## Multiresolution Radiosity Caching for Global Illumination in Movies







Per Christensen George Harker Jonathan Shade Brenden Schubert Dana Batali

**Pixar Animation Studios** 

SIGGRAPH 2012

#### Background

 Global illumination is used more and more in CG movie production

faster lighting design, more realistic lighting

- Existing methods: distribution ray tracing, path tracing, point-based GI
- Present new caching strategy to make distribution ray tracing more efficient



#### Motivation

- The bottleneck in ray-traced global illumination is not raw ray tracing speed, but evaluating shaders:
  - displacement, light source, surface shaders
  - texture map lookups, procedural texture gen, shadows, brdf eval, shader overhead, external plug-ins, ...
- Let's try to reuse shader results where possible

#### Outline

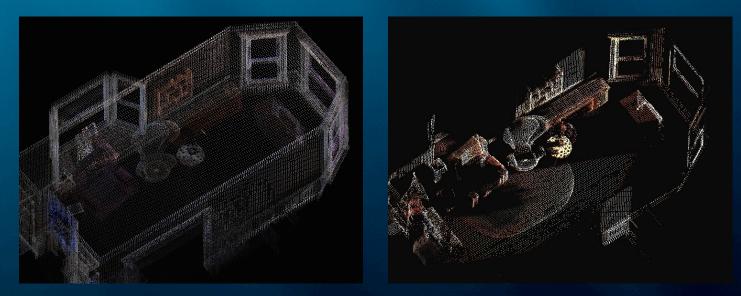
- Related work
- Multiresolution radiosity cache
- Shading system interface
- Global illumination examples
- Other applications: shadows, subsurface



#### Related work: distrib. ray tracing

- Store direct illum in textures; distribution ray tracing: 1-bounce GI
- Pros: few shader evals
- Cons: many texture files, multipass, 1bounce
- Used on 'Shrek 2' and other movies [Tabellion04]




#### Related work: path tracing

- Shoot many rays/pixel; only 1 ray deeper
- Pros: simple algorithm, very general, single pass, fast interactive feedback
- Cons: many shader evals, noisy, slow convergence
- Used on 'Monster House' and other movies [Fajardo10]



#### Related work: point-based GI

#### Store point cloud(s) of direct illum



 Compute indir illum by rasterizing points and clusters [Christensen08,Ritschel09]
 PIXAR

#### Related work: point-based GI

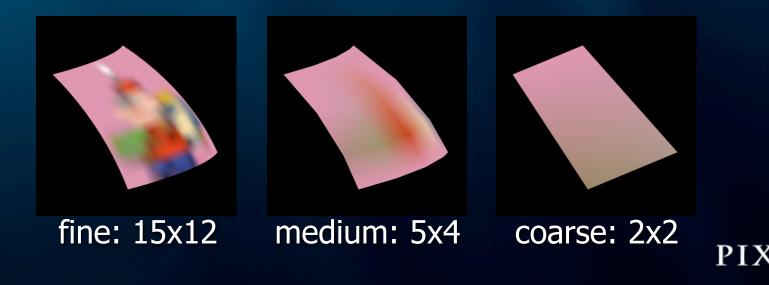
- Pros: fast, noise-free
- Cons: file I/O, multipass, not ideal for interactive
- Used at many studios, >40 movies
- Part of Pixar pipeline: `Up', `Toy Story 3', ...







#### Multiresolution radiosity caching


- Best properties:
  - single pass: interactive
  - few shader evals (caching)
  - multi-bounce GI
  - fixed cache size
  - no file I/O



#### Radiosity cache structure and data

Radiosity of surface patch at 3 resolutions:

 fine: every REYES shading point
 medium: every 4th shading point
 coarse: 4 corners



#### Radiosity cache structure and data

- Cache entry identifier:
  - patch number
  - diffuse ray depth (for multi-bounce)
  - motion segment (for motion blur)
  - surface side
  - timestamp (for interactive applications)

#### Radiosity cache lookups

 Use ray differentials [Igehy99] to select cache resolution



Similar to multires tessellation cache

#### Shading system interface

- The renderer needs to call shaders for information. Previous shader methods:
  - displacement
  - opacity
  - prelighting (calc textures etc)
  - lighting
  - postlighting (e.g. non-linear mapping)

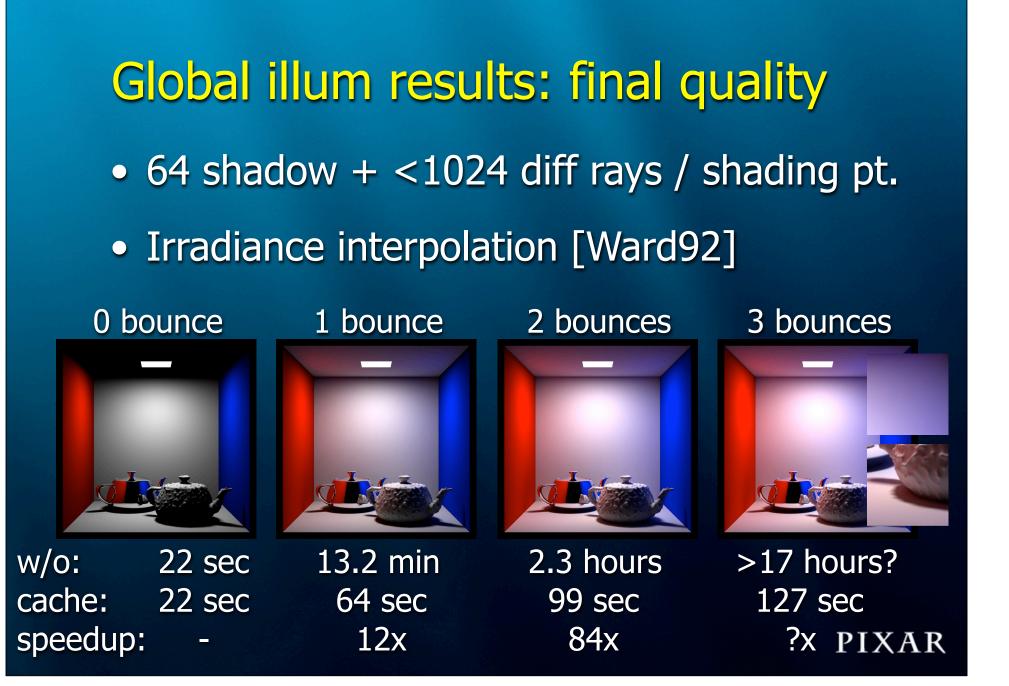
#### Shading system interface

- New shader method:
   diffuselighting
- Computes view-independent part of lighting: diffusely reflected light from surface (radiosity)
- Result stored in radiosity cache



#### Rendering

- Run shader at REYES shading points
- Shoot diffuse rays to sample indirect diffuse illum ("color bleeding")
- At ray hit points: use cached radiosity or run diffuselighting and cache result
- Radiosity is computed on demand and reused many times


#### Global illum results: Cornell boxes

- Images at 1k resolution
- Times for 8-core PowerMac
- 8 GB memory
- Default radiosity cache size: 100 MB



# Global illum results: preview quality 4 shadow + 4 diffuse rays / shading point





#### **Global illum results**

- Cornell boxes are simple
- Even higher speedups for:
  - more complex shaders
  - more light sources
- More realistic results: Monsters U.



- Images at 1920x1080 resolution
- Times for 4 cores
- 12 GB memory
- Radiosity cache size 256 MB





#### direct: 25 min (2 lights)

global: 1.5 hour 33x slower w/o cache





direct: 2.3 hours (20 lights)



global: 4 hours 41x slower w/o cache

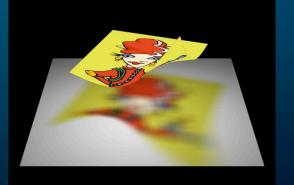


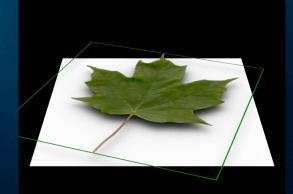
- Speed for different radiosity cache sizes:
  - 0 MB : 102 hours
  - 16 MB : 36 hours
  - 64 MB : 1.3 hour
  - 256 MB : 1.1 hour
  - 1 GB : 1.1 hour





- GI reduced #lights from 100s to 10-20
- Radiosity caching chosen over pointbased GI because of interactivity (lighting turn-around)
- Master lighting: 4 weeks -> 2 weeks


#### Other applications of caching

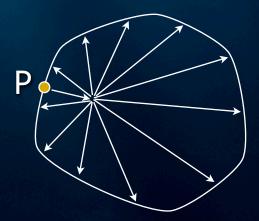

- We developed method to accelerate GI, but can be applied to other parts of shading pipeline
- Whereever there are view-independent results that can be reused

#### **Other applications: opacity**

 Computed by shaders: shadows, ambient occlusion, volume extinction

• Speedups: ~2-4x










#### Other applications: subsurf scatter

- Ray-traced subsurface scattering
- Trace rays to sample surf geom + illum
- Cache irradiance -- incident illum on surface



## Other applications: subsurf scatter



final: 3.2 min 17x speedup

preview: 19 sec 3.4x speedup



Other applications: subsurf scatter
Used in production, for example:

Snow White and the Huntsman (skin, wings)
The Dark Knight Rises (bats)



#### More info

- graphics.pixar.com/library/RadiosityCaching :
- Pixar tech memo #12-06
- Videos of interactive GI and subsurface scattering



#### Conclusion

- Reduces bottleneck: shader evals (and shadow rays)
- Suitable for interactive & final rendering
- Speedups > 30 in production scenes
- In PRMan
- Used in production at several studios (including Pixar)



#### Acknowledgements

RenderMan/Seattle team

 Katrin Bratland, Julian Fong, Stephen Friedman, Chris Harvey, Ian Hsieh, Andrew Kensler, Charlie Kilpatrick, David Laur, Brian Saunders, Brian Savery, Chris Scoville, Brian Smits, Adam Wood-Gaines, Wayne Wooten

#### • Pixar Emeryville

 Bill Reeves, Jean-Claude Kalache, Christophe Hery, Ryusuke Villemin, Sanjay Bakshi, Guido Quaroni, Tony DeRose, ...

# Thanks!

# Questions?

