
Multiresolution Radiosity Caching for
Efficient Preview and Final Quality

Global Illumination in Movies

Per H. Christensen George Harker Jonathan Shade Brenden Schubert Dana Batali

Pixar Technical Memo #12-06 — July, 2012

Pixar Animation Studios

Figure 1: Two scenes from the CG movie ‘Monsters University’. Top row: direct illumination. Bottom row: global illumination — images
such as these render more than 30 times faster with radiosity caching.c© Disney/Pixar.

Abstract

We present a multiresolution radiosity caching method that allows
global illumination to be computed efficiently in a single pass in
complex CG movie production scenes.

For distribution ray tracing in production scenes, the bottleneck is
the time spent evaluating complex shaders at the ray hit points. We
speed up this shader evaluation time for global illumination by sep-
arating out the view-independent component and caching its result
— the radiosity. Our cache contains three resolutions of the radios-
ity; the resolution used for a given ray is selected using the ray’s
differential. The resulting single-pass global illumination method
is fast and flexible enough to be used in movie production, both for
interactive lighting design and final rendering. It is currently being
used in production at several studios.

The multiresolution cache is also used to store shader opacity re-
sults for faster ray-traced shadows, ambient occlusion and volume
extinction, and to store irradiance for efficient ray-traced subsurface
scattering.

Keywords: Global illumination, color bleeding, distribution
ray tracing, complex geometry, complex shaders, multiresolution
cache, ray differentials, radiosity, opacity, volume extinction, sub-
surface scattering, interactive rendering, movie production.

1 Introduction

Recently there has been a surge in the use of global illumination
(“color bleeding”) in CG movies and special effects, motivated by
the faster lighting design and more realistic lighting that it enables.
The most widely used methods are distribution ray tracing, path
tracing, and point-based global illumination; for an overview of
these please see the course notes by Křivánek et al. [2010].

The ray-traced global illumination methods (distribution ray tracing
and path tracing) are slow if the scenes have not only very complex
base geometry but also very complex and programmable displace-
ment shaders, light source shaders, and surface shaders that have to
be executed at every ray hit point.

Point-based global illumination (PBGI) reduces this computation
bottleneck since the shaders are only evaluated at the surface tessel-
lation vertices and only twice: at point cloud generation time and
for the final render. Other advantages of PBGI are that it is fast and
has no noise. Disadvantages are bias and aliasing if coarse settings
are used, having to shade the entire scene (including off-camera
parts) during point cloud generation, file I/O overhead, pipeline
management, and non-interactivity. The goal of our multiresolution
radiosity cache is to get the same reduction in shader evaluations,
but with a single-pass distribution ray-tracing method more suitable
for interactive rendering and movie production pipelines.



The motivating observation is that for ray-traced global illumina-
tion in production scenes with complex geometry and shaders, the
bottleneck is not the “raw” ray tracing time (spatial acceleration
data structure traversal and ray–surface intersection tests), but the
time spent evaluating the displacement, light source, and surface
shaders at the ray hit points. This shader evaluation time includes
texture map lookups, procedural texture generation, shadow cal-
culation, BRDF evaluation, shader set-up and execution overhead,
calls to external plug-ins, etc. We reduce this time by separating out
the view-independent shader component — radiosity — needed for
global illumination and caching it. During distribution ray trac-
ing global illumination these radiosities are computed on demand
and reused many times. As a by-product of caching these shad-
ing results, the number of shadow rays is reduced. For further ef-
ficiency, the radiosity is computed for an entire grid (a coherent
batch of shading points) at a time, allowing coherency in texture
map lookups, coherent shadow rays, etc.

The radiosity cache is implemented in Pixar’s PhotoRealistic Ren-
derMan renderer that supports both progressive ray tracing and
REYES-style micropolygon rendering. The cache contains mul-
tiple resolutions of the radiosity on the surface patches in the scene.
The appropriate resolution for each cache lookup is selected using
ray differentials.

The resulting single-pass global illumination method is fast and
flexible enough to be used in movie production, both for interac-
tive material and lighting design and for final rendering. Radiosity
caching gives speed-ups of 3–12 for simple scenes and more than
30 for production scenes. Figure1 shows examples of images com-
puted with the method.

We originally developed the multiresolution caching method in or-
der to accelerate global illumination, but it turns out that the caching
method can be applied in other parts of the shading pipeline as well
— wherever there are view-independent shading results that can be
reused. We take advantage of this by also caching surface and vol-
ume opacity and caching irradiance for ray-traced subsurface scat-
tering.

2 Related Work

Our method builds on prior global illumination work, particularly
in rendering of very complex scenes for movie production. For
a general introduction to global illumination, please see e.g. the
textbooks by Pharr and Humphreys [2010] and Dutŕe et al. [2003].

2.1 Global Illumination in Movies

The first use of global illumination in a feature-length movie was
for the movie ‘Shrek 2’ [Tabellion and Lamorlette 2004]. They
computed direct illumination and stored it as 2D texture maps on
the surfaces, and then used distribution ray tracing to compute
single-bounce global illumination. The use of 2D textures requires
the surfaces to have a parameterization. The irradiance atlas method
[Christensen and Batali 2004] is similar, but uses 3D texture maps
(“brick maps”) so the surfaces do not need a 2D parameterization.
Both methods use two passes: one pass to compute the direct illu-
mination and store it (as 2D or 3D texture maps), and one pass for
final rendering.

Path tracing is a brute-force global illumination method that has
been used on ‘Monster House’ and several other movies [Fajardo
2010]. The advantages of path tracing are that the algorithm is
simple, runs in a single pass, and provides fast feedback during
interactive lighting design. Its disadvantages are that the results are
noisy, many shader evaluations are required, and it has an inher-

ently slow convergence to low-noise final-quality images. It does
not lend itself to caching and interpolation of (view-independent)
shading results: each shading result is extremely noisy so cannot be
reused without introducing significant bias.

Point-based global illumination is a fairly new, but widely used
global illumination method in feature film production [Christensen
2008; Kontkanen et al. 2011]. It is fast and produces noise-free re-
sults. It was first used on the movies ‘Pirates of the Caribbean 2’
and ‘Surf’s Up’, and has since been used for more than 40 other
feature films. It is a multi-pass method: In the first pass, a point
cloud is generated from directly illuminated micropolygons. In the
second pass,n−1 bounces of global illumination are computed for
the point cloud. (The second pass can be skipped if only a single
bounce is needed.) In the third pass, the indirect illumination from
the point cloud is computed and rendered. Due to its multipass
nature, this method is not suitable for interactive lighting design.
Also, its large point cloud files can be cumbersome to manage and
require significant disk I/O.

The method of Meyer and Anderson [2006] computes a sequence of
noisy distribution ray-traced global illumination images and filters
them spatially and temporally to remove the noise. Since it requires
working on an entire sequence of images at a time, it is not suitable
for interactive rendering. We also believe our method fits better into
the traditional CG movie production pipeline which usually renders
one image at a time.

2.2 Other Related Global Illumination Methods

Our multiresolution radiosity representation is reminiscent of Heck-
bert’s adaptive radiosity textures [Heckbert 1990]. His method
traces rays from the light sources and stores the resulting radiosities
in textures that are adaptively refined where there is large variation
in the radiosity.

We consider our method a variation of Ward’s irradiance cache
[Ward et al. 1988; Ward Larson and Shakespeare 1998]. Both meth-
ods are based on distribution ray tracing, and both cache partial re-
sults to increase performance. Ward’s method stores incident indi-
rect illumination (irradiance) to individual points, while our method
stores post-shading radiosity values from grids of micropolygon
vertices. By caching an exitant quantity (radiosity), we capture and
reuse both direct and indirect illumination and reduce the number
of shader evaluations (including texture lookups and other calcula-
tions). By shading a grid of points together rather than shading indi-
vidual points, our method is more suitable for REYES-style SIMD
shader execution [Cook et al. 1987]; it amortizes shader start-up
and execution overhead and ensures coherent texture map lookups,
coherent shadow rays, etc. The two caching methods actually work
well together: Ward’s irradiance cache reduces the number of dif-
fuse and shadow rays, and our radiosity cache reduces the number
of shader evaluations and further reduces the shadow rays.

2.3 Shading Result Reuse

Recent work by Hou and Zhou [2011] shares our goal of reduc-
ing the number of shader evaluations, but for ray-traced specular
and glossy reflections and refractions. Their method stores shad-
ing results in kd-trees and achieves speed-ups of 3.5. They reuse
view-dependent shading results for any ray direction and texture
filter size, giving arbitrarily wrong results; we only reuse view-
independent results and distinguish between three different filter
sizes. Their method is for specular and glossy reflections and re-
fractions, while our method is for diffuse global illumination.



3 The Multiresolution Radiosity Cache

3.1 Cache Structure and Data

With the REYES rendering algorithm [Cook et al. 1987], large
object surfaces are split into smaller surface patches. Each patch
is then tessellated into a micropolygon grid. Shading is done at
the grid vertices, and the shading results are interpolated over the
micropolygons.

The radiosity cache contains representations of the radiosity on
each surface patch at up to three different resolutions. The finest
resolution contains radiosities for all the micropolygon vertices on
the patch (the REYES shading points). The medium resolution
contains radiosities at a subset of those vertices, for example every
fourth vertex inu andv. The coarse resolution contains radiosities
at only the four corners of the patch. See figure2 for an example
of the radiosity cache entries for a grid with 15×12 points. (This
example shows a rectangular surface patch; we use a similar multi-
resolution representation for triangular patches.)

Figure 2: Radiosity on a surface patch at three different resolu-
tions: fine (15×12 points), medium (5×4 points), and coarse (2×2
points).

Since a medium cache entry contains fewer points than a fine cache
entry it uses less memory; since a coarse cache entry contains only
four points it uses even less memory. So if cache memory is divided
evenly between the three resolutions, the coarse cache has many
more entries than the medium cache, which in turn has many more
entries than the fine cache.

The multiresolution radiosity cache data structures are very simi-
lar to the multiresolution tessellation cache used for efficient ray–
surface intersection in geometrically complex scenes [Christensen
et al. 2003; Christensen et al. 2006]. One difference is that the
vertex positions stored in the tessellation cache need full floating
point precision, whereas the radiosities in the radiosity cache can
be stored with less precision — we use half floats, but could in-
stead use Ward’s rgbe format [Ward 1991], at least for the coarse
cache. Another difference is for instanced geometry: while the in-
stances can share a master tessellation, each instance needs its own
radiosity cache entry since the illumination, textures, and surface
properties usually differ between instances.

The size of the radiosity cache can be defined by the user; the de-
fault size is 100 MB. If the memory were divided evenly with 33.3%
for each resolution, the default capacities would be 336,000 coarse,
111,000 medium, and 19,000 fine grids. However, we have empiri-
cally found that enlarging the size of the fine cache to 50% (a default
capacity of 252,000 coarse, 83,000 medium, and 29,000 fine grids)
gives faster render times in most cases since the fine cache entries
are more expensive to recompute if needed again after having been
evicted from the cache.

We use an efficient cache implementation with low memory over-
head and good multithreaded performance. Each thread has a lo-
cal cache with pointers to a shared cache, which keeps a reference

count for each of its entries. The cache replacement strategy is stan-
dard least-recently-used (LRU) replacement within each resolution.

3.2 Cache Lookups

We use ray differentials [Igehy 1999] to select the appropriate cache
resolution for a ray hit: if the ray has only traveled a short distance
or comes from specular reflection or refraction from a relatively flat
surface, the differential is small and the fine cache resolution will
be selected; if the ray comes from a distant highly curved surface
and/or from a distant diffuse reflection the differential will be large
and the medium or coarse cache resolution will be selected. A key
observation in Christensen et al. [2003] is that for distribution ray
tracing with a multiresolution cache, the lookups in the fine cache
are coherent. The lookups in the medium and coarse caches are less
coherent, but the capacity of those caches is higher since each entry
is smaller. Consequently, high cache hit rates are obtained for all
three cache resolutions.

Once we have determined which resolution to use for a ray hit, the
cache for that resolution is queried to see whether it contains an
appropriate entry for the radiosity on that side of the surface patch.
If not, the view-independent part of the surface shader is run (along
with the displacement shader and light source shaders) at the grid
vertices and the resulting radiosities are stored in the cache.

Given the ray–patch intersection point and the grid of cached ra-
diosities, the nearest radiosity values are then interpolated (using bi-
linear interpolation on quadrilateral micropolygon grids or barycen-
tric interpolation on triangular micropolygon grids) to get the ap-
proximate radiosity at the intersection point.

A cache entry identifier consists of patch number, diffuse ray depth
(to keep results from multiple bounces separate), motion segment
(for multi-segment motion blur), surface side, and a timestamp. The
time is updated when the illumination or shader parameters change
in an interactive application; then the old cache entries which are
no longer valid will gradually be evicted from the cache since their
timestamps are too old.

4 Shading System Interface

The original RenderMan Shading Language (RSL) [Hanrahan and
Lawson 1990; Apodaca and Gritz 2000] did not distinguish be-
tween view-independent and view-dependent surface shading re-
sults, instead relying on a relatively monolithic shader which pro-
duced two final combined results: color Ci and opacity Oi.

The original shading pipeline, which separates only displacement
shading and surface shading (including lighting), is:

displacement()
surface()

If the renderer only needs geometric information then only the dis-
placement shader will be executed.

While simple and unrestrictive from a shader author’s perspective,
the lack of further atomization of the shaders prevents the renderer
from being able to single out certain parts of the shading process for
special treatment, such as caching results that can be meaningfully
reused.

4.1 Shader Methods

RSL was extended in 2007 to divide the shading pipeline into more
components. Shader objects, with multiple methods — each of



which can be separately invoked by the renderer — changed the
pipeline to:

displacement()
opacity()
prelighting()
lighting()
postlighting()

Typically, the prelighting() method contains surface calculations
which are independent of the illumination (e.g. texture lookups).
The primary motivation for this more complex pipeline was the
ability to store the outputs of prelighting() so that they can be used
as inputs when re-running only the lighting() method when the
lighting changes during interactive rerendering.

4.2 Diffuselighting Method

We now present a new shader method which permits the view-
independent results to be cached. The view-independent part of the
lighting() method is duplicated in the new diffuselighting() method.
Note our somewhat loose nomenclature where “diffuse lighting” is
used to describe view-independent lighting. Although diffuse re-
flections can be view dependent [Oren and Nayar 1994], we found
this nomenclature easier to describe to users.

The purpose of the diffuselighting() method is to provide the ren-
derer with a view-independent radiosity value (Ci). (It may also
optionally produce a view-independent irradiance value for use in
subsurface scattering computations, as discussed in section6.2.) It
is not important what calculations are performed to arrive at the
view-independent shading result, only that they are indeed view in-
dependent.

Here is an example of matching lighting() and diffuselighting()
methods:

class simplesurface() {

public void
lighting(output color Ci, Oi) {

// direct/indirect, specular/diffuse
color ds, is, dd, id;
// integrate direct and indir lighting
directlighting(...,

ds, dd); // outputs
is = indirectspecular(...);
id = indirectdiffuse(...);
Ci = ds + is + dd + id;
Oi = ...;

}

public void
diffuselighting(output color Ci, Oi) {

// no view dependency permitted here
color dd, id; // direct/indir diff
// integrate direct and indir diffuse
directlighting(...,

dd); // output
id = indirectdiffuse(...);
Ci = dd + id;
Oi = ...;

}
}

This simple factoring of the lighting computation provides the ren-
derer with a method which it can invoke in order to get the view-
independent (“diffuse”) lighting.

In such a simple case as the above shader, separating out the diffuse
lighting computation is relatively straightforward and mechanical.
In cases where pattern generation which sets the BRDF parameters
is shared between view-independent and view-dependent lighting
computation, some additional factoring of code may be required.
Not shown in the example above are the callbacks that the renderer
might make to have the surface provide evaluations of light sam-
ples — the BRDF weighting — or for generating material samples.
These are clearly important for the shading process but do not affect
the mechanism by which radiosity caching operates.

It may be possible to automate this factoring of the lighting
computation. The “Lightspeed” interactive rendering system
[Ragan-Kelley et al. 2007] has an automatic analysis to distinguish
static versus dynamic variables; it is likely that a similar analysis
could be done for view-independent versus view-dependent shader
computations. However, many shader writers find that manual sep-
aration of the diffuse lighting is both intuitive and expressive.

4.3 Ray Types, Shader Execution, and Caching

Our renderer makes a distinction between different types of rays,
which drives differing shading demands on the surfaces those rays
hit.

Diffuse rays, which are collecting indirect diffuse energy for color
bleeding purposes, do not require specular computations. For such
rays, the radiosity cache itself is sufficient and an interpolated result
can be returned if the cache entry already exists. In other words,
diffuselighting() will not be run if its result is already in the cache.
(This is the primary source of our global illumination speed-ups.)

For specular rays we need both view-independent and view-
dependent shading results. For these rays we run the lighting()
method.

4.4 Caching Tricks and Pitfalls

The identifiers for the radiosity cache entries include the ray’s dif-
fuse depth. This is primarily to distinguish between different illu-
mination bounces, but also allows caching of shaders that compute
a different accuracy result depending on the diffuse ray depth. For
efficiency, it is common for shaders to reduce the number of diffuse
rays used at deeper diffuse ray depths.

Clearly, for a shading result to be view-independent, the shader
must not use the incident ray direction (vector I in RSL) in its com-
putation.

The importance of a ray is a measure of its ultimate contribution to
the image. A common optimization is to use approximate shader
calculations for rays with low importance. However, with caching
we can’t use importance to simplify shading if there’s a risk that
the cached result will be reused by a more important ray later on.
In section7 we discuss some ideas for overcoming this limitation.

5 Global Illumination Results

In this section we first use results from a simple scene to illustrate
the benefits of radiosity caching for computing single- and multi-
bounce global illumination, and then analyze renders of three com-
plex CG movie scenes for more “real-world” statistics.

The images in sections5.1– 5.3 are 1024 pixels wide and are ren-
dered on an Apple PowerMac computer with two 2.26 GHz quad-
core Intel Xeon processors and 8 GB memory. For these images, we
observe speed-ups of 6.3–6.6 with 8 threads. The radiosity cache
size is the default 100 MB.



5.1 Preview Quality Global Illumination

Figure3shows four images of a Cornell box containing two teapots.
The left teapot is reflective chrome, while the right teapot is matte
and has procedural displacements. The scene is tessellated into ap-
proximately 18,000 micropolygon grids with a total of 3.9 million
grid vertices.

(a) (b)

(c) (d)

Figure 3: Preview quality global illumination in box: 0–3 bounces
(4, 10, 11, 13 sec).

Figure3(a) is rendered with preview-quality direct illumination: the
soft shadow from the area light source in the ceiling is sampled
with 4 shadow rays per shading point. Rendering this image uses
7.3 million shading points and 14 million rays and takes 4 seconds.

Figure3(b) shows the same scene, but with preview-quality global
illumination. Here the shadows are again sampled with 4 shadow
rays and the indirect illumination is sampled with 4 diffuse rays
per shading point. This preview quality can be used with progres-
sive ray tracing to dynamically render global illumination images
while the illumination and shader parameters are being adjusted.
Figures3(c) and (d) show two- and three-bounce preview-quality
global illumination.

Table1 shows the number of shading points, rays, and render time
with and without radiosity caching for 1, 2, and 3 bouncesb. The
table also shows the speed-ups resulting from radiosity caching.

w/o caching w/ caching speed
b sh.pts rays time sh.pts rays time -up
1 46M 66M 38s 8.1M 32M 10s 3.8
2 162M 164M 2m20s 8.9M 37M 11s 12.7
3 528M 721M 7m36s 9.8M 42M 13s 35.1

Table 1: Statistics for rendering the global illumination images in
figure3. (M = million.)

The time saving is dominated by the reduction in shader evaluations
and shadow rays for computing direct illumination at diffuse ray hit
points. Note that with radiosity caching the rendering time becomes
sublinear in the number of bounces.

5.2 Final Quality Global Illumination

Consider the Cornell box scene again. Now we will render it in final
quality. In figure4(a), with direct illumination, the soft shadow is
sampled with 64 shadow rays per shading point. Rendering this
image uses 7.3 million shading points and 211 million rays and
takes 22 seconds.

(a) (b)

(c) (d)

Figure 4: Final quality global illumination in box: 0–3 bounces
(22, 64, 99, 127 sec).

Final-quality global illumination is shown in figure4(b). This im-
age is rendered with up to 1024 diffuse rays per shading point. We
use irradiance interpolation with irradiance gradients [Ward and
Heckbert 1992; Tabellion and Lamorlette 2004; Křivánek et al.
2008] to reduce the number of shading points from which diffuse
rays need to be traced. For final-quality multibounce images, we
still shoot up to 1024 diffuse rays at diffuse depth 0 and up to
64 diffuse rays at higher diffuse depths. Two- and three-bounce
final-quality images are shown in figures4(c) and (d).

Table2 shows the number of shading points, rays, and render time
with and without radiosity caching for 1, 2, and 3 bounces, and
shows the speed-ups resulting from radiosity caching. (There are
no data for three bounces without radiosity caching since that case
is prohibitively slow.)

w/o caching w/ caching speed
b sh.pts rays time sh.pts rays time -up
1 209M 3.4B 13.2m 10.0M 410M 64s 12.3
2 2.3B 39B 2.3h 11.6M 569M 99s 83
3 – – – 13.1M 691M 127s –

Table 2: Statistics for rendering the global illumination images in
figure4. (M = million, B = billion.)

Note that the single-bounce speed-up is 12.3 and that two and three
bounces take only 1.5 and 2 times as long as a single bounce when
radiosity caching is on. This sublinear growth is due to the ray count
reduction at diffuse depths above 0 and the wider ray differentials
after multiple bounces allowing rays to use coarser levels of the
radiosity cache.



5.3 Comparison with Point-Based Global Illumination

For comparison, the same scene with single-bounce point-based ap-
proximate global illumination is shown in figure5(a). Point cloud
generation takes 20 seconds and the point cloud contains 3.6 mil-
lion points. Rendering time is 42 seconds (with irradiance gradients
and interpolation).

(a) (b)

(c) (d)

Figure 5: Top row: Point-based single-bounce global illumination
in box (20 sec + 42 sec); 20× difference from reference image.
Bottow row: 20× difference between ray-traced preview image and
reference image; same for ray-traced final image.

Figure5(b) shows 20 times the difference between the point-based
image in figure5(a) and a reference image computed with 4096 rays
per shading point and no radiosity caching.

For comparison, the bottom row of figure5 shows 20 times the dif-
ference between the ray-traced preview quality image in figure3(b)
and the reference image, as well as 20 times the difference between
the final quality image figure4(b) and the reference image. The
point-based image has more error than the ray-traced final-quality
image for comparable total render times. (Depending on the in-
tended use, the difference in accuracy may or may not be impor-
tant.)

5.4 Movie Production Results

The radiosity caching speed-ups of around 3.8 and 12 reported
above for one bounce are for very simplistic shaders and only one
light source. The more complex the shaders are, and the more di-
rect light sources there are, the higher the speed-up from caching
will be. For more realistic results, we have compiled data from
production shots of the future Pixar movie ‘Monsters University’.

Figure1 shows direct illumination and single-bounce global illumi-
nation in two movie scenes, an exterior and an interior. The images
are 1920×1080 pixels and rendered with motion blur. The num-
ber of micropolygon grids is 0.7 and 15.2 million and the number
of shading points is 13 and 64 million, respectively. (Much of the
geometric complexity in the latter scene is from the fur.) The ra-
diosity cache size is set to 256 MB. These images were rendered
using 4 threads on a six-core 2.9 GHz machine with 12 GB mem-
ory.

The direct illumination consists of 2 light sources (sun and dome
light) for the exterior scene and 20 light sources for the interior
scene. The indirect illumination is rendered with 256–1024 dif-
fuse rays from each shading point. The close-ups in figure6 show
parts of the two images (indicated with red squares in figure1) with
strong indirect illumination.

Figure 6: Close-up of parts of the ‘Monsters University’ images.
Top row: direct illumination. Bottom row: global illumination.
c© Disney/Pixar.

Table3 shows the render time, peak total memory, and number of
shadow, diffuse, and specular rays traced during rendering of the
scenes with direct and global illumination.

scene illum shadow diff spec memory time
exter direct 784M 0 0 11.4GB 25m
exter global 1.3B 1.2B 0 16.6GB 1h 31m
inter direct 4.5B 0 28k 10.5GB 2h 16m
inter global 6.9B 3.1B 28k 11.0GB 3h 58m

Table 3: Statistics for rendering the images in figure1.

We rendered the same two global illumination images with radios-
ity caching turned off, and the render times were 32.7 and 41.4
times longer, respectively.

Figure7 shows another image from the same movie. Table4 shows
the cache hit rates (coarse, medium, fine cache), number of shading
points and rays, and render time for various cache sizes. As it can be

Figure 7: Another global illumination image from ‘Monsters Uni-
versity’. c© Disney/Pixar.



seen, the cache hit rates are very high for a cache size of 256MB and
do not improve by increasing the cache size further. For this scene,
the overall peak memory use is 6.4GB. Caching reduces render time
from 102 hours to just over one hour, a speed-up of 94. In general,
for these types of scenes,rendering is more than 30 times faster
with radiosity cachingthan without it.

cache size cache hit rates (%) sh.pts rays time
0 0 0 0 7.2B 50B 102h

16MB 97.8 97.5 99.5 5.3B 73B 36h
64MB 99.7 99.8 99.9 30M 2.7B 1h22m
256MB 99.9 99.9 99.9 15M 2.3B 1h05m

1GB 99.9 99.9 99.9 15M 2.3B 1h05m

Table 4: Statistics for rendering figure7 with varying cache sizes.

Rendering these scenes with two bounces of global illumination
takes about 30%–40% longer than with a single bounce. Even
though two bounces give a slightly more realistic appearance, the
lighting supervisors on this movie have chosen to use just one
bounce to stay within the rendering budget.

Lighting rigs on previous movies usually included hundreds of light
sources in each scene. With global illumination, it has been possible
to reduce the number of lights dramatically: in interior scenes there
are typically around 10–20 lights, in exterior scenes even fewer.
The use of global illumination has also halved the master light-
ing budget; traditional master lighting usually took four weeks or
more per sequence and now it is typically done in two weeks. For
this movie, the lighting supervisors chose ray-traced global illumi-
nation with radiosity caching over point-based global illumination
because it is much more interactive, particularly when re-rendering
a cropped part of the image.

6 Other Caching Applications

The multiresolution caching scheme can be extended to uses other
than global illumination. In general, caching any expensive and
reusable shading results can significantly reduce render time. We
have already used a tessellation cache for displacement() results
[Christensen et al. 2003] and in the previous sections introduced
the radiosity cache for diffuselighting() Ci results. In this section
we show caching of opacity() Oi results for shadows, ambient oc-
clusion, and volume extinction, and caching of diffuselighting() Ir-
radiance results for ray-traced subsurface scattering.

We could store the opacity and irradiance values in separate multi-
resolution caches. In practice, however, we have chosen to store the
opacities and irradiances in the same cache as radiosity and aug-
ment the cache entry identifiers with data type (radiosity, opacity,
or irradiance).

6.1 Opacity

Shaders are often used to compute the opacity of surfaces, for ex-
ample for stained-glass windows, stencils, cuculoris (“cookies”) or
semitransparent surfaces casting shadows, and to compute extinc-
tion in volumes.

For caching, we assume that opacity is independent of which side
the surface is seen from, and independent of ray depth. So there is
only one opacity value per shading point. (Opacity caching can be
turned off if this assumption does not hold.)

Figure8(a) shows colored soft shadows from a curved stained-glass
object. The image was rendered with 25 million shadow rays. With-
out caching, every ray hit requires running the shader to evaluate

the opacity; the render time is 7 seconds. With opacity caching the
render time is 4 seconds — a modest speed-up of 1.7.

Figure 8: Opacity stored in the cache: (a) Colored opacity for
shadows. (b) Opacity for ambient occlusion.

Figure8(b) shows ambient occlusion [Zhukov et al. 1998; Landis
2002] from an opaque leaf texture on an otherwise transparent
square. Rendering the image was done with 48 million rays. The
render time without opacity caching is 14 seconds, and with opacity
caching it is 8 seconds — again a speed-up of 1.7.

If the surface shaders’ opacity calculations had been more compli-
cated, the speed-ups would obviously have been higher. But even in
these simple cases, opacity caching shifts the computational bottle-
neck from shader evaluation to raw ray tracing.

Figure9 shows illumination and shadows in an inhomogeneous vol-
ume. For volumes we use the convention that the “opacity” returned
by a shader is interpreted as the volume extinction coefficients. In
this image, the volume extinction (opacity) is computed by a shader
calling a turbulence function with five octaves of noise. The image
was rendered with 49 million shadow (transmission) rays. With-
out caching, the volume extinction has to be evaluated many times
along every ray and the render time is 20 minutes. With opacity
caching the render time is 4.7 minutes — a speed-up of 4.3.

Figure 9: Extinction in an inhomogeneous volume.

6.2 Subsurface Scattering

Subsurface scattering gives translucent materials such as wax,
marble, and skin their distinctive appearance. We have adopted
Jensen et al.’s [2001] formulation of modeling multiple subsurface
scattering as diffusion. In this model, the exitant radiance at a given
point is the integral over the surface of the product of a diffusion
kernel and the irradiance (incident illumination) on the surface.

Previously, our implementation of the diffusion approximation
closely followed the two-pass point-based formulation of Jensen
and Buhler [2002]. In the first pass, irradiance is computed at each
REYES micropolygon and written to disk as a point cloud. In the
second pass, these points are organized into a hierarchical represen-
tation that is traversed when computing the subsurface integral of
irradiance.



Our new single-pass implementation uses the multiresolution cache
instead of the point-based hierarchical representation. We use ray
tracing to distribute points across the surface of an object. (Ray
tracing is remarkably efficient in this application because sub-
surface rays only need to be tested for intersections with the object
they were shot from.) An advantage over point-based subsurface
scattering is that internal blockers — for example bones under skin
— are more readily simulated with ray tracing.

Given a point on the surface, a ray is traced into the object along the
inverse of the normal, finding the distance to the back side of the
object. A ray probe point is placed along this ray, either one mean
free path length into the object or half the distance to the back side
— which ever is shorter. From this probe point we cast a shader-
supplied number of rays distributed uniformly over the sphere of
directions. The hit points of these rays give a distribution of points
on the object surface. At each ray hit point we tessellate the sur-
face in the same multiresolution fashion as for radiosity caching
and run a shader that computes irradiance. The grid of irradiance
results are stored in the cache for reuse by subsequent subsurface
computations. The irradiance value needed for a given hit point
is interpolated from those in the grid. The surface area associated
with the irradiance value is computed as4π divided by the number
of rays times the squared hit distance and divided by the dot prod-
uct of the ray direction and the surface normal. Finally, we compute
the distance between the irradiance sample and the point to which
we are scattering. The irradiance, area, and distance are the inputs
to the diffusion approximation.

To facilitate shaders passing irradiance to the renderer, the diffuse-
lighting() method of RSL can be extended with an optional third
parameter, Irradiance:

class sss_surface() {

public void
diffuselighting(output color Ci, Oi;

output color Irradiance) {
// integrate direct and indir lighting
directlighting(...,

Irradiance); // output
}

}

If the shader uses the built-in integrator directlighting(), irradiance
will be automatically computed as a side effect.

Figure10shows two images rendered with this approach — one in
preview quality with 4 shadow and 4 subsurface rays per shading
point, and one in final quality with 64 shadow and 64 subsurface
rays per shading point. The render time for the preview image is
64 seconds without caching and 19 seconds with caching; a speed-
up of 3.4. For the final quality image the render times are 54 min-
utes versus 3.2 minutes, a speed-up of 17. In these images we have
used the dipole diffusion approximation [Jensen et al. 2001], but
more advanced formulas could be used as well, for example a mul-
tipole model or the quantized-diffusion model of d’Eon and Irving
[2011].

7 Discussion and Future Work

Biased versus unbiased rendering The radiosity caching
method proposed here is inherently biased since we reuse and in-
terpolate results. There is some debate in the global illumination
community about the pros and cons of unbiased rendering. Some
rendering techniques (for example pure path tracing) are unbiased,
so they are guaranteed to be correct on average. This can be useful
when computing e.g. “ground truth” reference images. However,

Figure 10: Candle face with subsurface scattering: (a) Preview
quality (19 sec). (b) Final quality (3.2 min).

the price is noisy images and very slow convergence to a final image
with no visible noise. In contrast, the success of point-based global
illumination techniques indicates that biased solutions can be very
useful in practical movie production. We believe that biased results
are perfectly acceptable as long as the results are noise-free, stable
in animation, and close to the ground truth.

Non-physical global illumination Even though global illumina-
tion is based on a physical simulation of light transport, there is still
room for artistic choices. For example, different sets of lights can
be used for direct illumination, global illumination, and subsurface
scattering. It is also possible to use different lights at specular ray
hit points since these are computed at diffuse depth 0 — this al-
lows for lights which contribute to directly visible and specularly
reflected objects but not to diffuse interactions and visa versa. Some
objects can have global illumination turned off entirely. These
global illumination tricks are in addition to the “classic” render-
ing tricks such as lights having non-physical fall-off, casting no
shadow, or have shadows cast from a position different from the
actual light source position [Barzel 1997], bent specular reflection
rays, etc.

The global illumination images in figure1 (bottom row) were ren-
dered with only one bounce of global illumination, but the indirect
illumination was boosted to compensate for the missing additional
bounces. This is a good example of “photosurrealistic” global illu-
mination used in movie production: visually pleasing and control-
lable bounce light is much more important than physical reality.

Specularlighting shader method At specular ray hit points we
need both view-independent and view-dependent shading results.
Currently this is done by calling the lighting() method. We have
also experimented with a separate specularlighting() method that is
executed after the diffuselighting() method for specular rays. More
precisely: If an appropriate radiosity cache entry exists we seed
Ci with the radiosity from the cache; otherwise we run diffuse-
lighting(). Then we run specularlighting() which adds to Ci.

However, we have found that in practice it is unclear whether there
is an actual advantage to this approach. Specular ray hit points are
always at diffuse depth 0, so they can’t share diffuse results with dif-
fuse ray hit points (which are always at diffuse depth higher than 0).
The only potential sharing is between REYES shading grids and
specular ray hits, and between specular ray hits. If a REYES grid
is shaded, it seems appealing to cache the diffuse result for possi-
ble reuse just in case some specular rays hit the same patch later.
But even this case isn’t clear-cut: polluting the fine radiosity cache
with results that may never be used can lead to eviction of more
useful radiosity values. If a specular ray hits a patch before it is
REYES shaded, it is unclear whether it is worthwhile paying the



up-front cost of computing diffuse illumination on the entire patch
— we don’t know if any other specular rays will hit the patch later,
or whether the patch is visible to the camera (causing REYES shad-
ing). We are currently investigating this surprisingly complex issue.

Caching view-dependent shading results In this paper, we
have focused only on caching of view-independent shading results,
but sometimes it is perfectly acceptable to cache view-dependent
results as well. Such a technique was used to speed up sharp and
glossy reflections in movies such as ‘Ratatouille’ and ‘Cars 2’.
Shah et al. [2007] precompute the direct illumination, including
specular reflections and highlights, as seen from a dominant view-
ing direction. (The dominant direction is not necessarily from the
camera position, but could be, for example, from below the ground
plane if it is shiny or wet, or from another prominent highly re-
flective object.) When tracing reflection rays, instead of running
the shader at the ray hit points they just look up the precomputed
shading results there. Obviously the specular highlights seen in the
reflections will often be in the wrong places, but they are stable,
plausible, and fast.

We could extend out multiresolution cache to store view-dependent
shading results and add a way to specify the dominant viewing di-
rection. We leave this as future work.

Importance As mentioned in section4.4we can’t use importance
to simplify shading if there’s a risk that the cached result will be
reused by a more important ray later on. One idea to relax this re-
striction is to store with each shading result the importance at which
it was computed, and only allow reuse by a subsequent ray if that
ray’s importance is lower or equal to the importance of the cached
result. This ensures that we never use an approximate shading re-
sult when an accurate result is needed. Unfortunately, this strat-
egy introduces multi-threaded non-repeatability: a low-importance
ray will reuse a cached shading result with higher importance if
it happens to be in the cache, but otherwise compute an approx-
imate shading result (and store it in the cache). The shading re-
sult can therefore be either accurate or approximate depending on
the execution order. Classifying importance into ranges and only
reusing shading results with importance in the same range as re-
quested could alleviate some of the undesired variation — albeit at
the cost of more cache entries and more shader evaluations.

8 Conclusion

We have presented a new multiresolution caching scheme targeted
at interactive preview and final-quality images for movies. The
caching reduces the number of shader executions, texture lookups,
and shadow rays, and provides significant speed-ups for ray-traced
rendering of global illumination, shadows, ambient occlusion, vol-
umes, and subsurface scattering.

An advantage over Ward’s irradiance caching method is that our
method also caches direct illumination and surface shading results
and uses SIMD shader execution over multiple points at a time.
The primary advantages over point-based global illumination are
that our new method is more interactive, has no file I/O, uses only
a single pass, and is more accurate. However, we do not see our
method as a replacement of point-based global illumination, but as
complimentary — another tool in the toolbox.

Our method is implemented in Pixar’s RenderMan renderer and is
currently being used in the production of upcoming movies from
several studios.

Supplemental Material

The supplemental material contains two videos. They illustrate in-
teractive changes of viewpoint, illumination, and shader parame-
ters while the scene is rendered continuously with progressive ray
tracing. The first video shows global illumination with radiosity
caching, while the second video shows subsurface scattering with
irradiance caching.

Acknowledgements

Many thanks to our colleagues in Pixar’s RenderMan team for all
their help in this project. Brian Smits implemented the latest gen-
eration of the multiresolution tessellation cache — his implementa-
tion has efficient multithreading and memory use, and was used as
the basis for our multiresolution radiosity cache. Andrew Kensler
implemented most of the progressive ray-tracing front-end and the
fast float-to-half conversions. Julian Fong did most of the work
related to volume rendering. Huge thanks to Chris Harvey who
created the scene in figure10 and the videos in the supplemental
materials, and to Wayne Wooten for video editing and voice-over.

Also many thanks to Bill Reeves, Jean-Claude Kalache, Christophe
Hery and others for early testing and feedback, and to Guido Qua-
roni, Sanjay Bakshi, and the entire ‘Monsters U.’ lighting team for
adopting this method in production. Apurva Shah suggested the
idea of caching view-dependent shading results, as described in sec-
tion 7. Thanks to Charlie Kilpatrick and Tony DeRose for reading
early drafts of this memo and for providing very helpful feedback.

References

APODACA, A. A., AND GRITZ, L. 2000. Advanced RenderMan:
Creating CGI for Motion Pictures. Morgan Kaufmann Publish-
ers.

BARZEL, R. 1997. Lighting controls for computer cinematography.
Journal of Graphics Tools 2, 1, 1–20.

CHRISTENSEN, P. H.,AND BATALI , D. 2004. An irradiance atlas
for global illumination in complex production scenes. InRen-
dering Techniques (Proc. Eurographics Symposium on Render-
ing 2004), 133–141.

CHRISTENSEN, P. H., LAUR, D. M., FONG, J., WOOTEN,
W. L., AND BATALI , D. 2003. Ray differentials and multi-
resolution geometry caching for distribution ray tracing in com-
plex scenes. Computer Graphics Forum (Proc. Eurographics
Conference 2003) 22, 3, 543–552.

CHRISTENSEN, P. H., FONG, J., LAUR, D. M., AND BATALI ,
D. 2006. Ray tracing for the movie ‘Cars’. InProc. IEEE
Symposium on Interactive Ray Tracing 2006, 1–6.

CHRISTENSEN, P. H. 2008. Point-based approximate color bleed-
ing. Tech. Rep. 08-01, Pixar Animation Studios. (Available at
graphics.pixar.com/library/PointBasedColorBleeding).

COOK, R. L., CARPENTER, L., AND CATMULL , E. 1987. The
Reyes image rendering architecture.Computer Graphics (Proc.
SIGGRAPH ’87) 21, 4, 95–102.

D’EON, E., AND IRVING, G. 2011. A quantized-diffusion
model for rendering translucent materials.ACM Transactions
on Graphics (Proc. SIGGRAPH 2011) 30, 4.

DUTRÉ, P., BEKAERT, P.,AND BALA , K. 2003.Advanced Global
Illumination. A K Peters.



FAJARDO, M., 2010. Ray tracing solution for film production ren-
dering. In [Ǩrivánek et al. 2010].

HANRAHAN , P., AND LAWSON, J. 1990. A language for shad-
ing and lighting calculations.Computer Graphics (Proc. SIG-
GRAPH ’90) 24, 4, 289–298.

HECKBERT, P. S. 1990. Adaptive radiosity textures for bidirec-
tional ray tracing.Computer Graphics (Proc. SIGGRAPH ’90)
24, 4, 145–154.

HOU, Q., AND ZHOU, K. 2011. A shading reuse method for effi-
cient micropolygon ray tracing.ACM Transactions on Graphics
(Proc. SIGGRAPH Asia 2011) 30, 6.

IGEHY, H. 1999. Tracing ray differentials.Computer Graphics
(Proc. SIGGRAPH ’99) 33, 179–186.

JENSEN, H. W., AND BUHLER, J. 2002. A rapid hierarchical
rendering technique for translucent materials.ACM Transactions
on Graphics (Proc. SIGGRAPH 2002) 21, 3, 576–581.

JENSEN, H. W., MARSCHNER, S., LEVOY, M., AND HANRA-
HAN , P. 2001. A practical model for subsurface light transport.
Computer Graphics (Proc. SIGGRAPH 2001) 35, 511–518.

KONTKANEN, J., TABELLION , E., AND OVERBECK, R. S. 2011.
Coherent out-of-core point-based global illumination.Computer
Graphics Forum (Proc. Eurographics Symposium on Rendering
2011) 30, 4, 1353–1360.

K ŘIVÁNEK , J., GAUTRON, P., WARD, G., JENSEN, H. W.,
TABELLION , E., AND CHRISTENSEN, P. H. 2008. Practi-
cal global illumination with irradiance caching.SIGGRAPH
2008 Course Note #16. (Available at cgg.mff.cuni.cz/˜jaroslav/-
papers/2008-irradiancecachingclass).

K ŘIVÁNEK , J., FAJARDO, M., CHRISTENSEN, P. H., TABEL-
LION , E., BUNNELL , M., LARSSON, D., AND KAPLANYAN ,
A. 2010. Global illumination across industries.SIGGRAPH
2010 Course Notes. (Available at cgg.mff.cuni.cz/˜jaroslav/-
gicourse2010).

LANDIS, H. 2002. Production-ready global illumination. In
SIGGRAPH 2002 Course Note #16: RenderMan in Production,
87–102. (Available at www.renderman.org/RMR/Publications/-
sig02.course16.pdf).

MEYER, M., AND ANDERSON, J. 2006. Statistical acceleration for
animated global illumination.ACM Transactions on Graphics
(Proc. SIGGRAPH 2006) 25, 3, 1075–1080.

OREN, M., AND NAYAR , S. K. 1994. Generalization of Lambert’s
reflectance model.Computer Graphics (Proc. SIGGRAPH ’94)
28, 239–246.

PHARR, M., AND HUMPHREYS, G. 2010.Physically Based Ren-
dering: From Theory to Implementation, 2nd. ed. Morgan Kauf-
mann Publishers.

RAGAN-KELLEY, J., KILPATRICK , C., SMITH , B. W., EPPS, D.,
GREEN, P., HERY, C., AND DURAND, F. 2007. The Lightspeed
automatic interactive lighting preview system.ACM Transac-
tions on Graphics (Proc. SIGGRAPH 2007) 26, 3.

SHAH , A., RITTER, J., KING, C., AND GRONSKY, S. 2007. Fast,
soft reflections using radiance caches. Tech. Rep. 07-04, Pixar
Animation Studios. (Available at graphics.pixar.com/library/-
SoftReflections).

TABELLION , E., AND LAMORLETTE, A. 2004. An approximate
global illumination system for computer generated films.ACM

Transactions on Graphics (Proc. SIGGRAPH 2004) 23, 3, 469–
476.

WARD, G. J.,AND HECKBERT, P. S. 1992. Irradiance gradients.
In Proc. 3rd Eurographics Workshop on Rendering, 85–98.

WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988. A
ray tracing solution for diffuse interreflection.Computer Graph-
ics (Proc. SIGGRAPH ’88) 22, 4, 85–92.

WARD LARSON, G., AND SHAKESPEARE, R. 1998. Rendering
with Radiance. Morgan Kaufmann Publishers.

WARD, G. 1991. Real pixels. InGraphics Gems II. 80–83.

ZHUKOV, S., IONES, A., AND KRONIN, G. 1998. An ambient
light illumination model. InRendering Techniques (Proc. Euro-
graphics Workshop on Rendering 1998), 45–55.


