Eurographics Symposium on Rendering 2018
T. Hachisuka and W. Jakob
(Guest Editors)

Volume 37 (2018), Number 4

Progressive Multi-Jittered Sample Sequences

Per Christensen

Andrew Kensler

Charlie Kilpatrick

Pixar Animation Studios

Figure 1: Left, top row: the first 4, 16, 64, 256, and 1024 samples of a progressive multi-jittered sequence with blue noise properties. Left,
bottom row: the first 4, 16, 64, 256, and 1024 samples from a progressive multi-jittered (0,2) sequence divided into two interleaved classes
(blue and red dots) on the fly. Right: stratification and Fourier spectrum of the progressive multi-jittered sequence with blue noise properties.

Abstract

We introduce three new families of stochastic algorithms to generate progressive 2D sample point sequences. This opens a
general framework that researchers and practitioners may find useful when developing future sample sequences. Our best
sequences have the same low sampling error as the best known sequence (a particular randomization of the Sobol’ (0,2)
sequence). The sample points are generated using a simple, diagonally alternating strategy that progressively fills in holes
in increasingly fine stratifications. The sequences are progressive (hierarchical): any prefix is well distributed, making them
suitable for incremental rendering and adaptive sampling. The first sample family is only jittered in 2D; we call it progressive
jittered. It is nearly identical to existing sample sequences. The second family is multi-jittered: the samples are stratified in both
1D and 2D; we call it progressive multi-jittered. The third family is stratified in all elementary intervals in base 2, hence we call
it progressive multi-jittered (0,2). We compare sampling error and convergence of our sequences with uniform random, best
candidates, randomized quasi-random sequences (Halton and Sobol’), Ahmed’s ART sequences, and Perrier’s LDBN sequences.
We test the sequences on function integration and in two settings that are typical for computer graphics: pixel sampling and
area light sampling. Within this new framework we present variations that generate visually pleasing samples with blue noise

spectra, and well-stratified interleaved multi-class samples; we also suggest possible future variations.

1. Introduction

Sampling is used widely in rendering, particularly in Monte Carlo
simulation and integration. A common goal is to optimize speed by
rendering accurate images with as few samples as possible. In this
paper we focus on progressive sequences for incremental render-
ing and adaptive sampling. Improvements in error or convergence
can lead to significant speedups. Here we only consider 2D sam-
ple domains, which are common sub-domains in path tracing, for
example for pixel sampling and area light sampling.

For efficient sampling we typically want an even distribution of

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

the samples (no dense clumps of samples and no large regions with-
out samples), but also no regular patterns. A common way to en-
sure even distribution is jittering, that is, dividing the sampling do-
main into regular, even-sized strata and placing one sample in each.
Multi-jittering takes this one step further by ensuring stratification
in both 2D and 1D. Another popular way of obtaining even distri-
butions is to use quasi-random (qmc) patterns.

Sample patterns can be divided into two categories: finite, un-
ordered sample sets, and infinite, ordered sample sequences. A pro-
gressive (a.k.a. hierarchical or extensible) sample sequence is a se-
quence where any prefix of the full sequence is well-distributed.

P. Christensen, A. Kensler & C. Kilpatrick / Progressive Multi-Jittered Sample Sequences

Using (finite) sample sets requires a-priori knowledge of how many
samples will be taken, and yields high error if only a subset of those
samples are used. This is fine for rendering final images with a
fixed number of samples per pixel. But in several common settings
— including adaptive sampling — we do not know in advance how
many samples will be taken, or we are using incremental results
during computation as in interactive rendering and off-line render-
ing writing check-point images. In these cases we need (infinite)
progressive sample sequences.

Figure 2 shows a close-up of a penumbra region in a path-traced
image. The image shows an incremental render after 100 (out of
400) samples per pixel have been taken. The image on the left was
rendered with a non-progressive stratified sample set and has much
more noise than the image on the right which was rendered in the
same time with a progressive sample sequence. If a non-progressive
set is used for incremental rendering, the image will remain exces-
sively noisy until the last iterations of the rendering. Noise reduc-
tion from progressive sequences makes it easier to form an opinion
about the final image sooner during interactive look development,
and also gives faster termination of adaptive sampling.

3

Figure 2: Penumbra region with 100 samples per pixel. Left: non-
progressive sample set. Right: progressive sample sequence.

Many popular sample patterns are unfortunately non-progressive
sets: jittered [Coo86, Mit96], Latin hypercube (also known as N-
rooks or independent sampling) [Shi91], multi-jittered [CSW94],
correlated multi-jittered [Ken13], Gaussian jittered [Coo86,SK12],
uniform jittered [RAMN12], antithetic jittered [SK12], Hammers-
ley [Ham60], Larcher-Pillichshammer [LPO1], and golden ratio
sets [SKD12]. Samples based on Penrose or polyhex tiles [ODJ04,
WPC*14] need correction vectors that depend on the number of
samples, so they are not strictly speaking progressive either. On
the other hand, uniform random, best candidates [Mit91], Hal-
ton [Hal64], Sobol’ [Sob67], adaptive regular tiling [ANHD17],
and low-discrepancy blue-noise [PCX™* 18] sequences are progres-
sive and hence well suited for incremental rendering and adaptive
sampling.

In this paper we assess existing sample sequences and introduce
new algorithms that generate progressive sample sequences with
the following properties:

1. The samples are stratified in 2D squares only, in 2D squares and
1D rows and columns, or in all 2D elementary intervals.

2. The samples can be generated with improved nearest-neighbor
distances (blue noise spectrum).

3. The samples give image noise that matches the best existing pro-
gressive sequences — including remarkably fast convergence for
smooth pixels and illumination.

We call the sample sequences progressive jittered, progressive
multi-jittered, and progressive multi-jittered (0,2) or shorter pj, pmj,
and pmj02. Pj and pmj samples can be generated on the fly as
needed, while pmj02 samples take longer to generate and should
be tabulated before use.

When evaluating and comparing sample patterns, it is common
to use the star discrepancy D* as a measure of quality [Zar68].
However, like several authors [Shi91, Mit92, DEM96], we have
found that D* is a poor indicator of image quality. Instead we mea-
sure sampling error for integrating a few simple functions, and in
settings more typical for computer graphics, and return to the topic
of discrepancy in the supplemental material. Briefly, we find that an
arbitrary-edge discrepancy is a more accurate error predictor than
star discrepancy, but even the arbitrary-edge discrepancy does not
measure the fact that some sequences perform much better than
others when sampling smooth functions.

We evaluate the sample sequences by using them for pixel sam-
pling and area light sampling, and comparing image quality and
convergence rates. Our analyses of pixel sampling error have sim-
ilarities to Mitchell’s analysis of stratified sampling [Mit96]. He
noted that there are three types of error convergence with strat-
ified sample sets: complex pixels with many edges converge as
O(N~%3), pixels with a few edges converge roughly as O(N~07%),
and smooth pixels converge roughly as O(N -1). We demonstrate
that a few sample sequences have even faster convergence for
smooth pixels, roughly O(N~!). (We believe this fact is not yet
fully appreciated and utilized in computer graphics.) Our analyses
of light sampling strategies for square, rectangular, and disk lights
are inspired by Ramamoorthi et al. [RAMN12]. Mitchell and Ra-
mamoorthi used sample sets, while we focus on sample sequences.

2. Related work

The most relevant previous work falls mainly in two categories:
multi-jittered sample sets and progressive sample sequences.

2.1. Multi-jittered sample sets

Our sample sequences build upon jittered [Coo86] and multi-
jittered [CSW94] sample sets. Jittered samples are stratified in 2D.
Multi-jittered samples are stratified in 2D like jittered samples and
also in 1D like Latin hypercube samples. Multi-jittered samples can
be generated by first placing samples in a canonical arrangement
that is stratified in both 2D and 1D. Then the x coordinates of each
column of 2D strata are shuffled, and the y coordinates of each row
are shuffled. Kensler [Ken13] improved multi-jittering by applying
the same shuffle to the x coordinates in each column and the same
shuffle to the y coordinates in each row. This reduces the clumpi-
ness of the sample points. (It also deals elegantly with non-square
sample counts.)

Figure 3 shows 500 sample points from a regular grid, jittered,
multi-jittered and Kensler’s correlated multi-jittered sets. A regu-
lar grid has excellent distance between sample points (at least for
square or nearly-square sample counts), but entire columns and
rows of sample points are aligned and project onto the same points
on the x and y axes; this is suboptimal when sampling a horizontal

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

P. Christensen, A. Kensler & C. Kilpatrick / Progressive Multi-Jittered Sample Sequences

or vertical object or shadow edge, and for elongated sample do-
mains such as long skinny light sources. There is no difference in
2D distribution quality between jittered and multi-jittered samples,
but the 1D projection is more uniform for multi-jittered samples.

Figure 3: 500 samples from four non-progressive sample sets: reg-
ular grid, jittered, multi-jittered, and correlated multi-jittered.

In order to generate samples from these four sets one needs to
know the number of samples a priori; our progressive multi-jittered
samples do not have this restriction.

2.2. Progressive sample sequences

Random. Uniform random 2D samples are generated by pairing
two statistically independent pseudo-random numbers. They are
typically generated with a linear congruential function [Knu98]
such as drand48(), or with the Mersenne twister [MN98]. Ran-
dom samples exhibit clumping and give high error and poor con-
vergence.

Best candidates. Best-candidate (“blue noise”) samples are an
approximation to Poisson disk samples [Mit91, MF92]. Each new
sample is found by generating a set of random candidate points, and
picking the candidate point with the largest distance to the closest
existing point. Best-candidate samples have nice spacing between
points but uneven distribution overall [Shi91]. Although their abso-
lute error is lower than for uniform random, their convergence rate
is the same. Mitchell [Mit91] and Reinert et al. [RRSG15] used
blue noise sets with improved projections.

Halton. The Halton sequence [Hal64] is a quasi-random se-
quence based on radical inverses in prime bases. Two-dimensional
Halton sample points are constructed by combining numbers with
different bases. Halton sequences typically have some clumping.

Sobol’. Sobol’ [Sob67, PTVF92] introduced a family of quasi-
random sample sequences. One particular 2D Sobol’ sequence is
a (0,2) sequence, i.e., it is stratified in all elementary intervals in
base 2: 1 X N, 2 x (N/2), ..., N x 1. Elegant code to generate
Sobol’ (0,2) sequences can be found in Kollig and Keller [KK02],
and on the web page of Griinschlof} [Grii12]. (This is the sequence
we mean when we refer to Sobol’ in the remainder of this pa-
per.) Despite its many merits, it unfortunately has systematic pat-
terns, stripes of points aligned along diagonals, and many pairs and
triplets of clumped points. Our progressive multi-jittered (0,2) sam-
ple sequences have the same elementary interval stratification, but
do not have patterns, diagonals, or systematic clumping.

Blue noise and stratification. Recently, work has been done to
combine blue noise and stratification. Ahmed et al. [ANHD17]
introduced adaptive regular tiling (ART), an elegant and flexible
tiling method to generate blue-noise sequences that also have some

(© 2018 The Author(s)
Computer Graphics Forum (© 2018 The Eurographics Association and John Wiley & Sons Ltd.

stratification (they are jittered due to the generation on a regular
lattice, but not multi-jittered). The stratification reduces the un-
evenness and reduces sampling error, making their error compa-
rable to most randomized quasi-random sequences. Some of our
sequences are similar to ART, but have better stratification. Perrier
et al. [PCX*18] modified the Sobol’ sequence to get a blue noise
spectrum; their LDBN sequences are stratified in all elementary in-
tervals when the sample count is a power of 16, but for in-between
sample counts their samples are not particularly evenly distributed.

Figure 4 shows 500 samples from these six sample sequences.

(a) (b) ()

(d) (e) (®

Figure 4: First 500 samples from six progressive sequences:
(a) uniform random; (b) best candidates; (c) Halton with bases 2
and 3; (d) Sobol’ (0,2); (e) Ahmed ART:; (f) Perrier LDBN.

When quasi-random sequences are used in practice, they are of-
ten randomized to avoid aliasing [Kell2, Owe03]. One common
randomization is toroidal shifts a.k.a. Cranley-Patterson rotations
[CP76]. An other common randomization is random digit scram-
bling, which for the Sobol’ sequence can be done with bit-wise
xor [KKO02] or Owen scrambling [Owe97]. Figure 5 shows 500
samples from rotated and scrambled Halton and Sobol’ sequences.
We do Owen scrambling efficiently with hashing — similar in spirit
to Laine and Karras [LK11], but with a better hash function pro-
vided by Brent Burley.

(a) (b)

(c) (d) (e)

Figure 5: First 500 samples from five randomized quasi-random
sequences: (a) rotated Halton; (b) scrambled Halton; (c) rotated
Sobol’ (0,2); (d) xor-scrambled Sobol’ (0,2); (¢) Owen-scrambled
Sobol’ (0,2).

P. Christensen, A. Kensler & C. Kilpatrick / Progressive Multi-Jittered Sample Sequences

3. Initial comparisons of common sample sequences

Comparing sample sequences with each other is a complex task
with many fine nuances. Which sequence is best depends on the
characteristics of the function being sampled and the error metric
chosen, and sometimes there are no clear answers. In this section
we attempt to provide an objective evaluation of the most popular
sample sequences. We sample five simple test functions: disk, tri-
angle, step, Gaussian, and bilinear. The sample domain is the unit
square, and the correct values of the integral of these functions are
known analytically. Although these are very simple functions, they
are representative of sampling, for example, pixels with sharp edges
or smooth textures, and area light sources with partial occlusion or
smooth intensity change due to distance and cosine terms.

We sample each function with uniform random, best candidates,
Ahmed ART, Perrier LDBN, Halton, and Sobol’ sequences. The
Halton sequence is randomized with rotations and random digit
scrambling; the Sobol’ sequence is randomized with rotations, bit-
wise xor, and Owen scrambling. The plots in the following tests
show sampling error as a function of the number of samples; each
curve is the average of 10000 trials.

3.1. Discontinuous functions

Disk. Our first test is a disk function: f(x,y) = 1ifx* +)* <
2/m,0 otherwise. (The reference value is 0.5.) This function has no
dominant direction; it does not favor stratification at any particular
angle. The plot in Figure 6 (top) shows that for this discontinuous
function, the error for uniform random and best candidates con-
verges as O(N —03), while the error for other sequences converges
faster at roughly O(N 7).

Triangle. The plot in Figure 6 (middle) shows sampling error
for a triangle function (1 if y > x; reference value 0.5). The Sobol’
sequence with rotations and xor scrambling has very high error; this
is caused by the diagonal patterns evident in Figure 5(c) and (d).
Perrier LDBN, Ahmed ART, both Halton sequences, and the Owen-
scrambled Sobol” sequence converge nicely at roughly O(N —0.75).

Step. Our next test function is a step function (1 if x < 1/m;
reference value 1/m). This is a test of projection of 2D samples
to 1D: only the samples’ x dimension matters. (Practical examples
are sampling a light-aligned shadow edge, sampling long, skinny
area lights, and using one dimension of 2D samples to select a
light source [SWZ96].) The plot in Figure 6 (bottom) shows that
Ahmed’s ART sequence has high error (it is only jittered in 2D, not
in 1D), and Perrier’s LDBN sequence has high error except at 16,
256, and 4096 samples. The quasi-random sequences converge at
roughly O(N 71). The x component of the Halton and Sobol’ se-
quences are identical, so those error curves overlap.

3.2. Smooth functions

Gaussian. For the first test of a smooth function we sample a
2D Gaussian function, f(x,y) = ¢ The reference value is
%erf2 (1). We see three distinct convergence rates in Figure 7 (top):
Random and best candidates still converge as O(N —03). Ahmed
ART sequences and nearly all combinations of quasi-random se-
quence and randomization converge faster at roughly O(N ™ !). The

Disk function: sampling error

' ' random

best cand

Perrier rot
Ahmed s

Halton rot

0.1

Halton scr ===
Sobol rot
Sobol xor

SoBTMeugn

=~

NOT5

m”""‘\n
0.001 ¢
(7000
samples
04 Triangle function: sampling error

random

best cand
Perrier rot
Ahmed -
Halton rot
Halton scr ===
Sobol rot
Sobol xor

§0.01 3
5]
0.001
‘ 7000
samples
01 Step function: sampling error
' ‘ ‘ random
best cand
Perrier rot
Ahmed
/ Halton rot
0.01F : fog
’ Sabo\)é;r
S Sqbol owen s
(0] Xﬂ.\"’Nws
0.001 - el
0.0001 |

0 1000
samples

Figure 6: Error for sampling disk, triangle, and step functions with

164096 samples using various sample sequences. Note the very

high error for rotated and xor-scrambled Sobol’ for the triangle

function, and the high error for Ahmed’s ART sequence for the step

function.

Sobol’ sequence with Owen scrambling has even faster conver-
gence: roughly O(N_l‘5) for power-of-two numbers of samples.
This is because Owen-scrambled samples are randomly jittered
within their strata [Owe97,0we03] whereas rotated and xor scram-
bled quasi-random samples are at fixed equidistant grid positions
in 1D. Owen-scrambled Sobol’s fast convergence rate is remark-
able: for example, for 1024 samples, random samples give an aver-
age error of 0.005388, xor-scrambled Sobol’ gives error 0.000154,
while Owen-scrambled Sobol” only gives error 0.000008 — a factor
of 19.

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

P. Christensen, A. Kensler & C. Kilpatrick / Progressive Multi-Jittered Sample Sequences

Gaussian function: sampling error

random ——
best cand
Perrier rot

Ahmed
Halton rot 4

1x10™

1x102 "

Halton scr =:=:=:=+

Sobol xor

S Sobol owen e
g 1x1073 ¢ os
[}
1x10™}
-5 i i
a0 0 1000
samples
' Bilinear function: sampling error
1x10™ ‘ ‘

random
best cand
Perrier rot

Ahmed s
Halton rot 4
Halton scr ===

Sobol xor
Sohol owen < w

N
N1

131074

-5 . R
1x10 100 7000

samples
Figure 7: Error for sampling 2D Gaussian and bilinear functions
with various sample sequences. Note the deep “error valleys” for
Owen-scrambled Sobol’ when the number of samples is a power of
two.

Bilinear. For the bilinear function f(x,y) = xy (reference value
0.25) we see results similar to the Gaussian function, as shown in
Figure 7 (bottom). Again, Owen-scrambled Sobol’ clearly has the
fastest convergence. (Also, rotated Halton and Sobol’ sequences
have noticeably higher error than the other randomizations of these
sequences.)

3.3. Summary

Our conclusion from these tests is that the Owen-scrambled Sobol’
sequence is the best of the tested sequences: it does not have patho-
logical behavior for sampling discontinuous functions at certain an-
gles, and it has extraordinarily fast convergence for sampling of
smooth functions. In Section 7 we will revisit function sampling.

4. Progressive jittered sequences

In order to describe our algorithm for generating progressive multi-
jittered samples, it is instructive to first look at the slightly sim-
pler case of progressive jittered (pj) samples without multi-jittering.
Figure 8 shows an example of 4 samples stratified into 2 X 2 square
cells, 8 samples, and 16 samples stratified into 4 x 4 square cells.

The 2D strata (cells) are iteratively subdivided and new sam-
ples are placed in a diagonally alternating order, thereby avoiding
strata with previous samples while at the same time maintaining a

(© 2018 The Author(s)
Computer Graphics Forum (© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Figure 8: 4, 8, and 16 progressive jittered samples shown with their
2D strata.

balanced distribution. In detail: (a) The first sample is placed com-
pletely at random in the unit square. (b) The unit square is divided
into 4 quadrants and the second sample is placed in the diagonally
opposite quadrant of the first. (c) The third sample is placed in one
of the two remaining empty quadrants. (d) The fourth sample is
placed in the last empty quadrant. (¢) The unit square is divided
into 16 sub-quadrants, and for each of the first four sample points a
new sample point is placed in the diagonally opposite sub-quadrant
in the same quadrant. (f) For each of the first four samples a new
sample point is placed in one of the two empty sub-quadrants in
the same quadrant. (g) Samples are placed in the last four empty
sub-quadrants. And so on. These steps are illustrated in Figure 9.
Pseudo-code in the supplemental material elaborates the algorithm.

(a) (b) (© (d (e ® (®

Figure 9: The first 1, 2, 3, 4, 8, 12, and 16 sample points from a
progressive jittered sequence.

Each sample sequence with 1, 4, 16, 64, ... samples is stratified
(jittered) as if we had simply generated that number of stratified
samples, and sample sequences in-between are balanced as well:
the number of samples in one quadrant of the unit square is at most
1 off from the number of samples in any other quadrant.

Apart from our preference of diagonal sample placement, this is
very similar to the progressive jittered samples described by Dippé
and Wold [DW85] and by Kajiya [Kaj86]. This progressive strati-
fication scheme is so simple that it probably has been re-invented
many times since Dippé’s and Kajiya’s papers.

We can generate 40 million progressive jittered samples per sec-
ond using double-precision floats and drand48() for pseudo-random
numbers. With a table of 1K pseudo-random numbers the speed
goes up to 170 million samples per second. For comparison, we
can generate 73 million pseudo-random samples per second using
drand48(). These performance numbers are for a C++ implemen-
tation running on a single core of a 2.5 GHz Intel Xeon E5-2680
processor.

5. Progressive multi-jittered sequences

The multi-jittering extension of the algorithm is inspired by
Chiu et al. [CSW94] and Kensler [Ken13]. Figure 10 shows 4, 8,
and 16 samples that are stratified into square cells and row/column
strips. As mentioned previously, 1D stratification is particularly im-
portant in cases where mainly one dimension of the samples is

P. Christensen, A. Kensler & C. Kilpatrick / Progressive Multi-Jittered Sample Sequences

used, for example for sampling a long skinny light source or if one
dimension is used to choose between light sources [SWZ96].

L2

Figure 10: 4, 8, and 16 progressive multi-jittered samples with 1D
and 2D strata.

Progressive multi-jittering (pmj) is only slightly more compli-
cated than progressive jittering — we just have to also keep track of
which 1D strips (rows and columns) have been occupied by previ-
ous sample points and only place new sample points in unoccupied
1D strips. The 1D strips are subdivided on the fly as more samples
are generated, just like the 2D cells. In detail: (a) The first sample is
placed at random in the unit square. (b) The unit square is divided
into 4 quadrants and the second sample is placed in the diagonally
opposite quadrant of the first. (c) The square is divided into four
rows and four columns. One of the two empty quadrants is cho-
sen, and a point that is not in an occupied 1D strip is generated
in it. (d) The fourth sample is placed in the last empty quadrant,
again choosing a position that is not in one of the occupied rows
or columns. (¢) The unit square is divided into 16 sub-quadrants
and 8 rows and columns. For each of the first four sample points a
new sample point is placed in the diagonally opposite sub-quadrant
in the same quadrant without conflicting with occupied rows or
columns. (f) For each of the first four samples a new sample point
is placed in one of the two empty sub-quadrants in the same quad-
rant (again avoiding occupied 1D strips). (g) Samples are placed
in each of the last four empty sub-quadrants (while avoiding occu-
pied 1D strips). And so on. These steps are illustrated in Figure 11.
Pseudo-code in the supplemental material explains more details.

(a) (b) (©) (@ (e) ® ®

Figure 11: The first 1, 2, 3, 4, 8, 12, and 16 sample points from a
progressive multi-jittered sequence.

For sequences of length 2V the pmj samples have the same
full 2D and 1D stratification as Chiu et al.’s multi-jittered sets and
Kensler’s correlated multi-jittered sets.

An improvement of the sample distribution between powers of
two can be achieved by replacing the random choice of one of
the two empty subquadrants in step (f) with more well-balanced

choices ensuring that the selected subquadrants are at most off by 1.
Please refer to the pseudo-code in the supplemental material for de-
tails. This adds only a few percent to the sample generation time.

We can generate more than 11 million progressive multi-jittered
samples per second (using a table of pseudo-random numbers
rather than calling drand48()). For comparison, we can generate
38 million “raw”, rotated, or xor-scrambled Sobol’ samples per
second, and around 7 million Owen-scrambled Sobol” samples per
second.

6. Progressive multi-jittered (0,2) sequences

The final family of sample sequences generalizes the strata to all
base 2 elementary intervals, as shown in Figure 12.

Figure 12: 4, 8, and 16 progressive multi-jittered (0,2) samples and
their strata (base 2 elementary intervals).

We have chosen to call this family of sequences “progressive
multi-jittered (0,2)”, or shorter: pmj02. (This name is admittedly
rather redundant since any (0,2) sequence is inherently progressive
and multi-jittered.)

The algorithm for generating pmj02 sequences is very similar to
the algorithm for pmj sequences in the previous section, but once a
candidate sample has been generated we check whether it falls into
any 2D elementary interval that is already occupied by a sample. If
so, a new candidate sample is stochastically generated and tested;
we keep generating new candidates until one is found that is not in
any previously occupied 2D elementary interval. This ensures that
all power-of-two prefixes of the sequence are (0,m,2) nets and the
full sequence is a (0,2) sequence. Pseudo-code can be found in the
supplemental material.

Our pmj02 sequences have the same stratification as the Sobol’
sequence. As we will see in the following sections, they also have
the same advantageous stochastic jittering as Owen scrambling.
Our algorithm also opens up the possibility of generating samples
with a blue noise spectrum, as we’ll show in Section 10.

We can generate around 21,000 progressive multi-jittered (0,2)
samples per second using this simple brute-force trial-and-error ap-
proach. With a more optimized version that keeps track of unoccu-
pied squares within each subquadrant we can generate 39,000 sam-
ples per second. Both approaches are too slow to generate samples

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

P. Christensen, A. Kensler & C. Kilpatrick / Progressive Multi-Jittered Sample Sequences

during rendering, so we tabulate these sequences. (We believe that
further optimizations can increase the speed significantly.)

The samples generated by the algorithm described above have
the same extremely low error for smooth functions as Owen-
scrambled Sobol’ at powers of two (full octaves). However, be-
tween odd and even powers of two (where we have the arbitrary
choice of which empty sub-quadrant to choose first), the error is
higher. A useful improvement of the pmj02 samples between oc-
taves can be obtained by a simple change: choose sub-quadrants
such that the new samples are themselves (0,2) sequences. For ex-
ample, the samples 32 ... 47 and 48 ... 63 should themselves
be (0,2) sequences. This yields sequences that fully match Owen-
scrambled Sobol’s error for all sample counts.

7. Results: revisiting sampling of simple functions

Here we revisit the five simple functions from Section 3 to see how
the pj, pmj, and pmjO2 sequences compare with the best of the
tested sequences, Owen-scrambled Sobol’. We also show results
for scrambled Halton for comparison.

7.1. Discontinuous functions

Disk. A new error plot for sampling the disk function is shown
in Figure 13. All five sequences have the same convergence rate,
roughly O(N~"7%). The error curves for Owen-scrambled Sobol’
and pmj02 mostly overlap; they are both slightly better than Halton,
pj> and pmj.

Disk function: sampling error

Halton scr
Sobol owen ====---

0.1

error

0.001

100 7000
samples

Figure 13: Error for sampling of disk function. (The curves for
Owen-scrambled Sobol’ and pmj02 overlap.)

Triangle. For the triangle function, pj, pmj, and pmj02 perform
the same on average; there is no advantage in multi-jittering over
regular jittering since the discontinuity in the function lies along
the diagonal y = x. Hence the curves for Owen-scrambled Sobol’,
Pj> pmj, and pmjO2 all overlap. (Error plot omitted here.)

Step. For the step function, the pj sequence is just as bad as
Ahmed’s ART sequence (as shown in Figure 6 (bottom)), pmj
is better, and pmj02 has the same low error as Owen-scrambled
Sobol’. (Plot omitted.)

(© 2018 The Author(s)
Computer Graphics Forum (© 2018 The Eurographics Association and John Wiley & Sons Ltd.

7.2. Smooth functions

Gaussian. An updated error plot for the Gaussian function is shown
in Figure 14. The pj sequence is slightly better than Halton; both
converge at O(N ™~ !). Owen-scrambled Sobol” and pmj02 have ex-
actly the same error, including the O(N -1s) fast convergence at
powers of two. Pmj also has fast convergence, but cannot quite
compete with Owen-scrambled Sobol’ and pm;j02.

Gaussian function: sampling error

Halton scr

1x10™

Sobol owen =-=----
pj

1x102F

1x103 ¢

error

1x10*F

1x10°® 5
samples

Figure 14: Error for sampling the 2D Gaussian function. (The
curves for Owen-scrambled Sobol’ and pmj02 overlap.)

Bilinear. Results for sampling the bilinear function are very sim-
ilar to the results for the Gaussian function; hence not shown here.

8. Results: pixel sampling

In this section we test the sample sequences on pixel sampling of
various discontinuous and smooth images. All images are rendered
at resolution 400 x 400 or 400 x 300. Reference images are com-
puted with 500% = 250000 jittered samples per pixel. Each error
curve is computed as the average of 100 sequences. In these tests
we use a 1x 1 box pixel filter, but in the supplemental material we
repeat two of the tests using a Gaussian pixel filter, and find only a
slight reduction in convergence rates.

8.1. Zone plate images

The zone plate function is often used to evaluate sample distri-
butions and image sampling algorithms. The insets in Figure 15
show binary and smooth zone plate images. The curves show root-
mean-square (rms) error for 25-2500 samples per pixel. The binary
image pixels contain discontinuities at many different angles. For
the binary zone plate function, the errors shown in Figure 15 (top)
converge as O(N~%%) and O(N~"7), with rotated Sobol’ having
slightly higher error than other quasi-random sequences and pm;j02.

The error curves in Figure 15 (bottom) show that, similar to the
smooth simple functions, pmj02 and Owen-scrambled Sobol” have
much lower error than other sequences: their rms error converges
as roughly O(N -1) at powers of two. The error for Ahmed’s ART
sequence is slightly higher than for the quasi-random sequences.

Rms error is the typical measure for image comparisons, but
maximum error might be more meaningful when trying to elimi-
nate fireflies. For completeness, we have repeated these tests using
maximum error in the supplemental material.

rms error

11073 ¢

110

rms error

1x10°

1x10°®

P. Christensen, A. Kensler & C. Kilpatrick / Progressive Multi-Jittered Sample Sequences

Binary zoneplate: pixel sampling rms error

random

best cand

Perrier rot |
Ahmed

Halton rot

Halton scr «:ee:s:

Sobol rot

Sobol xor

100 ,
samples per pixel
Smooth zoneplate: pixel sampling rms error

random
best cand
Perrier rot
Ahmed s 4
Halton rot
Haltor
Sobol rot

Sobol xor
Sobol tWere ;-

100)
samples per pixel

Checkered teapots: pixel sampling rms error

random

best cand
Perrier rot
Ahmed s
Halton rot 4
Halton scr =:=:==+
Sobol rot
obol xor

0010

rms error

0.001 -

700 _ 000

samples per pixel
Figure 17: rms error for pixel sampling of checkered teapots im-
age.

8.3. Textured teapots

In real production renderers, texture lookups at ray hit points are al-
ways filtered. This turns discrete texel colors into continuous func-
tions. Figure 18 shows a version of the teapot scene with a grayscale
texture map with a (truncated) Gaussian texture filter. The image
is mostly smooth, but with discontinuities along silhouettes of the
teapots.

Figure 15: rms error for pixel sampling of binary and smooth zone
plate images. (25-2500 samples per pixel.)

8.2. Checkered teapots

Figure 16 shows two checkered teapots on a checkered ground
plane. This image has many pixels with discontinuities at various
angles, similar to the binary zone plate image. Figure 17 shows rms
error for the different progressive sequences. Similarly to what we
found for the binary zone plate, most sequences have nearly the
same error, except rotated Sobol” which has higher error.

Figure 16: Checkered teapots on a checkered ground plane.

Figure 18: Textured teapots on a textured ground plane. The yellow
outline marks a 70x 70 pixel region containing sharp object edges;
the green outline marks a region with only smooth texture variation.

Figure 19 (top) shows rms error for pixels in a region with
sharp discontinuities due to object edges. The error is dominated
by the pixels with discontinuities. All sequences have the expected
O(N~%3) and O(N~°7) convergence rates. Figure 19 (bottom)
shows error for pixels on the textured ground plane. The pixels in
this region are all smooth and hence have very fast convergence.
Most sequences converge at O(N_l), while pmj02 and Owen-
scrambled Sobol” converge faster at roughly O(N -1). (A triangle
texture filter makes the image function in each pixel less smooth
and gives a O(N _1‘25) convergence rate. With a 1x1 box texture
filter, the texel edges become pixel discontinuities, and the conver-
gence rate drops to O(N 7))

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

P. Christensen, A. Kensler & C. Kilpatrick / Progressive Multi-Jittered Sample Sequences

Textured teapot: pixel sampling rms error

random
best cand
0.01 Perrier rot i
Ahmed
Halton rot
Halton scr =:=:=:=:
o) Sobol rot
<]
o
L I e P o B
€
=0.001 ¢
700)
samples per pixel
Textured groundplane: pixel sampling rms error
random
bestcand ===-=--
1 X1 073 Perrier rot B
, Halton scr =+=+=¥:
s NN W, e, Sobol rot
g k. 074 Sobol owen Ty
(0]
w -------
E
1105}
1x10°8 oo

samples per pixel

Figure 19: rms error for pixel sampling of textured teapots and
ground plane. Top: sharp edge region. Bottom: smooth texture re-
gion.

9. Results: square area light source sampling

In this section we use the sequences for area light sampling. Fig-
ure 20 shows the same two teapots and ground plane, but now illu-
minated by a square area light source creating soft shadows and
interesting penumbra regions. The light source is sampled with
shadow rays shot from the surface point at the center of each pixel.

_|

Figure 20: Teapots on a ground plane illuminated by a square
area light source. The yellow outline marks a penumbra region, the
green outline marks a fully illuminated region. (No pixel sampling.)

(© 2018 The Author(s)
Computer Graphics Forum (© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Surface points in the penumbra region (marked with a yel-
low outline and also shown in Figure 2) are partially in shadow
and partially lit with smoothly varying intensity. (Surface points
completely in shadow have black illumination, and all sample se-
quences get zero error there.) Figure 21 (top) shows the famil-
iar O(N~%%) and O(N~°7%) convergence rates. Surface points
in the fully illuminated region, marked with a green outline, re-
ceive smooth illumination, only modulated by distance and cosine
terms. Figure 21 (bottom) shows that the convergence is roughly
O(N~'3) for pmj02 and Owen-scrambled Sobol.

Square light: penumbra sampling rms error

random

best cand -------
Perrier rot
Ahmed -
Halton rot
Halton scr ===
Sobol rot

rms error

0.001 +

100 .
samples per pixel

Square light: full illum sampling rms error

random
bestcand -------
Perrier rot

1102}

1x10®

rms error

1x107*

-5 ‘
1x10 100 i

samples per pixel
Figure 21: rms error for 25-2500 samples per pixel of a square
light source. Top: penumbra region. Bottom: fully illuminated re-
gion.

‘We repeat these experiments with a rectangular area light source
in the supplemental material, and investigate sampling strategies
for disk light sources in a separate technical report [Chr18]. The
results are mostly the same as for the square light, but disk lights
require a special sampling strategy to obtain low error and fast con-
vergence — roughly O(N ™ : ‘4) — in smooth, fully illuminated areas.

10. Variations and extensions

There are several useful variations of progressive multi-jittered
sample sequences.

10.1. Progressive multi-jittered samples with blue noise
properties

Up until this point, we have only shown that our best stochastic
sample sequences have the same low error as the best combina-

P. Christensen, A. Kensler & C. Kilpatrick / Progressive Multi-Jittered Sample Sequences

tion of quasi-random sequence and randomization. In this section
we add another desirable property (which does not exist for the
standard quasi-random sequences): larger distance between nearest
neighbor points, which gives a blue noise spectrum. The only dif-
ference from the algorithm for simple pmj is that after we select a
2D cell to place a sample in, we generate a few candidate points
(in empty 1D strips) within that 2D cell and pick the one with the
largest distance to the nearest previous points. The pseudo-code in
the supplemental material shows the details.

We call this version of the algorithm progressive multi-jittering
with blue noise or pmjbn. Figure 22 shows 500 pmj samples without
and with the blue noise property. The left top row of Figure 1 shows
4,16, 64, 256, and 1024 samples from a pmjbn sequence.

Figure 22: First 500 samples from a standard pmj sequence and
from a pmj sequence with blue noise property (improved nearest-
neighbor distances).

Table 1 shows the average and minimum 2D nearest-neighbor
distance between 25 and 500 sample points for various progres-
sive sequences. Distances are toroidal. Bigger nearest-neighbor dis-
tances are better as they indicate less clumping. As can be seen by
comparing the entries for 500 pmj and pmjbn samples, the addi-
tion of best candidates within each sample cell improves the 2D
average distance from 0.0287 to 0.0336, and 2D minimum distance
from 0.0055 to 0.0105. Pjbn and pmjbn samples have significantly
larger average distances than any Halton or Sobol’ sequence, in-
dicating a more uniform distribution. Only the best-candidates se-
quence has larger distances, but that is because its sample points are
constructed to maximize this measure. (As mentioned earlier, best
candidates are too uneven overall, and converge slowly.) Note that
using the best-candidate algorithm for pj and pmj gives much im-
proved nearest-neighbor distances, but doing the same for pmj02
does not improve it much. It seems that the strict stratification of
pmj02 samples does not leave much “wiggle room” to increase the
nearest-neighbor distances — at least with our current algorithm.
See Perrier et al. [PCX™* 18] for a different trade-off between strati-
fication and blue noise.

Figure 23 shows Fourier spectra of various sample sequences,
including the blue-noise versions of our pj, pmj, and pmj02 se-
quences.

We have repeated our tests in Sections 7 through 9 with pjbn and
pmjbn sequences. The results are mixed; for example, for the binary
zoneplate the rms and maximum error using pmjbn is a few percent
lower than using pmj, but for the smooth zoneplate it is the other
way around. Anyway, we speculate that pmjbn might be useful in
situations where its spectral properties (blue noise) are desirable for
a more visually pleasing pattern.

Table 1: Average and minimum nearest-neighbor distances be-
tween 25 and 500 sample points from various sample sequences.
(Computed as average of 10000 sequences, except the Perrier and
canonical Halton and Sobol’ sequences marked with ‘*’.)

25 samples 500 samples
sequence avgdist mindist | avgdist min dist
random 0.100 0.028 0.0224 0.0014
best cand 0.169 0.133 0.0380 0.0289
Perrier * 0.122 0.060 0.0271 0.0088
Ahmed 0.143 0.093 0.0340 0.0179
Halton * 0.141 0.115 0.0278 0.0111
Halton scr 0.129 0.068 0.0279 0.0082
Sobol’ * 0.119 0.088 0.0283 0.0055
Sobol’ xor 0.119 0.066 0.0291 0.0041
Sobol” owen 0.128 0.065 0.0290 0.0067
pj 0.126 0.059 0.0287 0.0051
pjbn 0.156 0.120 0.0354 0.0217
pmj 0.128 0.064 0.0287 0.0055
pmjbn 0.153 0.103 0.0336 0.0105
pm;j02 0.128 0.065 0.0290 0.0067
pmj02bn 0.139 0.082 0.0296 0.0077

We have not yet been able to develop a version of pmj02 that
gives significantly higher nearest-neighbor distances at high sample
counts. Simply choosing the best out of some candidates that fulfill
the (0,2) property only improves nearest-neighbor distances by a
small amount. We leave this as future work. As it stands, one will
have to choose between the improved spectral properties of pmjbn
or the better convergence of pmj02 for smooth functions.

10.2. Interleaved multi-class samples

Inspired by multi-class blue noise samples [Weil0], we wondered
whether our sample sequences can be divided into multiple classes
on the fly. It turns out this is very simple to do.

10.2.1. Two classes

Pj, pmj, and pmj02 samples can be divided on the fly into two
classes during sample generation. When we generate 3 new sam-
ples based on a previous sample (as described in Sections 4-6), the
first new sample (the one in the diagonally opposite subquadrant)
is assigned the same class as the previous sample; the other two
samples are assigned the other class. This gives the following or-
der of sample classes: AABBAABBBBAABBAA ... for all pj, pmj,
and pmj02 sequences. The left bottom row of Figure 1 shows a
pmj02 sequence where the samples are divided into two interleaved
classes this way. This classification is trivial to do on the fly, and
does not increase the complexity of sample generation.

Figure 24 shows error plots for sampling the disk and Gaussian
functions with the original pmj02 sequences and their two sample
classes. Note that the samples in the two classes have the same
convergence rate as the full pmj02 sequences. They are in fact (1,2)
sequences. (This is easy to check: at each octave there are exactly
two samples in each elementary interval.)

The two interleaved sample classes are useful for calculating two
independent estimates of a result while sampling with a full pmj02

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

P. Christensen, A. Kensler & C. Kilpatrick / Progressive Multi-Jittered Sample Sequences

random

Halton Halton scr

pjbn

best cand

Ahmed Perrier
Sobol xor Sobol’ owen

pmjbn pmj02 pm;j02bn

Figure 23: Fourier spectra of sample sequences.

04 Disk function: multiclass sampling error

pmj02 ——
Pmj02 class A ======
pmj02 class B «=++x=+
NOT5

error

0.001 ¢

0 7000
samples

Gaussian function: multiclass sampling error

1x10™

pmj02 ——

PMj02 class A =======

pmj02 class B wxexer
N

X102 Nte

110}

error

13104}

-5 ‘ J
1x10 100 1000
samples
Figure 24: Error for sampling the disk and Gaussian functions with
pmj02 sequences and their two classes.

sequence. The difference between the two estimates is an indicator
of sampling error and can be used to drive adaptive sampling by
detecting pixels with high error and focusing the sampling there.

(© 2018 The Author(s)
Computer Graphics Forum (© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Note that this interleaved generation is very different from the
standard multi-classes of Halton, Sobol’, and Ahmed ART se-
quences: if one knows a priori the total number of samples to be
taken, the samples can be divided into the first and second half, with
each half being well distributed. Our sequences have this property
as well, but it is obviously not suitable for adaptive sampling.

It should be mentioned that 2D Halton and Sobol’ sequences
can also be divided into interleaved classes; this can be done by
generating 3D samples and using the third dimension to partition
the classes.

10.2.2. Four classes

Alternatively, we can divide the samples into four classes on the
fly. Denote the classes as A, B,C,D. When we generate 3 new sam-
ples based on a previous sample, the class of the first new sample
(the one in the diagonally opposite subquadrant) is assigned with
the mapping A, B,C,D — B,A,D,C from the previous sample, the
other two samples are assigned class with mapping A,B,C,D —
C,D,A,Band A,B,C,D — D,C,B,A, respectively. These rules give
the following order: ABCDBADCCDABDCBA ... Figure 25 shows
a pmj02 sequence where the samples are divided into four classes
this way. Each class is a pj sequence.

Figure 25: 4, 16, 64, and 256 samples from a pmj02 sequence di-
vided into four classes (denoted by blue, red, green, and orange
dots).

P. Christensen, A. Kensler & C. Kilpatrick / Progressive Multi-Jittered Sample Sequences

11. Discussion

As demonstrated in Sections 7 through 9, sampling with progres-
sive multi-jittered (0,2) sequences matches the error of the best
quasi-random sequences we know of, including extremely fast con-
vergence for smooth pixels and unshadowed area light illumination.
The quasi-random sequences have the advantage that any sample
can be generated without first having to generate the previous sam-
ples in the sequence, and their implementations can be written in
just a handful of lines of C code. On the other hand, our pmj se-
quences open up new avenues for stochastic generation of high-
quality samples, for example targeting blue noise spectra. Table 2
summarizes which sequences are jittered, multi-jittered, or (0,2) se-
quences, and/or have blue noise spectra.

Table 2: Table summarizing which progressive sample sequences
have jitter, multi-jitter, (0,2), and blue-noise properties.

sequence | jittered multi-jittered (0,2) blue noise
random - - - -
best cand
Perrier
Ahmed
Halton
Sobol’
pj
pjbn
pmj
pmjbn
pmj02
pmj02bn

+
+ - +
+

+
+

o+ o+ o+
.
.
+

+ o+ o+ o+
.
+

The pj, pmj, and pmjO2 sample sequences are generated for
square domains. In the supplemental material we show that they
are also suitable for warped sample domains such as Gaussian pixel
filters and rectangular light sources.

Although the pmj02 sequences are theoretically infinite, in the
RenderMan renderer, we truncate them at 4096 samples in pre-
generated tables (and start over in a different table in the rare case
that more samples are required per pixel per dimension). We have
a few hundred different tables, and each pixel index and ray depth
is hashed to a table number.

It is fairly easy to generalize the pmj sample generation algo-
rithms to three dimensions. For four dimensions or higher, we com-
bine 2D pmj02 sequences by locally shuffling the samples in pairs
of dimensions. Typically such shuffling is done just to decorrelate
the dimensions [Co086], but since we use tables we can do better:
shuffle such that the samples are stratified in 4D (while maintaining
the full (0,2) property in each pair of dimensions). This shuffling is
implemented as a simple “greedy” algorithm: for all pairs of 2D
points within segments of a (truncated) sequence, swap the points
if swapping them reduces the number of 4D strata with more than
one sample. This results in a sequence with full 4D stratification
(for example 4x4x2x2 strata for the first 64 samples) and takes
only a few minutes for two 2D sequences with 4096 samples.

Figure 26 shows a close-up of a scene where samples are be-
ing used for pixel positions, brdf reflection directions for multiple
bounces of diffuse reflection, and sampling of an environment light

source. The left image was rendered with random samples; the right
image was rendered with pmj02 samples and is less noisy.

Figure 26: Diffuse scene illuminated by an environment light, ren-
dered with 1024 samples per pixel. Left: noisy image rendered with
random samples. Right: cleaner image rendered with pmj02 sam-
ples. Dragon model courtesy of the Stanford 3D Scanning Reposi-
tory. Scene by Philippe Leprince.

12. Conclusion and future work

The contributions of this paper are two-fold: a fresh assessment of
existing progressive sample sequences, and new stochastic alter-
natives to randomized quasi-random sample sequences. Our new
sample sequences yield sampling errors that are on par with the
best known sequence: Owen-scrambled Sobol’ (0,2). But with our
stochastic generation, we can also target blue noise and other prop-
erties.

We pointed out faster convergence in smooth pixels and unshad-
owed area lights; this can be utilized in adaptive sampling, particu-
larly when combined with multi-class samples for error estimation.

Possible future work consists of further improvement of the pmj
and pmj02 samples, and optimization of the sample generation
time. Higher quality could possibly be obtained by better merging
the stratification of pmj02 with the minimum distance property of
blue noise (if possible). Faster sample generation could perhaps be
done with only integer arithmetic (although our experiments with
this have failed so far); certainly, multiple tables could be generated
independently in parallel.

It would also be interesting to test our pmj and pmj02 se-
quences with the stratum shearing approach suggested by Singh
and Jarosz [SJ17].

In addition to the blue-noise and interleaved multi-class sam-
ples generated within our general pmj framework, we also envision
such variations as targeting other spectral profiles (for example pink
or purple noise), running simulated annealing for each new round
of sample points (while restricting each sample to stay within its
strata), or backtracking placement of samples when the remaining
empty strata forces points to be too close.

It is our hope that the pmj framework will inspire future develop-
ment of progressive sample sequences — hopefully sequences that
are even more optimal for sampling in general and computer graph-
ics in particular.

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

P. Christensen, A. Kensler & C. Kilpatrick / Progressive Multi-Jittered Sample Sequences

Acknowledgements

Many thanks to our colleagues in Pixar’s RenderMan team for
all their help in developing and testing pmj sampling, especially
the “Noise task force” including Cliff Ramshaw, Jonathan Shade,
Philippe Leprince, Marc Bannister, and Max Liani. Very special
thanks to Brent Burley at Disney for many sampling discussions
and suggestions, and for sharing his efficient code for progressive
Owen scrambling. Max Liani independently constructed progres-
sive multi-jittered sequences while working at Animal Logic. Many
thanks to Matt Pharr and Alexander Keller at Nvidia, Christophe
Hery and Ryusuke Villemin at Pixar’s lighting tools group, and
Emmanuel Turquin and André Mazzone at ILM for nuanced dis-
cussions about sample sequences and sampling in general. Also
many thanks to Victor Ostromoukhov for explaining his tiling-
based sample sets and for discussions about discrepancy and tests,
and feed-back on drafts of this paper. And finally thanks to Per
Skafte Hansen for early discussions about math and random num-
bers in general.

References

[ANHD17] AHMED A., NIESE T., HUANG H., DEUSSEN O.: An adap-
tive point sampler on a regular lattice. ACM Transactions on Graphics
(Proc. SIGGRAPH) 36, 4 (2017). 2,3

[Chr18] CHRISTENSEN P.: Progressive sampling strategies for disk light
sources. Tech. Rep. 18-02, Pixar Animation Studios, 2018. 9

[Coo86] CoOOK R.: Stochastic sampling in computer graphics. ACM
Transactions on Graphics 5, 1 (1986), 51-72. 2, 12
[CP76] CRANLEY R., PATTERSON T.: Randomization of number the-

oretic methods for multiple integration. SIAM Journal on Numerical
Analysis 13, 6 (1976), 904-914. 3

[CSW94] CHIU K., SHIRLEY P., WANG C.: Multi-jittered sampling. In
Graphics Gems IV. Academic Press, 1994, pp. 370-374. 2, 5

[DEM96] DOBKIN D., EPPSTEIN D., MITCHELL D.: Computing the
discrepancy with applications to supersampling patterns. ACM Transac-
tions on Graphics 15, 4 (1996), 354-376. 2

[DWS85] DipPE M., WOLD E.: Antialiasing through stochastic sampling.
Computer Graphics (Proc. SIGGRAPH) 19, 3 (1985), 69-78. 5

[Griil2] GRUNSCHLOSS L.:
http://gruenschloss.org. 3

QMC sampling source code, 2012.

[Hal64] HALTON J.: Algorithm 247: Radical-inverse quasi-random point
sequence. Communications of the ACM 7, 12 (1964), 701-702. 2, 3

[Ham60] HAMMERSLEY J.: Monte Carlo methods for solving multivari-
able problems. Annals of the New York Academy of Sciences 86 (1960),
844-874. 2

[Kaj86] KAIJIYA J.: The rendering equation. Computer Graphics (Proc.
SIGGRAPH) 20, 4 (1986), 143-150. 5

[Kell2] KELLER A.: Quasi-Monte Carlo image synthesis in a nutshell.
In Proc. Monte Carlo and Quasi-Monte Carlo Methods (2012), pp. 213—
249.3

[Kenl13] KENSLER A.: Correlated multi-jittered sampling. Tech. Rep.
13-01, Pixar Animation Studios, 2013. 2, 5

[KKO02] KoLLIG T., KELLER A.: Efficient multidimensional sampling.
Computer Graphics Forum (Proc. Eurographics) 21, 3 (2002), 557-563.
3

[Knu98] KNUTH D.: The Art of Computer Programming, 3rd ed., vol. 2.
Addison Wesley, 1998. 3

[LK11] LAINE S., KARRAS T.: Stratified sampling for stochastic trans-
parency. Computer Graphics Forum (Proc. Eurographics Symposium on
Rendering) 30,4 (2011). 3

(© 2018 The Author(s)
Computer Graphics Forum (© 2018 The Eurographics Association and John Wiley & Sons Ltd.

[LPO1] LARCHER G., PILLICHSHAMMER F.: Walsh series analysis of
the L,-discrepancy of symmetrisized point sets. Monatshefte fiir Mathe-
matik 132 (April 2001), 1-18. 2

[MF92] McCooL M., FIUME E.: Hierarchical Poisson disk sampling
distributions. In Proc. Graphics Interface (1992), pp. 94-105. 3

[Mit91] MITCHELL D.: Spectrally optimal sampling for distribution ray
tracing. Computer Graphics (Proc. SSIGGRAPH) 25, 4 (1991), 157-164.
2,3

[Mit92] MITCHELL D.: Ray tracing and irregularities in distribution.
Proc. Eurographics Workshop on Rendering (1992), 61-69. 2

[Mit96] MITCHELL D.: Consequences of stratified sampling in graphics.
Computer Graphics (Proc. SSGGRAPH) 30, 4 (1996), 277-280. 2

[MN98] MATSUMOTO M., NISHIMURA T.: Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number gener-
ator. ACM Transactions on Modeling and Computer Simulation 8, 1
(1998), 3-30. 3

[ODJO4] OSTROMOUKHOV V., DONOHUE C., JODOIN P.-M.: Fast hi-
erarchical importance sampling with blue noise properties. ACM Trans-
actions on Graphics (Proc. SIGGRAPH) 23, 3 (2004), 488-495. 2

[Owe97] OWEN A.: Monte Carlo variance of scrambled net quadrature.
SIAM Journal on Numerical Analysis 34, 5 (1997), 1884-1910. 3, 4

[Owe03] OWEN A.: Quasi-Monte Carlo sampling. In SSGGRAPH Monte
Carlo Ray Tracing Course Notes. ACM, 2003. 3, 4

[PCX*18] PERRIER H., COEURJOLLY D., XIE F., PHARR M., HANRA-
HAN P., OSTROMOUKHOV V.: Sequences with low-discrepancy blue-
noise 2-D projections. Computer Graphics Forum (Proc. Eurographics)
37,2(2018), 339-353. 2, 3, 10

[PTVF92] PRESS W., TEUKOLSKY S., VETTERLING W., FLANNERY
B.: Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.
Cambridge University Press, 1992. 3

[RAMNI12] RAMAMOORTHI R., ANDERSON J., MEYER M.,
NOWROUZEZAHRAI D.: A theory of Monte Carlo visibility sam-
pling. ACM Transactions on Graphics 31,5 (2012). 2

[RRSG15] REINERT B., RITSCHEL T., SEIDEL H.-P., GEORGIEV I.:
Projective blue-noise sampling. Computer Graphics Forum 35, 1 (2015),
285-295. 3

[Shi91] SHIRLEY P.: Discrepancy as a quality measure for sample distri-
butions. Proc. Eurographics (1991), 183-193. 2,3

[SJ17] SINGH G., JAROSZ W.: Convergence analysis for anisotropic
Monte Carlo sampling. ACM Transactions on Graphics (Proc. SIG-
GRAPH) 36,4 (2017). 12

[SK12] SuBR K., KAuTZ J.: Fourier analysis of stochastic sampling
strategies for assessing bias and variance in integration. ACM Transac-
tions on Graphics (Proc. SSIGGRAPH) 31,4 (2012). 2

[SKD12] SCHRETTER C., KOBBELT L., DEHAYE P.-O.: Golden ratio
sequences for low-discrepancy sampling. Journal of Graphics Tools 16,
2 (2012), 95-104. 2

[Sob67] SoBoL’ I.: On the distribution of points in a cube and the ap-
proximate evaluation of integrals. USSR Computational Mathematics
and Mathematical Physics 7,4 (1967), 86-112. 2,3

[SWZ96] SHIRLEY P., WANG C., ZIMMERMAN A.: Monte Carlo meth-
ods for direct lighting calculations. ACM Transactions on Graphics 15,
1(1996), 1-36. 4,6

[Weil0] WEI L.-Y.: Multi-class blue noise sampling. ACM Transactions
on Graphics (Proc. SSGGRAPH) 29, 4 (2010). 10

[WPC*14] WACHTEL F., PILLEBOUE A., COEURJOLLY D., BREEDEN
K., SINGH G., CATHELIN G., DE GOES F., DESBRUN M., OSTRO-
MOUKHOV V.: Fast tile-based adaptive sampling with user-specified
Fourier spectra. ACM Transactions on Graphics (Proc. SSIGGRAPH) 33,
3(2014). 2

[Zar68] ZAREMBA S.: The mathematical basis of Monte Carlo and quasi-
Monte Carlo methods. SIAM Review 10, 3 (1968), 303-314. 2

