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Abstract

When rendering only directly visible objects, ray tracing a few levels of specular reflection from large, low-
curvature surfaces, and ray tracing shadows from point-like light sources, the accessed geometry is coherent
and a geometry cache performs well. But in many other cases, the accessed geometry is incoherent and a standard
geometry cache performs poorly: ray tracing of specular reflection from highly curved surfaces, tracing rays that
are many reflection levels deep, and distribution ray tracing for wide glossy reflection, global illumination, wide
soft shadows, and ambient occlusion. Fortunately, less geometric accuracy is necessary in the incoherent cases.
This observation can be formalized by looking at the ray differentials for different types of scattering: coherent
rays have small differentials, while incoherent rays have large differentials. We utilize this observation to obtain
efficient multiresolution caching of geometry and textures (including displacement maps) for classic and distribu-
tion ray tracing in complex scenes. We use an existing multiresolution caching scheme (originally developed for
scanline rendering) for textures and displacement maps, and introduce a multiresolution geometry caching scheme
for tessellated surfaces. The multiresolution geometry caching scheme makes it possible to efficiently render scenes
that, if fully tessellated, would use 100 times more memory than the geometry cache size.

1. Introduction

Our goal is to render ray tracing and global illumination ef-
fects in very complex scenes — scenes that are so complex
that a finely tessellated representation of all objects would
take up orders of magnitude more memory than is avail-
able. Professional users of rendering programs for movie
production and special effects routinely render scenes with
tens of thousands of objects whose full tessellation result in
hundreds of millions of polygons; these scenes contain hun-
dreds of light sources, surfaces with many texture maps each,
and shader-specified surface displacements in arbitrary di-
rections. We want to extend the “tool box” of these users to
include ray tracing and global illumination without limiting
scene complexity or shader generality.

This work is driven by current production demand for
ray traced shadows and reflections, ambient occlusion, and
color bleeding. Even though shadow maps, reflection maps,
and “bounce lights” are appropriate in many cases, there are
plenty of other cases where ray tracing and global illumi-
nation are the most cost-effective ways of obtaining a given

effect. For example, due to the fixed resolution of shadow
maps, they are not suitable for computing tiny, sharp shad-
ows in large scenes. Reflection maps cannot deal with real-
istic self-interreflections, and bounce lights require a lot of
painstaking trial and error to emulate color bleeding.

Our goals are very similar to those of the Toro21 and
Kilauea14 renderers. In Toro, rays are reordered to increase
the coherency of geometry cache accesses. This reordering
makes it possible to render scenes that are too large to fit
in memory, but unfortunately introduces shader limitations.
We are able to render even more complex scenes than Toro,
despite using a smaller geometry cache, and we do not re-
order rays. Kilauea is a massively parallel renderer that uses
a cluster of PCs to store the fine tessellations of all objects
in the scene. We are able to render equally complex scenes
on a single PC.

Here we focus on efficient distribution ray tracing in com-
plex scenes. Distribution ray tracing is used for Radiance-
style global illumination36, final gathering of photon maps12,
one-bounce global illumination, and ambient occlusion16, 38.
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2. Related work

Our method builds on prior work, particularly in geometric
coherency and simplification, ray tracing of complex scenes,
ray differentials, and texture caching.

2.1. Geometric coherency

Scanline rendering methods (such as the REYES algo-
rithm2, 5) can handle very complex scenes, but can only com-
pute local illumination effects. These methods handle geo-
metric complexity by rendering one image tile a time, and
only tessellating the objects visible in that tile. This max-
imizes geometry coherency and minimizes the number of
tessellated surfaces that need to be kept in memory.

It is fairly straightforward to extend scanline rendering
with ray tracing7 as long as the rays intersect geometry
in a coherent fashion. We call such rays coherent rays.
Specular reflection and refraction rays from flat or slightly
curved surfaces are usually coherent; shadow rays from
point lights, spot lights, directional lights, and small area
lights are also coherent. With this constraint, it is possible
to ray trace complex scenes: only the directly visible objects
and the reflected, refracted, and shadow-casting objects need
to be kept in tessellated form at any given time. This co-
herency has been exploited by Green and Paddon8 for geom-
etry caching on a multiprocessor, Pharr and Hanrahan20 for
caching of displacement mapped surfaces, and Wald et al.33

by tracing four coherent rays at a time.

But if the scene contains surfaces with high curvature or
high-frequency bumps or displacements, reflection and re-
fraction rays will go in every-which direction: these rays are
incoherent and a geometry cache of limited size will thrash.

Pharr et al.21 noted that for general path tracing13, there is
much less geometric coherency than for classic ray tracing.
They suggested overcoming this obstacle by reordering the
rays, as implemented in their Toro renderer. Unshot rays are
inserted into a pool of rays. The image contribution of each
ray is computed before the ray is inserted in the pool, and
this weight (and the ultimate pixel position of the ray color)
is stored with the pending ray. When sufficiently many rays
are waiting to be intersection tested against an object, the
geometry is read in, tessellated if not already in tessellated
form, and inserted into the cache. This way, they can render
scenes that are ten times larger than their geometry cache.
The drawback of ray reordering is that it relies on being able
to precompute the contribution of a ray before it is traced.
This is fine for shooting a fixed number of rays from a shader
with a linear BRDF. But it makes adaptive sampling impos-
sible, and it does not work with the “creative” shaders that
are often desirable in production. Consider for example a
surface that should be red if more than half of the reflection
rays hit a certain object. In such cases, there is no way we
can know a priori the contribution of each ray.

2.2. Geometric simplification for rendering

A common method to speed up rendering is to simplify ge-
ometry that only covers a small part of the image. Level-of-
detail for rendering is described by Apodaca and Gritz2.

Rushmeier et al.23 used a coarse geometry representation
for computing an approximate radiosity solution. Clusters
of complex geometry were substituted by boxes with simi-
lar reflective and transmissive properties. Then, during ren-
dering, rays for computing diffuse interreflection were inter-
sected with the original geometry near the ray origins and
with the boxes further away. A user-defined distance thresh-
old was used to switch between the two representations. Our
approach is based on the same premise: rays for computa-
tion of some types of reflection need less accuracy than other
rays. However, we use distribution ray tracing6 while they
used path tracing, and we use photon maps12 for global il-
lumination instead of radiosity. We also use our method for
other purposes than computation of diffuse global illumina-
tion, and our use of ray differentials means that we have a
better way of choosing the appropriate representation.

Smits et al.28 and Christensen et al.4 clustered geometry
for efficient light transport between distant groups of objects.
Instead of computing light transport between all pairs of ob-
jects, the far-field radiance of one cluster of objects is com-
puted, the light is transported to the other cluster, and then
“pushed down” to its individual surfaces.

2.3. Ray tracing without tessellation

“Conventional wisdom” says that it is more efficient to ray
trace tessellated surfaces than their high-level representation.
But there has been significant recent work on speeding up
direct ray tracing without tessellation15, 17, 24, 29. A distinct
advantage of these approaches is that only the high-level
description of the objects (for example the control points
of NURBS patches, or top-level subdivision meshes) and a
spatial acceleration data structure need to fit in memory. So
these methods seem ideal for ray tracing of complex scenes,
at least from a memory usage standpoint. Unfortunately, ac-
cording to our experiments, these methods are still signifi-
cantly slower than ray tracing tessellated surfaces — as long
as the tessellation fits in memory.

Another reason that makes tessellation desirable is that it
makes ray tracing of surfaces with arbitrary displacements
simple20. The method of Smits et al.29 computes ray inter-
sections with very complex displaced surfaces (without ex-
plicit tessellation), but is restricted to displacements along
the surface normal and requires repeated evaluations of the
displacement shader. The more complex the displacement
shader is, the more advantageous tessellation is.

Given these constraints, we remain convinced that for ef-
ficient ray tracing, it is still necessary to tessellate surfaces.
Our focus here is on a demand-driven caching technique
which minimizes the storage cost of the tessellation.
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2.4. Parallel ray tracing

The IRT ray tracer by Parker et al.18 uses many proces-
sors on a shared memory computer to obtain interactive
frame rates. For best performance, scenes must fit in the
4 MB on-chip cache on each processor. The RTRT system
by Wald et al.32 uses a cluster of PCs for interactive ray trac-
ing of complex scenes (up to 50 million triangles). Ray co-
herency ensures that each PC only needs parts of the scene.
Wald et al. also used RTRT to render indirect illumination
in simpler scenes31. They shot 20–25 shadow rays pr. pixel
to virtual point lights generated by random walks (similar to
“instant radiosity”), and averaged indirect illumination be-
tween neighbor pixels to reduce noise. Although impressive,
these interactive systems only have simple shaders and the
images are too aliased for movie production.

The Kilauea renderer14 handles complex scenes by divid-
ing the objects between a cluster of PCs. Each surface is
tessellated and assigned to a processor. Packets of rays to be
tested for intersection are communicated between the pro-
cessors. After all rays have been shot by a shader, the shader
is inserted into a pool of suspended shaders. When all those
rays have been traced and shaded, the shader is taken out of
the pool and its computation continues.

We are not currently focused on a parallel implementa-
tion; we are more interested in efficient rendering of com-
plex scenes on a single processor. That is, we want to make
it feasible to render, on a single machine, complex scenes
that would otherwise require multiple machines. But our ob-
servation about ray differentials and coherency could also
improve the efficiency of parallel renderers.

2.5. Ray differentials

Beam tracing10, cone tracing1, and pencil tracing25 trace
bundles of light paths instead of infinitely thin rays. General
intersection, reflection, and refraction calculations are diffi-
cult since each bounce can split the light beam/cone/pencil.

Igehy’s ray differential method11 traces single rays, but
keeps track of the difference between each ray and two (real
or imaginary) “neighbor” rays. These differences give an in-
dication of the cone/beam size that each ray represents. The
curvature at surface intersection points determines how those
ray differentials are propagated at specular reflection and re-
fraction. For example, if a ray hits a highly curved, convex
surface, the specularly reflected ray will have a large dif-
ferential (representing highly diverging neighbor rays). Ray
differentials help in texture antialiasing since they indicate
the best texture filter size, but they do not help in aliasing of
ray hits (visibility): the ray either hits an object or not.

Suykens and Willems30 generalized ray differentials to
glossy and diffuse reflections. For distribution ray tracing of
diffuse reflection, the ray differential corresponds to a frac-
tion of the hemisphere. The more rays are traced from the

same point, the smaller the fraction becomes. For path trac-
ing of diffuse reflection, the “path differential” is a global
value 2d

√
N, where d is the ray depth and N is the total num-

ber of rays that reach that depth. Distribution ray tracing usu-
ally gives smaller, more accurate ray differentials than path
tracing.

2.6. Multiresolution texture caching

Peachey19 introduced a multiresolution texture caching
scheme that caches 32 × 32 pixel texture tiles from MIP
maps37. He found that texture accesses are highly coherent
for REYES rendering, and that a cache size of 1% of the total
texture size is sufficient. Thanks to our observation about ray
differentials and coherence, we are able to use the same tex-
ture caching method for distribution ray tracing: incoherent
texture lookups have large ray differentials, so high levels in
the texture MIP maps suffice for these.

Peachey’s texture cache also inspired our multiresolution
geometry cache. Pharr et al.21 observed that their geome-
try cache has similarities with Peachey’s texture cache in
that data is only loaded on demand, and a limited amount
is stored in memory. With our method, the similarity is
even stronger: one can think of our multiresolution geom-
etry cache as a tessellation MIP map cache.

2.7. Ray tracing and global illumination with the
RenderMan interface

Our implementation is done within the framework of the
RenderMan specification22. There have been several ear-
lier implementations of ray tracing and global illumination
within this framework, for example the Vision system27 and
BMRT9. However, we believe that no other renderer has
taken advantage of the relationship between ray differentials
and coherency, and that neither Vision nor BMRT would be
able to render scenes as complex as the ones we test here.

3. Overview

We are faced with the following conundrum: we need to
keep a tessellated version of the entire scene in memory
(since many rays are incoherent), we also need a fine tessel-
lation (since some rays require high accuracy), and we do not
want to reorder the rays. How is this possible? Fortunately,
a key insight about the relation between ray differentials and
ray coherency makes it possible to overcome this obstacle
and deal with classic and distribution ray tracing in complex
scenes. The insight is that there are two types of rays:

1. Specular reflection and refraction rays from surfaces with
low curvature and shadow rays to point-like light sources.
These rays have small differentials, and require high ac-
curacy and fine tessellation. These rays are usually co-
herent, so using a geometry cache with relatively small
capacity (few entries) works well.
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2. Specular reflection and refraction rays from highly
curved surfaces and rays from wide distribution ray trac-
ing. These rays have large differentials, do not require
high accuracy, and can use a coarse tessellation. These
rays are incoherent, so they require a cache with large
capacity (many entries) and/or entries that are fast to re-
compute.

Utilizing this observation, we present a multiresolution
geometry caching scheme with separate caches for coarsely,
medium, and finely tessellated surfaces. This exploits the
different coherencies of various types of rays, and their dif-
ferent accuracy requirements. It is interesting to note that
this scheme results in an automatic level-of-detail represen-
tation of the tessellation — a tessellation MIP map37. In fact,
as mentioned earlier, our multiresolution geometry cache is
remarkably similar to Peachey’s texture MIP map cache19.

In our implementation, we assume that the high-level de-
scriptions of all objects fits in memory. The same assumption
is typically made by pure REYES renderers5. Fortunately,
NURBS control points, top level subdivision meshes, etc.
are typically orders of magnitude more compact than their
fully tessellated representation. The only extra memory we
use in addition to that used by a pure REYES scanline ren-
derer is for the geometry cache (fixed size, typically 30 MB)
and a spatial acceleration data structure (less than 50 MB
even for very complex scenes).

We tessellate all geometry on demand. We choose the
appropriate tessellation rate based on ray size: the quads
should be approximately the same size as the ray beam
cross-section. (Using smaller quads is a waste of time and
memory; larger quads do not give adequate precision.) Tes-
sellation makes ray tracing faster, simplifies displacement
mapping, and allows for displacements in arbitrary direc-
tions. The ability to cache displaced tessellations ensures
that we rarely need to run the displacement shader repeat-
edly for the same surface.

4. Coherent rays are narrow, incoherent rays are wide

In this section we analyze in detail the coherency and differ-
ential sizes for different types of rays.

4.1. Terminology and ray propagation

A ray consists of an origin, P, and a direction, D. The ray

differential at P is ( ∂P
∂u , ∂P

∂v , ∂D
∂u , ∂D

∂v ). The ray’s ∂P′

∂u and ∂P′

∂v at
a point P′ span a parallelogram. A ray beam is spanned by
the parallelograms along the ray. The ray footprint at a ray
intersection point is the projection of the ray parallelogram
onto the surface tangent plane at that point. Please refer to
figure 1 for an illustration. We call a ray narrow if its ray
beam has a small cross-section, and wide if it has a large
cross-section.

P D

∂P
∂u

∂P
∂v

ray beam

P′

∂P′

∂u

∂P′

∂v

Figure 1: Ray differentials and beam for a ray from P to P′.

4.2. Specular reflection and refraction rays

Figure 2 shows parallel rays specularly reflected by flat, con-
vex, and concave surfaces. Reflection from a flat surface
gives coherent, narrow reflection rays. Conversely, reflection
from a highly curved, bumped or displaced surface gives in-
coherent wide reflection rays: two adjacent rays are reflected
in different directions, but also have large differentials. Note
that even though the reflection rays from concave surfaces
are initially narrow, after a certain distance, the ray differen-
tials cross over and the rays get wider again.

Figure 2: Specular reflection (shown in 2D for clarity):
a) flat surface; b) convex surface; c) concave surface.

Specular refraction is very similar: refraction through a
flat surface gives parallel, narrow refraction rays, while re-
fraction through a highly curved surface gives diverging
wide refraction rays.

It is tempting to conclude from these examples that all
coherent specular rays have narrow beams and all incoherent
specular rays have wide beams. But there is an unfortunate
exception: surfaces with many tiny flat facets, as for example
a disco ball. The small flat facets reflect rays with narrow
beams, but in incoherent directions.

4.3. Shadow rays from point-like sources

Shadow rays to a point, spot, or directional light source are
very narrow and very coherent. In this respect, they behave
as specular reflection rays from a flat surface. If there are
several light sources, only the rays to each light are coher-
ent with each other; rays to different light sources are not
coherent. Fortunately, even if there are thousands of light
sources in a scene, usually only a small fraction of them il-
luminate a given point by a significant amount — the rest of
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the lights can be probabilistically sampled, computed with-
out shadows, or skipped entirely26, 34. So for each part of a
surface, only a few light sources require narrow shadow rays.

4.4. Glossy reflection and refraction rays

Distribution ray tracing is used to render glossy reflection
and refraction. Assume that glossiness is specified as a solid
angle over which the reflection rays can be reflected. The
directional differential ( ∂D

∂u , ∂D
∂v ) of each ray corresponds to

the glossy cone angle divided by the number of rays — see
figure 3.

Figure 3: Glossy reflection from flat surfaces.

For glossy reflection from curved surfaces, we use the
maximum of the ray differential for specular reflection from
a curved surface and the differential for glossy reflection
from a flat surface. This is a heuristic that seems to work
well in practice.

Rays from narrow glossy reflection and refraction have
small differentials and are coherent. Conversely, rays from
wide glossy reflection and refraction have larger differentials
and are incoherent.

4.5. Shadow rays from area light sources

Distribution ray tracing is also used to compute soft shad-
ows from area light sources. The directional differential of
a shadow ray to an area light source is computed by taking
the relative size of the light source divided by the number of
shadow rays. Shadow rays to a small area light source are
narrow and coherent, while shadow rays to a large area light
source are wide and incoherent.

4.6. Hemisphere sampling

Distribution ray tracing over a hemisphere is used to com-
pute diffuse reflection and transmission (translucency), am-
bient occlusion, one-bounce color bleeding, and final gath-
ering of global illumination.

For such hemisphere sampling, the directional ray differ-
ential corresponds to the fraction of the hemisphere that is
covered by that ray. If the hemisphere is sampled in a cosine-
weighted fashion, the rays are more dense near the pole than
near the equator, and the rays near the pole have smaller di-
rectional differentials than rays near the equator. See figure 4
for an illustration.

The hemisphere sampling rays are quite wide, except near

Figure 4: Diffuse reflection from flat surface.

their origin. But the rays are hit-tested with coherent geom-
etry near their origin even though their directions diverge.

This approach breaks down if there are only a few hemi-
sphere sampling rays since the ray differentials get very
large. The worst case is if there is only one ray (as in path
tracing); in that case the directional ray differential would
correspond to the entire hemisphere. One would then have to
resort to a global value based on the total number of rays at
that depth30. But to get hemisphere sampling results without
excessive noise, we need to shoot many hemisphere samples
anyway — typically at least 256.

4.7. Summary

From this analysis, we conclude that in most cases, coher-
ent rays have narrow beams, and incoherent rays have wide
beams.

5. Implementation

We used this observation as part of our recent extension of
Pixar’s RenderMan renderer (PRMan) to support ray tracing
and global illumination. PRMan is a widely used commer-
cial renderer that adheres to the RenderMan specification22

and is based on the REYES architecture2, 5.

5.1. REYES and rays

In a REYES renderer, all visible geometry is tessellated into
micropolygon grids and the vertices of the grids are shaded.
With the addition of ray tracing, shading at these vertices
can cause rays to be shot to compute reflections, shadows,
etc. This hybrid rendering technique means that, in contrast
to “pure” ray tracing, there are no camera rays.

In our current implementation, the tessellated surfaces
used for ray tracing are not identical to the REYES micro-
polygon grids, so each surface patch has two representations.
It may be possible to merge the two, although it would re-
quire the tessellation cache to be able to deal with general
tessellation rates (such as 5× 13) instead of only the fixed
rates currently handled (as described in the following).

Rendering with REYES and ray tracing inevitably takes
longer than pure REYES rendering, not only because of the
time spent calculating ray intersections, but also due to the
additional shading required at the ray hit points.
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To shade a ray hit point, we create a small shading grid
of three points (similar to BMRT9). The two extra points are
necessary for shaders that use derivatives and also to gener-
ate new ray differentials. The two points are created based
on the ray footprint, and their normals are created based on
the local curvature of the object. New rays are only traced
from the real hit point; the rays from the two other points are
only used to set up ray differentials.

To avoid hemisphere sampling from all shading points, we
use interpolation of irradiance using irradiance gradients35

and, similarly, interpolation of ambient occlusion using oc-
clusion gradients. It is simpler to interpolate between values
on a grid of REYES shading points (that are known to be
on the same surface) than between disconnected points in
3D space.

We select the appropriate geometric representation on-
the-fly based on the ray beam sizes. If the initial subpatch
is too large for a sufficient tessellation, for example because
the object is seen through a magnifying glass or reflected
by a concave mirror, we subdivide it into even smaller sub-
patches. By contrast, rendering algorithms that pre-tessellate
based on screen size will sometimes be wrong; in the pres-
ence of magnifying glasses, concave mirrors, etc., it is im-
possible to know the necessary tessellation rate before ren-
dering starts.

5.2. Multiresolution geometry cache

We use a caching scheme with separate caches for coarse,
medium, and fine tessellations to exploit the different co-
herency and accuracy needed:

1. A fine tessellation cache with large elements (17×17 ver-
tices = 16×16 quads) only needs to hold relatively few
entries since narrow rays are coherent.

2. A medium tessellation cache (5×5 vertices = 4×4 quads)
in between for rays that are neither very coherent nor very
narrow.

3. A coarse tessellation cache with small elements (2×2
vertices = 1 quad) can hold many entries. It is also cheap
to recompute the entries if they have been swapped out
since they consist of only four vertices.

These three co-existing approximations of a surface sub-
patch are shown in figure 5. The fine tessellation cache also
stores 4× 4 bounding boxes (each for 4× 4 quads) for effi-
cient intersection tests.

Figure 5: A surface subpatch and its tessellations (left to
right): original subpatch, 16×16 quads, 4×4 quads, 1 quad.

We use a least-recently-used (LRU) cache replacement
scheme. The size of the geometry cache can be specified
by the user. By default, the size is 10 MB for each of the
three caches, so with a vertex taking up 12 bytes, the coarse
cache has a capacity of 220,000 entries, the medium cache
has 35,000 entries, and the fine cache has 3,000 entries. For
comparison, a single fine-resolution cache of 30 MB can
hold only 9,100 entries. It would be interesting to investi-
gate other choices for the number of caches and their rel-
ative sizes, or to use a single multiresolution cache for all
tessellations.

We choose the appropriate cache such that the quads are
approximately the same size as the ray beam. If the ray beam
size is in-between cache levels, we lookup in the nearest finer
cache and merge each set of 2×2 quads into one quad for
faster intersection testing. This, in effect, gives us five dif-
ferent tessellation resolutions while only storing three.

6. Results

The following tests were performed on a standard PC with
a 900 MHz Pentium III processor and 512 MB of memory.
The rendered images are 1024 pixels wide and have micro-
polygons that are at most one pixel large.

We used a geometry cache size of 30 MB (both for
single-resolution and multiresolution geometry caches), ex-
cept where noted, and a texture cache size of 10 MB.

6.1. Terminology

When a ray hits the bounding box of a subpatch that has
never been tessellated at the appropriate resolution before,
the subpatch is tessellated at that resolution and the tessella-
tion inserted into the cache. We call this a cold tessellation.
If the subpatch has been tessellated at the desired resolution
before, the tessellation is looked up in the cache. A cache hit
means that the tessellation was in the cache; the opposite is a
cache miss. The cache hit rate is cache hits/cache lookups.
When a cache miss occurs, we have to retessellate the patch.
We measure cache cost as the number of vertices that are
recomputed due to retessellations.

6.2. Parking lot

The first test scene consists of fifteen cars on a plane,
as shown in figure 6. Each car consists of 2155 NURBS
patches, many of which have trimming curves. The cars
are explicitly copied, not instanced. During rendering, the
NURBS patches are split into 940,000 subpatches. The spa-
tial acceleration data structure (a Kay-Kajiya tree7) uses
around 35 MB. A full tessellation would result in 940,000×
172 ≈ 270 million vertices (240 million quads or 480 mil-
lion triangles), consuming around 3.3 GB. This is 110 times
the size of the geometry cache.
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6.2.1. Shiny cars on diffuse ground

For this test, the ground plane is purely diffuse. The car paint
and chrome shaders shoot specular reflection rays. The scene
is illuminated by a directional light with sharp ray traced
shadows. Since the rays in this version of the scene are spec-
ular reflection rays from mostly smooth objects and shadow
rays to a directional light source, most rays are coherent and
narrow. So this is a case where we expect a lot of benefit
from caching, but little from multiresolution.

Figure 6: Shiny cars on diffuse ground.

Rendering the image in figure 6 causes the tracing of 4.1
million specular rays and 4.0 million shadow rays. These
rays result in 100 million ray-subpatch intersection tests.

Our tessellation scheme employs two distinct mechanisms
to achieve efficiency: a multiresolution representation and
a cache of reusable tessellations. To distinguish the con-
tributions of each mechanism, let’s first consider single-
resolution tessellation, with and without caching.

With a single-resolution cache, there are 380,000 cold
tessellations (producing 110 million vertices), 100 million
cache lookups, and 1.3 million cache misses, corresponding
to a hit rate of 98.7% and 360 million recomputed vertices.
The run time is 79 minutes. Without caching, the 100 million
intersection tests would require computing 100 million ×
172 ≈ 29 billion vertices; this 80 times more than the ver-
tices recomputed due to cache misses.

With a multiresolution cache, there are 400,000, 100,000,
and 30,000 cold tessellations (13 million vertices) and 35,
23, and 41 million cache lookups in the coarse, medium,
and fine caches. There are 7,100, 3,300, and 14,000 cache
misses, corresponding to hit rates of 99.97-99.99% and
6.2 million recomputed vertices. The run time is 62 minutes.
Without caching, there would have been 35×22 +23×52 +
41× 172 million ≈ 12 billion computed vertices — around
2000 times more than the 6.2 million vertices with caching.

6.2.2. Shiny cars on ambient occlusion ground

For this test, the ground plane is shaded with purely ambient
occlusion, as shown in figure 7. This means that there is a
mix of coherent and incoherent rays: 163 million occlusion
rays, 4.1 million specular rays, and 3.6 million shadow rays.
These rays cause 1.2 billion ray-subpatch intersection tests.

Figure 7: Shiny cars on ambient occlusion ground.

With a single-resolution cache, there are 650,000 cold tes-
sellations (190 million vertices), 1.2 billion cache lookups,
and 30 million cache misses — corresponding to a hit rate
of 97.5% and 8.7 billion recomputed vertices. The runtime is
32 hours. Without caching, the 1.2 billion intersection tests
would cause the computation of 350 billion vertices.

When multiresolution caching is used, there are 730,000,
110,000, and 30,000 cold tessellations (producing 14 mil-
lion vertices) and 950 million, 190 million, and 120 million
cache lookups, respectively. There are 1.6 million, 4,500,
and 13,000 cache misses, corresponding to hit rates of 99.8–
99.99% and a cost of 10 million recomputed vertices. This
is only 0.11% of the 8.7 billion recomputed vertices for the
single-resolution cache. The runtime is 11.5 hours. Without
caching, the intersection tests would cause the computation
of 43 billion vertices.

6.3. Psychedelic dragons

This scene contains 94 dragons modeled as subdivision
surfaces. The dragons are modeled individually, not in-
stanced. Behind them there are several procedurally dis-
placed NURBS spheres. The scene consists of 4,815 geo-
metric primitives; these are subdivided during rendering into
183,000 subpatches. If fully tessellated, the scene would re-
quire 53 million vertices (630 MB of memory) correspond-
ing to 47 million quads or 94 million triangles. The textures
in the scene are a mix of images and procedural textures.
The scene is illuminated by a directional light source, and
shadows are computed by ray tracing.
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6.3.1. Chrome and direct illumination of matte

For this test, half of the dragons are reflective chrome, half
of them matte, as shown in figure 8. All rays (specular re-
flection and shadow rays) are coherent.

Figure 8: Dragon scene with ray traced reflection and shad-
ows.

With a single-resolution cache, the cache hit rate is 98.5%,
and 140,000×172 ≈ 40 million vertices are recomputed due
to cache misses. The run time is 21 minutes.

With a multiresolution cache, the cache hit rates are
99.96–100%, and 0 × 22 + 1,200 × 52 + 250 × 172 ≈
100,000 vertices are recomputed due to cache misses. The
run time is 19 minutes. Even though all lookups are coher-
ent, the multiresolution cache reduces the number of recom-
puted vertices by a factor of 400.

6.3.2. Chrome and color bleeding

For this test, half of the dragons are chrome again, while
the other half have a material that computes color bleeding
(direct illumination plus single bounce soft indirect illumina-
tion). See figure 9. Notice the color bleeding from the ground
and sky onto the matte dragons. The run time with a 30 MB
multiresolution cache is 2 hours 1 minute.

Figure 9: Dragon scene with ray traced reflection, shadows,
and soft indirect illumination.

With a single-resolution cache, there are 120,000 cold

tessellations (producing 35 million vertices) and 18 million
cache lookups. The cache capacity, cache misses, cache hit
rate, and cache cost for varying cache sizes are listed in the
table below.

size capacity misses hit rate cost

100MB 30k 100k 99.4% 29Mvtx
30MB 9k 350k 98.0% 100Mvtx
10MB 3k 700k 96.1% 200Mvtx

3MB 900 1.2M 93.3% 350Mvtx
1MB 300 1.7M 90.5% 490Mvtx

With the multiresolution representation, there are
120,000, 40,000, and 7,500 cold tessellations (producing
3.6 million vertices) and 6.0 million, 5.4 million, and
6.3 million lookups in the coarse, medium, and fine caches.
The results for varying cache sizes are tabulated below.

size cap. misses hit rate cost

100MB 840k 0+0+0 100% 0
30MB 260k 0+84+180 99.9–100% 54kvtx
10MB 84k 21k+770+2.3k 99.6–99.9% 770kvtx

3MB 26k 180k+16k+7.3k 97.2–99.9% 3.2Mvtx
1MB 8.4k 470k+39k+20k 92.7–99.7% 8.6Mvtx

Comparing these two tables leads to several interesting
observations. For example, with a multiresolution geometry
cache of only 1 MB, 8.6 million vertices are recomputed.
This is significantly less than the number of vertices that
are recomputed using a single-resolution cache, even if that
cache uses 100 MB. With a multiresolution cache size of
3 MB, the cost of the cache misses (3.2 million vertices)
is about the same as the cold tessellations (3.6 million ver-
tices). This means that the 3 MB cache performs well despite
its small size. 3 MB is less than 1/200th of the 630 MB this
scene would consume in fully tessellated form.

6.3.3. Texture caching

We have not tested texture cache performance as thoroughly
as the results above for geometry caching. However, in a
separate test of the dragon scene from the previous sec-
tion, we observed that when all texture lookups are at the
most detailed MIP map level, the default 10 MB texture
cache thrashed heavily, and half of the run time was spent
(re)reading textures from disk. In contrast, when ray differ-
entials are used to determine the appropriate MIP map level,
texture reads do not contribute measurably to run time.

6.4. City street

The last test scene is a city street modeled with NURBS
patches and subdivision surfaces. It consists of around
46,000 top-level primitives. During rendering, these primi-
tives are divided into 970,000 subpatches. Fully tessellating
the entire scene would give 280 million vertices (3.4 GB of
memory) corresponding to nearly 250 million quads or 500
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million triangles. We shade all objects with short-range am-
bient occlusion (meaning that the occlusion rays have a short
cut-off distance) multiplied by surface color. The resulting
image is shown in figure 10. Computing the image causes
tracing of 210 million occlusion rays.

Figure 10: City street with short-range ambient occlusion.

With a single-resolution cache, there are 710,000 cold tes-
sellations, 1.1 billion cache lookups, and 2.1 million cache
misses. This corresponds to a hit rate of 99.8% and 610 mil-
lion recomputed vertices.

With the multiresolution cache, there are 710,000,
300,000, and 93,000 cold tessellations and 300, 230, and
600 million lookups in the coarse, medium, and fine caches.
There are 2,700, 6,500, and 29,000 cache misses, corre-
sponding to hit rates above 99.99%. The cache misses cause
recomputation of 8.6 million vertices — 71 times fewer than
with the single-resolution cache. The run time is 7.1 hours.

This shows that even when occlusion rays are only traced
over short distances and the accessed geometry is coher-
ent, multiresolution tessellation and caching still pays off.
For long-range ambient occlusion, where the rays intersect
the geometry in a less coherent manner, the multiresolution
cache would be even more beneficial.

7. Discussion and future work

In this section, we discuss some of the limitations of our
current implementation and list suggestions for future work.

7.1. Geometric inconsistency

Geometric inconsistencies can occur where the tessellation
rate changes — typically cracks in the geometry due to T-
vertices. There are several ways to reduce or eliminate this
problem, as discussed by for example Pharr and Hanrahan20.
We have, perhaps surprisingly, not seen any artifacts from
this. This may be because soft diffuse illumination and am-
bient occlusion are such low-frequency functions that a sin-
gle ray slipping through a crack does not contribute much
error.

To avoid potential “popping” in animations due to sudden

change of tessellation rate, we could stochastically choose
the tessellation rate (rounding up or down) for each ray-
subpatch intersection test.

7.2. The disco ball problem

As mentioned already, disco balls with small mirror facets
are a problem. The reflected rays have narrow beams (since
each little facet is flat), but the rays are incoherent since all
the facets reflect in different directions. This destroys cache
coherency. Possible work-arounds may be to artificially in-
crease the beam size of the reflection rays, use a simplified
scene for reflections in the disco ball, or use a reflection map.
If the facets are large, many coherent rays are traced from
each facet, and the problem goes away.

7.3. Importance

It is not clear how a ray’s image contribution (aka. impor-
tance3) should affect the tessellation rate. Shooting more
rays to sample the hemisphere above a point makes each ray
narrower, but also reduces its contribution. The tessellation
rate should depend on beam size, importance, and ray type,
but exactly how? It would probably be safe to use coarser
tessellations than the beam size when the importance is low.

8. Conclusion

In this paper, we have introduced and exploited the obser-
vation that coherent rays are narrow, while incoherent rays
are wide. By careful analysis of the requirements of a ge-
ometry cache, we get the benefits of tessellation (speed and
flexible displacement) without the excessive memory over-
head. This makes it possible to render very complex scenes
with ray tracing — both classic ray tracing for specular re-
flection, refraction, and sharp shadows, and wide distribu-
tion ray tracing for global illumination, ambient occlusion,
etc. With the multiresolution geometry cache, it is possible
to render scenes of nearly the same complexity as with pure
REYES scanline rendering.
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