, Article 77 (2012),

ACM Trans. Graph., Vol. 41, No. 4, Article 139. Publication date: July 2022.

Character Articulation through Profile Curves • 139:13

10 pages.
A. Jacobson, Z. Deng, L. Kavan, and J.P. Lewis. 2014. Skinning: Real-time Shape

Deformation. In ACM SIGGRAPH Courses.
P. Joshi, M. Meyer, T. DeRose, B. Green, and T. Sanocki. 2007. Harmonic Coordinates

for Character Articulation. ACM Transactions on Graphics 26, 3 (2007), 10 pages.
T. Ju, Q.-Y. Zhou, M. van de Panne, D. Cohen-Or, and U. Neumann. 2008. Reusable

Skinning Templates Using Cage-Based Deformations. ACM Transactions on Graphics
27, 5, Article 122 (2008), 10 pages.

L. Kavan and O. Sorkine. 2012. Elasticity-Inspired Deformers for Character Articulation.
ACM Transactions on Graphics 31, 6, Article 196 (2012), 8 pages.

B. H. Le and J. P. Lewis. 2019. Direct Delta Mush Skinning and Variants. ACM
Transactions on Graphics 38, 4, Article 113 (2019), 13 pages.

B. H. Le, K. Villeneuve, and C. Gonzalez-Ochoa. 2021. Direct Delta Mush Skinning
Compression with Continuous Examples. ACM Transactions on Graphics 40, 4,
Article 72 (2021), 13 pages.

J. P. Lewis, M. Cordner, and N. Fong. 2000. Pose Space Deformation: A Unified Approach
to Shape Interpolation and Skeleton-Driven Deformation. In Proc. of the 27th Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH). 165–172.

P. Li, K. Aberman, R. Hanocka, L. Liu, O. Sorkine-Hornung, and B. Chen. 2021. Learning
Skeletal Articulations with Neural Blend Shapes. ACM Transactions on Graphics 40,
4 (2021), 1.

Y. Lipman, D. Cohen-Or, R. Gal, and D. Levin. 2007. Volume and Shape Preservation via
Moving Frame Manipulation. ACM Transactions on Graphics 26, 1 (2007), 14 pages.

Y. Lipman, D. Levin, and D. Cohen-Or. 2008. Green Coordinates. ACM Transactions on
Graphics 27, 3 (2008), 1–10.

Y. Lipman, O. Sorkine, D. Levin, and D. Cohen-Or. 2005. Linear Rotation-invariant
Coordinates for Meshes. ACM Transactions on Graphics 24, 3 (2005), 479–487.

V. Lucquin, S. Deguy, and T. Boubekeur. 2017. SeamCut: Interactive Mesh Segmentation
for Parameterization. In ACM SIGGRAPH 2017 Technical Briefs.

J. Mancewicz, M. L. Derksen, H. Rijpkema, and C. A. Wilson. 2014. Delta Mush: Smooth-
ing Deformations While Preserving Detail. In Symposium on Digital Production.
7–11.

T. McLaughlin, L. Cutler, and D. Coleman. 2011. Character Rigging, Deformations, and
Simulations in Film and Game Production. In ACM SIGGRAPH Courses.

N. Moës, J. Dolbow, and T. Belytschko. 1999. A finite element method for crack growth
without remeshing. Internat. J. Numer. Methods Engrg. 46, 1 (1999), 131–150.

S. E. Mousavi, E. Grinspun, and N. Sukumar. 2011. Harmonic enrichment functions:
A unified treatment of multiple, intersecting and branched cracks in the extended
finite element method. Internat. J. Numer. Methods Engrg. 85, 10 (2011), 1306–1322.

A. Nealen, T. Igarashi, Olga Sorkine, andM. Alexa. 2007. FiberMesh: Designing Freeform
Surfaces with 3D Curves. ACM Transactions on Graphics 26, 3, Article 41 (2007).

A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or. 2005. A Sketch-Based Interface
for Detail-Preserving Mesh Editing. ACM Transactions on Graphics 24, 3 (2005),
1142–1147.

V. M. Nguyen-Thanh, X. Zhuang, H. Nguyen-Xuan, T. Rabczuk, and P. Wriggers. 2018.
A Virtual Element Method for 2D linear elastic fracture analysis. Computer Methods
in Applied Mechanics and Engineering 340 (2018), 366–395.

A. Orzan, A. Bousseau, P. Barla, H. Winnemöller, J. Thollot, and D. Salesin. 2008. Diffu-
sion Curves: A Vector Representation for Smooth-Shaded Images. ACM Transactions
on Graphics 27, 3 (2008), 8 pages.

H. Pan, Y. Liu, A. Sheffer, N. Vining, C.-J. Li, andW.Wang. 2015. Flow Aligned Surfacing
of Curve Networks. ACM Transactions on Graphics 34, 4, Article 127 (2015), 10 pages.

K. Polthier and M. Schmies. 1998. Straightest Geodesics on Polyhedral Surfaces. In
Mathematical Visualization: Algorithms, Applications and Numerics. 135–150.

S. Schaefer, J. Warren, and D. Zorin. 2004. Lofting Curve Networks Using Subdivision
Surfaces. In Symposium on Geometry Processing. 103–114.

K. Singh and E. Fiume. 1998. Wires: A Geometric Deformation Technique. In Proc.
of the 25th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH). 405–414.

O. Sorkine and M. Alexa. 2007. As-Rigid-As-Possible Surface Modeling. In Symposium
on Geometry Processing. 109–116.

O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel. 2004. Laplacian
Surface Editing. In Symposium on Geometry Processing. 175–184.

O. Stein, A. Jacobson, M. Wardetzky, and E. Grinspun. 2020. A Smoothness Energy
without Boundary Distortion for Curved Surfaces. ACM Transactions on Graphics
39, 3, Article 18 (2020), 17 pages.

T. Sun, P. Thamjaroenporn, and C. Zheng. 2014. Fast Multipole Representation of
Diffusion Curves and Points. ACM Transactions on Graphics 33, 4, Article 53 (2014),
12 pages.

K. Takayama, O. Sorkine, A. Nealen, and T. Igarashi. 2010. Volumetric Modeling with
Diffusion Surfaces. ACM Transactions on Graphics 29, 6, Article 180 (2010), 8 pages.

M. Tao, C. Batty, E. Fiume, and D. I. W. Levin. 2019. Mandoline: Robust Cut-Cell
Generation for Arbitrary Triangle Meshes. ACM Transactions on Graphics 38, 6,
Article 179 (2019), 17 pages.

J.-M. Thiery, P. Memari, and T. Boubekeur. 2018. Mean Value Coordinates for Quad
Cages in 3D. ACM Transactions on Graphics 37, 6, Article 229 (2018), 14 pages.

R. Vaillant, L. Barthe, G. Guennebaud, M.-P. Cani, D. Rohmer, B. Wyvill, O. Gourmel,
and M. Paulin. 2013. Implicit Skinning: Real-Time Skin Deformation with Contact
Modeling. ACM Transactions on Graphics 32, 4, Article 125 (2013), 12 pages.

R. Vaillant, G. Guennebaud, L. Barthe, B. Wyvill, and M.-P. Cani. 2014. Robust Iso-
Surface Tracking for Interactive Character Skinning. ACM Transactions on Graphics
33, 6, Article 189 (2014), 11 pages.

W. Wang, B. Jüttler, D. Zheng, and Y. Liu. 2008. Computation of Rotation Minimizing
Frames. ACM Transactions on Graphics 27, 1, Article 2 (2008), 18 pages.

Y. Wang and J. Solomon. 2021. Fast Quasi-Harmonic Weights for Geometric Data
Interpolation. ACM Transactions on Graphics 40, 4, Article 73 (2021), 15 pages.

J. Wu, R. Westermann, and C. Dick. 2015. A Survey of Physically Based Simulation of
Cuts in Deformable Bodies. Computer Graphics Forum 34, 6 (2015), 161–187.

Z. Xu, Y. Zhou, E. Kalogerakis, C. Landreth, and K. Singh. 2020. RigNet: Neural Rigging
for Articulated Characters. ACM Transactions on Graphics 39, 4, Article 58 (2020),
14 pages.

Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum. 2004. Mesh Editing with
Poisson-Based Gradient Field Manipulation. ACM Transactions on Graphics 23, 3
(2004), 644–651.

R. Zayer, C. Roessl, Z. Karni, and H.-P. Seidel. 2005. Harmonic Guidance for Surface
Deformation. Computer Graphics Forum 24, 3 (2005), 601–609.

Q. Zhou, T. Weinkauf, and O. Sorkine. 2011. Feature-Based Mesh Editing. In Proc.
Eurographics, Short Papers.

A DISCRETE LAPLACIAN MATRIX
In this appendix, we revisit the construction of the discrete Laplacian
operator for 3D polygons derived in [de Goes et al. 2020]. Consider
the simple polygon associated with the cut-face f defined by the
loop ofnf halfedges. We use the rows of the matrixXf of sizenf × 3
to indicate the 3D position of the polygon’s corners ordered counter-
clockwise in a reference configuration. We also define the matrixDf
of size nf × nf that computes the differences between consecutive
corners in f , i.e., Di ,i+1

f =1, Di ,i
f =−1, and zero otherwise. The edge

vectors delineating f can then be expressed by Ef =Df Xf . Lastly,
we denote the matrix Af of size nf × nf that averages consecutive
face-corners, i.e., Ai ,i+1

f =Ai ,i
f =

1/2, and zero otherwise.
Equipped with these matrices, we compute the polygonal vector

area af integrated over f via [af]=E
tAf Xf , where [af] indicates

the 3 × 3 skew-symmetric matrix such that [af]u=af × u for any
3D vector u. We then assign the area of the cut-face f to af = ∥af ∥
and define nf =af /af as its constant normal vector. The discrete
gradient operator of the cut-face f is assembled by the matrix

Gf = (−1/af)[nf]E
t
f Af , (7)

thus mapping the nf values sampled at the face-corners to a vector
perpendicular to the polygonal normal nf . Note that crack edges
within the cut-face f contribute to the discrete gradient operator
Gf with a term that measures the difference of face-corner values
averaged on both sides of the crack multiplied by the edge vector
tracing the crack rotated by π/2 around nf and divided by af .

Since the cut-face polygon is of arbitrary size, its matrix Gf can
have a non-trivial null-space of dimension nf − 2 that accounts for
non-linear discrete functions expressed within f with zero gradient.
To quantify this null-space, we introduce the projection operator

Qf = Df − Ef Gf , (8)

which is a matrix of size nf × nf that returns the difference of face-
corner values per oriented edge subtracted by the alignment of
the gradient vector relative to each edge vector. In particular, the
projection operator identifies the colinear columns inGf introduced
by the duplicated crack edges in f . We also point out that the matrix
Qf corresponds to a restriction of the projection operator Pf for

ACM Trans. Graph., Vol. 41, No. 4, Article 139. Publication date: July 2022.

139:14 • de Goes et al.

discrete one-forms proposed by de Goes et al. [2020] (see their Eq.
12) to discrete functions via Df , that is, Qf =Pf Df .

Given a discrete functionϕf of sizenf defined over the cut-face f ,
the Dirichlet energy evaluates the smoothness of ϕf by penalizing
the squared norm of its gradient vector aswell as the edge differences
for the non-linear part of ϕf , yielding

ED (ϕf) = af ∥Gf ϕf ∥
2
+ λ∥Qf ϕf ∥

2, (9)

where λ= 1 as recommended by de Goes et al. [2020]. Finally, we
expand the face-based Dirichlet energy into the quadratic form

ED (ϕf) = ϕt
f Lf ϕf , and obtain the discrete Laplacian operator for

the cut-face f as the matrix of size nf × nf of the form

Lf = af G
t
f Gf + λQ

t
f Qf . (10)

As shown by de Goes et al. [2020], the Laplacian matrix Lf is sym-
metric, scale-invariant, positive semi-definite, linear precise in the
planar domain, and reproduces the well-known cotan weights when
the cut-face is a triangle. Moreover, this discretization handles poly-
gons with cracks by including cut discontinuities in the gradient
vector and filtering out spurious modes via the projection matrix.

ACM Trans. Graph., Vol. 41, No. 4, Article 139. Publication date: July 2022.

	Abstract
	1 Introduction
	2 Related Work
	3 Curvenets
	4 Surface Deformation
	4.1 Mesh Cutting
	4.2 Discretization
	4.3 Mesh Optimization

	5 Results
	6 Conclusion
	Acknowledgments
	References
	A Discrete Laplacian matrix

