
Eurographics Symposium on Rendering 2018
T. Hachisuka and W. Jakob
(Guest Editors)

Volume 37 (2018), Number 4

Progressive Multi-Jittered Sample Sequences:
Supplemental Materials

Per Christensen Andrew Kensler Charlie Kilpatrick

Pixar Animation Studios

Abstract
Supplemental material for the paper “Progressive multi-jittered sample sequences”: Pseudocode for sample generation. Test
of zone plate images with maximum error metric. Test of the sample sequences for pixel sampling with a Gaussian pixel filter
and for sampling rectangular area lights. Comparing sample sequences with sample sets. A discussion of discrepancy.

1. Pseudo-code

In this section we list pseudocode for generating progressive
jittered, progressive multi-jittered, and progressive multi-jittered
(0,2) sample points on the unit square.

1.1. Progressive jittered

Pseudocode for generating a sequence of M progressive jittered
sample points. Main function:

procedure GENERATEPJ(M)
// Generate first sample point at random position
samples[0]← (rnd(), rnd())
N← 1
while N < M do

// Generate next 3N sample points
extendSequence(N)
N← 4*N

end while
end procedure

Generate next 3N sample points (N ... 4N) :
procedure EXTENDSEQUENCE(N)

n←
√

N
// Loop over N old samples and generate 3 new samples for
// each old sample
for s← 0 . . . N-1 do

// Determine sub-quadrant of existing sample point
oldpt← samples[s]
i← bn * oldpt.xc
j← bn * oldpt.yc
xhalf← b2.0 * (n * oldpt.x - i)c
yhalf← b2.0 * (n * oldpt.y - j)c
// First select the diagonally opposite sub-quadrant
xhalf← 1-xhalf
yhalf← 1-yhalf
samples[N+s]← generateSamplePoint(i, j, xhalf, yhalf, n)
// Then randomly select one of the two remaining sub-quadrants

if rnd() > 0.5 then
xhalf← 1-xhalf

else
yhalf← 1-yhalf

end if
samples[2*N+s]← generateSamplePoint(i, j, xhalf, yhalf, n)
// And finally select the last sub-quadrant
xhalf← 1-xhalf
yhalf← 1-yhalf
samples[3*N+s]← generateSamplePoint(i, j, xhalf, yhalf, n)

end for
end procedure

Generate a sample point:
function GENERATESAMPLEPOINT(i, j, xhalf, yhalf, n)

pt.x← (i + 0.5 * (xhalf + rnd())) / n
pt.y← (j + 0.5 * (yhalf + rnd())) / n
return pt

end function

In this pseudocode, M, N, n, i, j, and s are (unsigned) integers,
xhalf and yhalf are 0 or 1, and all other variables are (double-
precision) floating-point numbers. rnd() is a function that returns
pseudo-random numbers between 0 and 1 (for example drand48()
or a table lookup), and bxc is the floor function (simple float-to-int
conversion in C-like languages).

1.2. Progressive multi-jittered (with blue noise)

Pseudocode for generating a sequence of M progressive multi-
jittered sample points (with blue noise). We have to generate
points in consecutive order for best candidates, so split the extend-
Sequence() function into two. Main function:

procedure GENERATEPMJ(M)
// Generate first sample point at random position
samples[0]← (rnd(), rnd())
N← 1
while N < M do

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

P. Christensen, A. Kensler & C. Kilpatrick / Progressive Multi-Jittered Sample Sequences: Supplemental Materials

// Generate next 3N sample points
extendSequenceEven(N, samples, numSamples) // N even pow2
extendSequenceOdd(2*N, samples, numSamples)//2N odd pow2
N← 4*N

end while
end procedure

Generate next N sample points (for N being an even power of two):
procedure EXTENDSEQUENCEEVEN(N)

n←
√

N
// Mark already occupied 1D strata so we can avoid them
markOccupiedStrata(N)
// Loop over N old samples and generate 1 new sample for each
for s← 0 . . . N-1 do

oldpt← samples[s]
i← bn * oldpt.xc
j← bn * oldpt.yc
xhalf← b2.0 * (n * oldpt.x - i)c
yhalf← b2.0 * (n * oldpt.y - j)c
// Select the diagonally opposite subquadrant
xhalf← 1-xhalf
yhalf← 1-yhalf
// Generate a sample point
generateSamplePoint(i, j, xhalf, yhalf, n, N)

end for
end procedure

Generate next N sample points (for N being an odd power of two):
procedure EXTENDSEQUENCEODD(N)

n←
√

N/2
// Mark already occupied 1D strata so we can avoid them
markOccupiedStrata(N)
// (Optionally:
// 1) Classify occupied sub-pixels: odd or even diagonal
// 2) Pre-select well-balanced subquadrants here for better
// sample distribution between powers of two samples)
// Loop over N/2 old samples and generate 2 new samples for each
// – one at a time to keep the order consecutive (for "greedy"
// best candidates)
// Select one of the two remaining subquadrants
for s← 0 . . . N/2-1 do

oldpt← samples[s]
i← bn * oldpt.xc
j← bn * oldpt.yc
xhalf← b2.0 * (n * oldpt.x - i)c
yhalf← b2.0 * (n * oldpt.y - j)c
// Randomly select one of the two remaining subquadrants
// (Or optionally use the well-balanced subquads chosen above)
if rnd() > 0.5 then

xhalf← 1-xhalf
else

yhalf← 1-yhalf
end if
xhalves[s]← xhalf
yhalves[s]← yhalf
// Generate a sample point
generateSamplePoint(i, j, xhalf, yhalf, n, N)

end for
// And finally fill in the last subquadrants
for s← 0 . . . N/2-1 do

oldpt← samples[s]
i← bn * oldpt.xc
j← bn * oldpt.yc

xhalf← 1-xhalves[s]
yhalf← 1-yhalves[s]
// Generate a sample point
generateSamplePoint(i, j, xhalf, yhalf, n, N)

end for
end procedure

Mark all occupied 1D strata:
procedure MARKOCCUPIEDSTRATA(N)

NN← 2*N
occupied1Dx[0 ... NN-1]← false // init array
occupied1Dy[0 ... NN-1]← false // init array
for s← 0 . . . N-1 do

xstratum← bNN * samples[s].xc
ystratum← bNN * samples[s].yc
occupied1Dx[xstratum]← true
occupied1Dy[ystratum]← true

end for
end procedure

Generate a sample point by choosing best of 10 candidate points:
procedure GENERATESAMPLEPOINT(i, j, xhalf, yhalf, n, N)

NN← 2*N
bestDist← 0.0
numCand← 10 // number of candidate points
// Generate candidate points and pick the best
for t← 1 . . . numCand do

// Generate candidate sample x coord
repeat

candpt.x← (i + 0.5 * (xhalf + rnd())) / n
xstratum← bNN * candpt.xc

until not occupied1Dx[xstratum]
// Generate candidate sample y coord
repeat

candpt.y← (j + 0.5 * (yhalf + rnd())) / n
ystratum← bNN * candpt.yc

until not occupied1Dy[ystratum]
// Evaluate distance between candidate point and existing samples
d← minDist(candpt)
// Keep candidate point if it has higher dist than best so far
if d > bestDist then

bestDist← d; pt← candpt
end if

end for
// Mark 1D strata as occupied
xstratum← bNN * pt.xc
ystratum← bNN * pt.yc
occupied1Dx[xstratum]← true
occupied1Dy[ystratum]← true
// Assign new sample point
samples[numSamples]← pt
numSamples← numSamples+1

end procedure

Here, occupied1Dx[] and occupied1Dy[] are arrays of Booleans,
while xhalves[] and yhalves[] are arrays of 0 or 1 values. The func-
tion minDist() computes the distance to the nearest existing point
– please refer to [MF92,DH06] for efficient progressive algorithms
to calculate this. Setting numCand to 1 and skipping the call to
minDist() will generate pmj samples without blue noise.

The optional procedure to classify already occupied coarse sub-
quads as even or odd diagonals, ie. ‘/’ or ‘\’:

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

P. Christensen, A. Kensler & C. Kilpatrick / Progressive Multi-Jittered Sample Sequences: Supplemental Materials

procedure CLASSIFYSUBQUADS(n, N)
nn = 2*n
for s← 0 . . . N/2-1 do

xstratum← bnn * samples[s].xc
ystratum← bnn * samples[s].yc
evenx← xstratum mod 2
eveny← ystratum mod 2
evendiags[ystratum/2][xstratum/2]← (evenx = eveny)

end for
end procedure

Here evenx and eveny are Booleans, and evendiags[][] is a two-
dimensional array of Booleans.

As mentioned in the main paper, the sample distribution between
powers of two can be improved by selecting one of the two remain-
ing subquadrants in a more balanced manner; the balanced choices
can be done in ox-plowing, a.k.a. boustrophedonic, order. Here we
use a mix of pseudocode and C notation for compactness:

function SELECTSUBQUADRANTS(n)
choiceBalanceX[0 . . . n-1]← 0 // array init
choiceBalanceY[0 . . . n-1]← 0 // array init
up← false
// Visit quadrants in up/down "ox-plowing" (boustrophedonic) order
for i← 0 . . . n-1 do

up← not up
for jj← 0 . . . n-1 do

j← up ? jj : n-jj-1
last← (jj = n-abs(choiceBalanceX[i])) and n > 1
evendiag← evendiags[j][i]
// If last entry in a column: enforce x balance
if choiceBalanceY[j] 6= 0 and not last then

neg← choiceBalanceY[j] < 0 // more y lows than highs
// Do opposite y choice than previous column
subquadchoicesY[j][i]← neg ? 1 : 0
subquadchoicesX[j][i]]← evendiag xor neg ? 1 : 0
choiceBalanceY[j] += neg ? 1 : -1
choiceBalanceX[i] += evendiag xor neg ? 1 : -1

else if choiceBalanceX[i] 6= 0 then
neg← choiceBalanceX[i] < 0 // more x lows than highs
subquadchoicesX[j][i]← neg ? 1 : 0
subquadchoicesY[j][i]← evendiag xor neg ? 1 : 0
choiceBalanceX[i] += neg ? 1 : -1
choiceBalanceY[j] += evendiag xor neg ? 1 : -1

else // even balance in both x and y
// Randomly select one of the two subquadrants
xhalf← (rnd() > 0.5)
yhalf← evendiag ? 1 - xhalf : xhalf
subquadchoicesX[j][i]← xhalf
subquadchoicesY[j][i]← yhalf
choiceBalanceX[i] += xhalf ? 1 : -1
choiceBalanceY[j] += yhalf ? 1 : -1

end if
end for

end for
if n = 1 then

return true // fine even though not balanced
end if
for i← 0 . . . n-1 do

if choiceBalanceY[i] 6= 0 then
return false

end if
end for

return true // all is balanced
end function

The results are two-dimensional integer arrays subquadchoicesX[]
and subquadchoicesY[]. The function returns true if it succeeded in
finding fully balanced choices. (If not, one can try again.)

1.3. Progressive multi-jittered (0,2)

Pseudocode for generating a sequence of progressive multi-jittered
(0,2) sample points. Mostly the same as for pmj, but the mark-
OccupiedStrata() procedure now works on strata of all rectangular
shapes (elementary intervals) :

procedure MARKOCCUPIEDSTRATA(N)
NN← 2*N
// Init occupiedStrata 2D array
occupiedStrata[0 ... log2(NN)][0 ... NN-1]← false
// Loop over samples and mark occupied strata
for s← 0 . . . N-1 do

markOccupiedStrata1(samples[s], NN)
end for

end procedure

Procedure that marks all strata that point pt is in as occupied:
procedure MARKOCCUPIEDSTRATA1(pt, NN)

shape← 0; xdivs← NN; ydivs← 1
// Loop over strata shapes and mark occupied strata
repeat

xstratum← bxdivs * pt.xc
ystratum← bydivs * pt.yc
occupiedStrata[shape][ystratum*xdivs+xstratum]← true
shape← shape+1; xdivs← xdivs/2; ydivs← ydivs*2

until xdivs = 0
end procedure

The generateSamplePoint() procedure (without best candidates)
now rejects samples that are not stratified in all elementary inter-
vals. This results in a (0,2) sequence.

procedure GENERATESAMPLEPOINT(i, j, xhalf, yhalf, n, N)
NN← 2*N
// Generate x and y until sample is accepted as a (0,2) sample
repeat

pt.x← (i + 0.5 * (xhalf + rnd())) / n
pt.y← (j + 0.5 * (yhalf + rnd())) / n

until not isOccupied(pt, NN)
// Mark strata that this new sample occupy
markOccupiedStrata1(pt, NN)
// Assign new sample point
samples[numSamples]← pt
numSamples← numSamples+1

end procedure

Function to check strata of all shapes (elementary intervals) to see
if point pt is in an occupied stratum:

function ISOCCUPIED(pt, NN)
shape← 0; xdivs← NN; ydivs← 1
// Loop over strata shapes and check if stratum is occupied
repeat

xstratum← bxdivx * pt.xc
ystratum← bydivs * pt.yc
if occupiedStrata[shape][ystratum*xdivs+xstratum] then

return true // stratum is already occupied

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

P. Christensen, A. Kensler & C. Kilpatrick / Progressive Multi-Jittered Sample Sequences: Supplemental Materials

end if
shape← shape+1; xdivs← xdivs/2; ydivs← ydivs*2

until xdivs = 0
return false // ok: sample pt is not in any occupied stratum

end function

2. Zone plate images with maximum error metric

Rms error is the typical measure for image comparisons, but max-
imum error might be more meaningful in settings where we’re try-
ing to eliminate fireflies. Here we repeat the zone plate tests in sec-
tion 8.1 of the main paper using maximum error.

Binary zone plate. Figure 1 (top) shows that the maximum error
for rotated and xor-scrambled Sobol’ sequences is nearly as hor-
rible and erratic as for sampling the triangle function. Curiously,
Ahmed’s ART sequence has slightly lower maximum error than the
other sequences in this test – here the combination of blue noise and
stratification seems to pay off. Pmj02 and Owen-scrambled Sobol’
are on a tied second place.

Smooth zone plate. Figure 1 (bottom) shows very similar results
to rms error, although the maximum error for pmj02 and Owen-
scrambled Sobol’ converges a bit slower than rms error: roughly
O(N−1.35) at powers of two.

 0.01

 0.1

 100 1000

m
a
x
 e

rr
o
r

samples per pixel

Binary zoneplate: pixel sampling max error
random

best cand

Perrier rot

Ahmed

Halton rot

Halton scr

Sobol rot

Sobol xor

Sobol owen

pj

pmj

pmj02

N
-0.5

N
-0.75

 1×10
-5

 1×10
-4

 1×10
-3

 1×10
-2

 100 1000

m
a
x
 e

rr
o
r

samples per pixel

Smooth zoneplate: pixel sampling max error
random

best cand

Perrier rot

Ahmed

Halton rot

Halton scr

Sobol rot

Sobol xor

Sobol owen

pj

pmj

pmj02

N
-0.5

N
-1

N
-1.35

Figure 1: Maximum error for pixel sampling of binary and smooth
zone plate images. (25–2500 samples per pixel.)

3. Pixel sampling with Gaussian filter

The tests in Section 8 of the main paper used a 1×1 box pixel fil-
ter. Here we repeat the test of textured teapots (Figure 18 in the

main paper) using a pixel filter more typical of production render-
ing: a (truncated) Gaussian filter covering 2×2 pixels. We use pixel
filter importance sampling [ESG06, Pur86], i.e., we map the pixel
sample positions from the unit square with a cdf determined by the
Gaussian function. Without these additional tests, it is not a priori
obvious whether this mapping will warp the sample domain in such
a way that the stratifications in the original square domain will be
less efficient.

Figure 2 (top) shows error plots for pixels with discontinuities
due to object edges. Here all sample sequences have the same con-
vergence rate as for the box pixel filter (see Figure 19 in the main
paper): random and best candidates converge as O(N−0.5) and all
other sequences converge as roughly O(N−0.75).

Figure 2 (bottom) shows that the convergence rates in smooth
pixels are a bit reduced: roughly O(N−0.9) for most sequences and
O(N−1.3) for pmj02 and Owen-scrambled Sobol’. Nevertheless,
these results show that (0,2) stratification is still much better than
lesser stratifications, even when the samples are warped.

 0.001

 0.01

 100 1000

rm
s
 e

rr
o
r

samples per pixel

Textured teapots: pixel sampling rms error
random

best cand

Perrier rot

Ahmed

Halton rot

Halton scr

Sobol rot

Sobol xor

Sobol owen

pj

pmj

pmj02

N
-0.5

N
-0.75

 1×10
-5

 1×10
-4

 1×10
-3

 100 1000

rm
s
 e

rr
o
r

samples per pixel

Textured groundplane: pixel sampling rms error
random

best cand

Perrier rot

Ahmed

Halton rot

Halton scr

Sobol rot

Sobol xor

Sobol owen

pj

pmj

pmj02

N
-0.5

N
-0.9

N
-1.3

Figure 2: rms error for pixel sampling with Gaussian pixel filter.
Top: teapot edges. Bottom: smooth ground plane.

4. Rectangular area light source

Now we repeat the area light experiments in Section 9 of the main
paper with a rectangular light source rather than the square light.
The size of the rectangle is 4×0.25 and it illuminates the same two
teapots on a ground plane. The long skinny rectangular light source
emphasizes 1D distribution, so we expect the difference between pj
and pmj (and pmj02) to be larger than for the square light source.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

P. Christensen, A. Kensler & C. Kilpatrick / Progressive Multi-Jittered Sample Sequences: Supplemental Materials

Figure 3 (top) shows error plots for pixels in the penumbra re-
gion. Here all sample sequences have the same convergence rate as
for the square light source: random and best candidates converge
as O(N−0.5) and all other sequences converge as O(N−0.75). The
error for Ahmed’s ART sequence and pj is significantly higher than
for the sequences that have 1D stratification. (This is similar to the
test of the step function.)

Figure 3 (bottom) shows error plots for the smooth, fully illu-
minated image region. Random and best candidates converge as
O(N−0.5), most other sample sequences converge as O(N−1), and
pmj02 and Owen-scrambled Sobol’ converge as roughly O(N−1.5).
The Ahmed ART sequence is again suffering due to poor 1D strat-
ification.

 0.001

 0.01

 100 1000

rm
s
 e

rr
o
r

samples per pixel

Rect light: penumbra sampling rms error
random

best cand

Perrier rot

Ahmed

Halton rot

Halton scr

Sobol rot

Sobol xor

Sobol owen

pj

pmj

pmj02

N
-0.5

N
-0.75

 1×10
-4

 1×10
-3

 1×10
-2

 100 1000

rm
s
 e

rr
o
r

samples per pixel

Rect light: direct illum sampling rms error
random

best cand

Perrier rot

Ahmed

Halton rot

Halton scr

Sobol rot

Sobol xor

Sobol owen

pj

pmj

pmj02

N
-0.5

N
-1

N
-1.5

Figure 3: rms error for 25–2500 samples per pixel of a rectangu-
lar light source. Top: penumbra region. Bottom: fully illuminated
region.

We have performed similar tests for a disk area light source in
a separate technical report [Chr18]. With an appropriate sampling
strategy, we can obtain convergence rates that are almost as good.

5. Comparing sets with sequences

We found it interesting to compare sample sets and sequences
(even though sets are unsuited for incremental rendering and adap-
tive sampling). Table 1 shows error for sampling a 2D Gaussian
function using the usual progressive sample sequences as well as
various sample sets: uniform jittered, jittered, multi-jittered, cor-
related multi-jittered (cmj), Hammersley, Larcher-Pillichshammer,

maximized-minimum distance (t,m,s) nets [GK08], and CBC rank-
1 lattices [LM12]. Observations:

• Uniform jittered sets are very bad – they have nearly as high
error as uniform random.

• Multi-jittered sets have lower error than uniform jittered, jittered,
cmj, and most quasi-random sequences.

• Cmj sets have unexpectedly high error; their correlation is actu-
ally bad for sampling monotonic functions like the Gaussian (or
a sharp edge through a pixel).

• Progressive jittered (pj) sequences have error that matches jit-
tered sets – as it should since the sample numbers in the table
are powers of two. Similarly, progressive multi-jittered (pmj) se-
quences have error that matches multi-jittered sets.

• Pmj02 and Owen-scrambled Sobol’ sequences have much lower
error than even the best sample sets when the number of samples
is a power of two. (This is a noteworthy result.)

Table 1: Error for sampling of a 2D Gaussian function with 256,
1024, and 4096 samples using various progressive sample se-
quences and non-progressive sample sets. Average of 10000 trials
each.

sequence/set 256 1024 4096
random 0.010774 0.005388 0.002731
best cand 0.003542 0.001676 0.000819
Perrier rot 0.000870 0.000666 0.000063
Ahmed 0.001100 0.000227 0.000071
Halton rot 0.001147 0.000337 0.000096
Halton scr 0.000953 0.000254 0.000066
Sobol rot 0.000971 0.000238 0.000065
Sobol xor 0.000621 0.000154 0.000038
Sobol owen 0.000064 0.000008 0.000001
pj 0.000670 0.000166 0.000042
pmj 0.000191 0.000046 0.000011
pmj02 0.000064 0.000009 0.000001
uniform jittered 0.009851 0.004959 0.002458
jittered 0.000663 0.000167 0.000042
multi-jittered 0.000184 0.000044 0.000011
cmj 0.000670 0.000231 0.000080
Hammersley rot 0.000768 0.000199 0.000051
Hammersley scr 0.000712 0.000183 0.000048
Larcher-Pil rot 0.000771 0.000199 0.000052
Larcher-Pil scr 0.000622 0.000158 0.000039
Grünschloß rot 0.000763 0.000200 0.000052
Rank-1 lattice rot 0.000747 0.000195 0.000049

For a different comparison of sample sets and sequences, we
tested pixel sampling of the checkered teapots image in Figure 16
of the main paper. Figure 4 shows the convergence of multi-jittered
sets with 100, 400, and 1600 samples compared to a few progres-
sive sequences. The sets have slow initial convergence due to their
lack of progressive properties.

6. On discrepancy

Shirley introduced discrepancy for evaluating sample sets to com-
puter graphics in a very influential paper [Shi91]. However, many
authors – Shirley included – have found discrepancy to be a mis-
leading measure of the quality of sample sets [Mit92,Gla95,PH10,

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

P. Christensen, A. Kensler & C. Kilpatrick / Progressive Multi-Jittered Sample Sequences: Supplemental Materials

 0.001

 0.01

 100 1000

rm
s
 e

rr
o
r

samples per pixel

Checkered teapots: pixel sampling rms error
random

Halton scr

Sobol owen

pj

pmj

pmj02

multi-jit 100

multi-jit 400

multi-jit 1600

N
-0.5

N
-0.75

Figure 4: rms error for pixel sampling of the checkered teapots im-
age sampled with progressive sample sequences and multi-jittered
sample sets. The sets have slow initial convergence.

ÖS98]. In this section we investigate whether discrepancy can be
used to evaluate and compare sample sequences in a meaningful
way. (The term “low-discrepancy sequences” implies that the se-
quence with lowest discrepancy is best. It is not.)

6.1. Star discrepancy

Zaremba’s star discrepancy D∗ [Zar68] is the maximum differ-
ence between the area of an axis-aligned anchored rectangle and
the fraction of samples (on the unit square) that fall within it. Star
discrepancy is a common discrepancy measure for low-discrepancy
patterns [Nie92], and is often used to compare the quality of sample
sets – mostly due to its ease of computation and because theoret-
ical convergence bounds can be derived using this measure (see,
e.g., Grünschloß and Keller [GK08]).

Table 2: Star discrepancy D∗ for 64, 256, and 1024 samples from
various progressive sample sequences.

sequence 64 256 1024
random 0.1501 0.0780 0.0374
best cand 0.0692 0.0317 0.0148
Perrier * 0.0614 0.0139 0.0086
Ahmed 0.0741 0.0276 0.0123
Halton * 0.0519 0.0232 0.0067
Halton scr 0.0527 0.0178 0.0056
Sobol * 0.0536 0.0123 0.0043
Sobol xor 0.0409 0.0124 0.0035
Sobol owen 0.0420 0.0129 0.0037
pj 0.0833 0.0335 0.0134
pjbn 0.0756 0.0304 0.0123
pmj 0.0529 0.0202 0.0078
pmjbn 0.0498 0.0193 0.0071
pmj02 0.0417 0.0128 0.0037

Table 2 shows star discrepancy D∗ for 64, 256, and 1024 sam-
ple points from various sample sequences. Discrepancies for the
stochastic or randomized sample sequences are computed as the
average of 100 trials; for deterministic sample sequences (marked
with *) only one trial. The table shows that D∗ of pmj is better

than random, best candidates, Perrier LDBN, and Ahmed ART, but
worse than Halton and Sobol’, and that pmj02 is on par with the
Owen-scrambled Sobol’ sequence, but that xor-scrambled Sobol’
is slightly better than both. This ordering does not correspond to
the results we observed in Sections 7 to 9 in the main paper, where
we found that Owen-scrambling is far better than xor-scrambling
and rotation.

6.2. Arbitrary-edge discrepancy

Dobkin et al. [DM93, DEM96] introduced an alternative discrep-
ancy measure, the maximum arbitrary-edge discrepancy Dae. Like
D∗ it measures the maximum difference between an area and the
fraction of samples within it, but it considers all straight edges
through the unit square – not just axis-aligned boxes. This corre-
sponds to the maximum error we would see, for example, in a pixel
with a sharp (object or texture) straight edge in it. (This discrepancy
measure is isotropic, i.e. does not focus on just one or two direc-
tions, but not as general as the isotropic discrepancy J of Kuipers
and Niederreiter [KN74].)

Table 3: Arbitrary-edge discrepancy Dae for 64, 256, and 1024
samples from various progressive sample sequences.

sequence 64 256 1024
random 0.1548 0.0794 0.0396
best cand 0.0798 0.0358 0.0160
Perrier * 0.0722 0.0267 0.0111
Ahmed 0.0687 0.0238 0.0108
Halton * 0.1089 0.0367 0.0139
Halton scr 0.0814 0.0345 0.0134
Sobol * 0.1112 0.0367 0.0263
Sobol xor 0.1046 0.0366 0.0262
Sobol owen 0.0705 0.0282 0.0108
pj 0.0742 0.0295 0.0116
pjbn 0.0702 0.0282 0.0110
pmj 0.0733 0.0292 0.0114
pmjbn 0.0676 0.0277 0.0107
pmj02 0.0702 0.0278 0.0109

Table 3 shows Dae for the progressive sequences. For non-
deterministic sequences the discrepancy value is again computed as
the average of 100 sequences (trials). With this discrepancy mea-
sure, Owen-scrambled Sobol’ and all five pj/pmj/pmj02 sequences
are found to be far better than Halton and the other Sobol’ se-
quences. The canonical Sobol’ sequence is correctly “penalized”
for its alignment of sample points along diagonals and for clumped
samples, and xor-scrambling helps only a little. Ahmed ART is best
or among the best for 64 and 256 samples, while for 1024 samples,
Ahmed ART, Owen-scrambled Sobol’, pmjbn, and pmj02 are tied
for best. This discrepancy measure does not capture the fact that
Ahmed ART sequences have poor 1D stratification.

6.3. Discussion

To summarize: according to the star discrepancy, xor-scrambled
Sobol’ sequences are slightly better than Owen-scrambled Sobol’
sequences and pmj02 sequences; but according to the arbitrary-
edge discrepancy, pm/pmj/pmj02 sequences and Owen-scrambled

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

P. Christensen, A. Kensler & C. Kilpatrick / Progressive Multi-Jittered Sample Sequences: Supplemental Materials

Sobol’ sequences are superior to Halton and the other Sobol’ se-
quences, and Ahmed ART sequences are as good as the best. The
arbitrary-edge results are closest to what we found in the more real-
istic tests in Sections 7–9, but even that discrepancy measure does
not account for the important facts that some sequences give sig-
nificantly lower error when sampling smooth functions and that 1D
projections are important.

Our conclusion from these results is that selecting one sequence
over another based solely on discrepancy is misguided! – just as
it is the case for sample sets. Instead, more realistic tests such as
those we have presented in Sections 7 through 9 in the main paper
and in this supplemental material must be performed.

References
[Chr18] CHRISTENSEN P.: Progressive sampling strategies for disk light

sources. Tech. Rep. 18-02, Pixar Animation Studios, 2018. 5

[DEM96] DOBKIN D., EPPSTEIN D., MITCHELL D.: Computing the
discrepancy with applications to supersampling patterns. ACM Transac-
tions on Graphics 15, 4 (1996), 354–376. 6

[DH06] DUNBAR D., HUMPHREYS G.: A spatial data structure for fast
Poisson-disk sample generation. ACM Transactions on Graphics (Proc.
SIGGRAPH) 25, 3 (2006), 503–508. 2

[DM93] DOBKIN D., MITCHELL D.: Random-edge discrepancy of su-
persampling patterns. Proc. Graphics Interface (1993), 62–69. 6

[ESG06] ERNST M., STAMMINGER M., GREINER G.: Filter importance
sampling. In Proc. IEEE Symposium on Interactive Ray Tracing (2006),
pp. 125–132. 4

[GK08] GRÜNSCHLOSS L., KELLER A.: (t,m,s)-nets and maximized
minimum distance, part ii. In Proc. Monte Carlo and Quasi-Monte Carlo
Methods (2008). 5, 6

[Gla95] GLASSNER A.: Principles of Digital Image Synthesis. Morgan
Kaufmann, 1995. 5

[KN74] KUIPERS L., NIEDERREITER H.: Uniform Distribution of Se-
quences. Dover Publications, 1974. 6

[LM12] L’ECUYER P., MUNGER D.: Algorithm 958: Lattice builder: A
general software tool for constructing rank-1 lattice rules. ACM Trans-
actions of Mathematical Software 42, 2 (2012). 5

[MF92] MCCOOL M., FIUME E.: Hierarchical Poisson disk sampling
distributions. In Proc. Graphics Interface (1992), pp. 94–105. 2

[Mit92] MITCHELL D.: Ray tracing and irregularities in distribution.
Proc. Eurographics Workshop on Rendering (1992), 61–69. 5

[Nie92] NIEDERREITER H.: Random Number Generation and Quasi-
Monte Carlo Methods. SIAM, 1992. 6

[ÖS98] ÖKTEN G., SHAH M.: Random and deterministic digit-
scrambling of the Halton sequence. Tech. rep., Florida State University,
1998. 5

[PH10] PHARR M., HUMPHREYS G.: Physically Based Rendering:
From Theory To Implementation, 2nd ed. Morgan Kaufmann, 2010. 5

[Pur86] PURGATHOFER W.: A statistical method for adaptive stochastic
sampling. In Proc. Eurographics (1986), pp. 145–152. 4

[Shi91] SHIRLEY P.: Discrepancy as a quality measure for sample distri-
butions. Proc. Eurographics (1991), 183–193. 5

[Zar68] ZAREMBA S.: The mathematical basis of Monte Carlo and quasi-
Monte Carlo methods. SIAM Review 10, 3 (1968), 303–314. 6

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

