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Abstract—Line work is a core element for the stylization of computer
animations used by recent shows. However, existing stylization tech-
niques are limited to edge treatments based on brush strokes or textures
applied solely on top of curves. In this work, we propose new stylization
effects by offering artists direct control over the inside and outside
of surface contours. To this end, we introduce a method that creates
ribbons, geometry strips of possibly varying width, that extrude from
each side of the surface contour with temporally coherent orientations.
Our contributions include the generation of spatially and temporally
consistent normal orientations along visible contours and a trimming
routine that converts arrangements of offset curves into ribbons free
of intersections. We demonstrate the expressiveness and versatility
of stylized ribbons by applying various effects on both character and
shadow edges from animation sequences.

1 INTRODUCTION

In recent years, there has been a resurgence of interest in stylized
looks that blend 2D and 3D visual effects in computer animations.
Some, like Klaus [1], use a 2D style of animation with added 3D
elements for a multi-dimensional effect. Others, like Spiderman:
Into the Spiderverse [2] and Soul [3], incorporate 2D line work
to enrich the visuals of 3D characters. In all of these instances,
new stylization tools were developed to assist artists [4], [5],
complementing research efforts in non-photorealistic rendering [6]
and video stylization [7], [8].

An important aspect defining a stylized look is the rendering
of surface contours. These curves can be used to convey shapes,
emphasize expressions and motions, or depict visual aesthetics [9],
[10]. For instance, the short animation Paperman [11] emulated
hand-drawing by overlaying toon-shaded objects with tapered
lines. While many techniques have focused on extracting contours
based on occlusion or geometric rules, curve stylizations are
achieved mainly through brush strokes (see the survey of [12]).
As a result, these methods are limited to generating effects directly
over edges, with no separate control of the outside or inside of the
contours.

To apply a style on either the inside or outside of a surface
contour, an orientation along the curve is necessary. At first glance,
it is tempting to compute this orientation from the ordering of
points along the curve or from the surface normals. Unfortunately,
both processes suffer from temporal inconsistencies. For instance,
the ordering of points can change over time causing the orientation
to flip. Alternatively, surface normals can be copied to the curves
so that the outside is in the same direction as the normals projected

to the camera canvas. These projected normals work well in
some cases (e.g., silhouette contours [13]) when curves have
correspondences to single locations on the surface with normals
nearly parallel to the camera plane. However, for other curves
such as surface intersections, these normals are ambiguous as they
lie between different areas of the 3D model (Figure 5b). Ideally,
these ambiguities should be resolved into temporally coherent
curve normals across frames while matching the orientation of
any connected silhouette curves. Additionally, surface normals
can be skewed relative to the camera plane, leading to projection
degeneracies (Figure 5a). Altogether, these issues make the com-
putation of spatially smooth and temporally coherent orientations
for surface contours challenging.

Offsetting oriented surface contours also requires special trim-
ming treatments. In particular, extruding curves to only one side
can extend over other curves thus creating distracting visual clut-
ter, especially near sharp angles (Figure 2b). To resolve overlaps
between single-sided offsets, one must trim the extruded geometry
by accounting for the curve arrangement in the camera plane
(Figure 2c). Additionally, offset curves must also be adjusted in
areas of high curvature in order to produce smooth geometry strips
with no self-intersections.

In this work, we present a novel technique that enables the
stylization of the inside and outside of surface contours (Figure
1). Given a collection of surface contours, our algorithm generates
oriented geometry strips, which we refer to as ribbons, that define
a temporally stable parametrization on each side of the curves.
Our approach is centered on two main contributions. First, we
introduce an algorithm that interpolates normals smoothly both
along curves and between frames, thus producing temporally
consistent curve orientations. Next, we describe a strategy for off-
setting surface contours towards the inside and outside of the curve
normals while trimming folds and intersections. Equipped with
these ribbons, we showcase a variety of new line stylizations on
3D animations, including edge effects on characters and shadows.

2 RELATED WORK

In this section, we position our work with respect to existing
techniques for the extraction, tracking, and stylization of surface
contours. We also refer the reader to the survey by Bénard and
Hertzman [12] for a thorough discussion of curve stylization.

Before stylization, contour curves must be detected over 3D
objects. These curves are often extracted from silhouettes (a.k.a.,
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Fig. 1. Surface Contours with Temporally Coherent Orientations: Starting with a surface mesh and a camera viewpoint (a), we describe a
technique that generates smooth visible contours (b) with normal orientations consistent both along curves and across frames. With these oriented
curves, we construct trimmed ribbons, a thick outside one (c) and a thinner inside one (d). Our method allows artists to apply new stylized effects
on either side of surface contours (e). ©Pixar

occluding contours) [14] and surface-to-surface intersections [15].
They may also be rigged or computed based on curvature rules
such as suggestive contours [16], ridges and valleys [17], and
apparent ridges [18]. For performance, sometimes contours are
computed directly on the GPU [19]. Some techniques also gener-
ate curves directly in the 2D rasterized image [20], [21]. Others
use neural networks for curve extraction [22] and stroke stylization
[23]. Our work receives any combination of these curves as input
and augments them with a camera-aligned orientation.

An important component of edge stylization is the visibility
test. The simple approach of checking visibility by ray tracing
from the camera origin is sensitive to the surface tessellation and
often leads to fragmented curve pieces [14]. To alleviate this issue,
Bénard et al. [15] propose a local remeshing strategy that refines
the surface tessellation favoring contour consistency at the cost
of increased computation. Liu et al. [24] improve that tessellation
method for better performance and proven mesh consistency. An
alternative method is to propagate visibility hints along curves
using a graph of the curve arrangement in the camera canvas [25].
Planar graphs further generalize this propagation scheme by also
accounting for the visibility of the 2D regions demarcated by the
image curves [26]. We use a voting method similar to Grabli et al.
[27] that estimates the percentage of visible points scattered near

Fig. 2. Importance of Ribbon Trimming: When a stroke of constant
width is applied on both sides of a curve, no trimming is necessary
(a). However, when the stroke is applied on only one side, undesirable
overlap between ribbons is introduced (b). We present a method for
trimming ribbons that prevents overlaps (c). ©Pixar

the contour curves. By doing so, we keep the efficiency of ray
tracing tests while producing clean and smooth surface contours.

Once curves are extracted for each frame, they must be tracked
over time in order to enable temporally consistent styles. To this
end, Kalnins et al. [21] advect curves in 3D attached to the
surface mesh followed by 2D splitting and merging operations.
Similarly, the method of Whited et al. [13] carries strokes along
the 3D animation and provides inbetweening interpolation and
editing tools. The works of Karsch and Hart [26] and Bénard et
al. [28] adapt the concept of active contours so that 2D curves
expand and shrink over time. In Buchholz et al. [29], a space-
time parametrization is optimized to fit the evolution of surface
contours, while Bénard et al. [30] splats curve parameterizations
onto an auxiliary screen-space buffer for temporal look-ups. In
common, these methods can only track curve centerlines with no
normal orientation.

The problem of oriented contours was previously investigated
by Lengyel et al. [31] in the context of fur creation along outside
silhouettes. To break up the outside edge of the model, this method
generates a face in the normal direction at every surface edge to
which a fur texture is applied. However, this approach introduces
noise inside the model and gaps in the textured edges around areas
of high curvature. Another technique was used on the short film
Out [32] by computing signed distance functions from the mask
of object IDs outputted by a renderer. This method to determine
the inside and outside of closed curves and models can use
signed distance fields or winding number generation. Although
simpler, this approach produces 2D orientations only along the
outer silhouette ignoring self-occlusions, e.g., a hand crossing the
torso of a character.

The estimation of oriented normals is also a typical task in
reconstruction pipelines from raw point clouds [33], [34]. By
assuming that points approximate a manifold, normal orientation
can be inferred through spectral methods [35] or stochastically
by tracing rays against a capsule that encompasses the unoriented
points [36]. Neural networks have also been considered for learn-
ing oriented normals from point clouds [37], [38]. Unfortunately,
these methods do not account for normal consistency between
frames. Our approach for orienting contours is inspired by the
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Algorithm 1 Pseudocode to compute oriented ribbons.
1: function COMPUTING VISIBLE CURVES (§3.1)
2: Extract surface contours
3: Split curves at sharp angles and intersections
4: Compute visibility probability per curve point
5: Keep visible points and curve sections
6: Merge curves close together
7: Remove colinear edges
8: Delete small loops and short edges
9: function NORMAL ORIENTATION ENFORCEMENT (§3.2)

10: for each frame in animation do
11: Set normal direction to angle bisectors
12: Compute normal orientation and probability
13: if not first frame then
14: Advect normals from previous frame
15: Update normal probability
16: Optimize normals using Markov Random Field
17: function RIBBON TRIMMING (§3.3)
18: for each connected group of curves do
19: Compute medial axis from curve points
20: Compute width edges by offseting curves along nor-

mals
21: Trim width edges against medial axis
22: Remove overlaps between different curve groups
23: Trim T-junctions

work of Hoppe et al. [39], which calculates spatially smooth
tangent planes for point clouds via a graph optimization. We adapt
this formulation to compute spatially and temporally coherent
normals for 2D curves.

Another common step in curve stylization is the thickening
of curves into strokes. When extruding the width of a curve,
difficulties arise in areas of high curvature as the expanded
width may create self-intersections within valleys or gaps nearby
cusps [40]. This problem is also encountered by vector graphics
packages when converting strokes to filled primitives, which was
recently addressed by Nehab [41] and Kilgard [42]. However,
while following the vector format guidelines, existing solutions
do not trim overlaps and are limited to expand the curve equally
on both sides. In our work, we address the case of offsetting
curves per each side, and propose an extended trimming routine
that removes overlaps between multiple filled strokes.

Finally, we point out a few research efforts that have also inves-
tigated stylized shadows. For instance, DeCoro et al. [43] describe
controls for the inflation, brightness, softness and abstraction of
shadows, while Todo et al. [44] integrate localized shading into
conventional lighting techniques.

3 METHOD

In this section, we detail our process of computing visible surface
contours with temporally consistent normals. Equipped with ori-
ented curves, we then generate ribbons by offsetting curve points
and trimming those geometry strips to prevent overlapping areas.
An outline of our method is given in Algorithm 1. A summary of
all the parameters used can be found in Table 1 at the end of the
paper.

3.1 Computing Visible Curves

Our method starts with curves extracted from the surface mesh
(one could use a combination of techniques summarized by
Bénard et al. [12]). In our examples, we include silhouette curves
generated by tracing the zero levelset of the dot product between
normals at mesh vertices and the camera direction [14], as well
as surface intersections computed via boolean operations [15]
(Figure 3a). All these curves are represented by 3D polylines.

From the surface contours, we need to determine which points
are visible. Our approach shares commonalities with the method
proposed by Grabli et al. [27]. We calculate ray tests for multiple
samples scattered around each curve point (Figure 3c). Then, we
define the likelihood that a curve point is visible as the ratio of
visible samples versus the total samples (Figure 3d). A curve
point should be considered visible if approximately half of the
samples are visible. Hence, to map the likelihoods to the visibility
probability, we remap all values greater than zero by adding
0.5 and clipping to one. This remapping ensures that completely
occluded points still have zero probability while visible points
have values close to one.

We generate samples (n = 20) inside two cylinders placed
relative to the camera frustum space, each running halfway along
the curve edges adjacent to each curve point (Figure 3c). Using
cylinders in the camera frustum, instead of the 2D image or 3D
world space, provides adaptive sampling that accounts for the
curves’ depth. The cylinder radius is a user adjustable parameter
measured in pixels, which we default to 0.3 in our experiments.
If the radius is too small, points which are slightly occluded
receive small probabilities, creating gaps in the transitions between
silhouette and intersection curves. On the other hand, if the radius
is too large, then points which are occluded at intersections receive
inflated probabilities, resulting in curves extending too far into
occluded regions.

Our next step is to consolidate the visibility probability of
individual points into a probability per curve indicating if the curve
is either fully or partly visible. To this end, we use a 2D chopping
scheme (informed by Hertzman and Zorin [14]) that splits curves
into sections at sharp angles (we used a threshold of 100 degrees)
and at 2D intersections computed after projecting the curves to the
camera plane (Figure 3b). We then extract the visible contours as
a sequence of points with probability greater than 0.8, or entire
curve sections with an average visibility probability greater than
0.8. The remaining points are removed (Figure 3e).

We also apply a clean up pass that simplifies visible curves
in order to avoid visual clutter (Figure 4a). Numerous other
works had addressed a similar problem when simplifying sketch
drawings [45], [46], [47]. First, we consolidate visible curves that
are close together in the image space. If these curves are left as
distinct parts, clipping artifacts can occur when they are extruded.
Informed by Northrup and Markosian [48], we search for curve
points whose screen-space distance to any edge segment is within
a threshold (0.15 pixels), and whose difference in camera depth
is smaller than another threshold (0.15 world space camera depth)
to preserve depth discontinuities. We then merge these points to
the midpoint of their corresponding closest edges (Figure 4b).
We also combine collinear edges that often appear due to sharp
switchbacks along a curve. In this case, we look for any angle
between two segments which is less than 30 degrees. If one of
these edges is the end of a curve, we remove it, otherwise the
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Fig. 3. Visible Contours: Starting with silhouette and intersection contours detected on a 3D model (a), we split curves into sections at intersections
and sharp angles shown in red (b). We scatter samples in cylinders shown in black around the 2D curves and mark the visible ones in pink and
those occluded in blue (c). We then use these labeled samples to calculate visibility probabilities for every curve point (d). Our method produces
smooth visible curves (e), while the traditional single ray test creates gaps in the lines (f). ©Pixar

shorter edge is deleted and a new edge is created between the
other endpoints (Figure 4c).

Drawing inspiration from vectorization methods [49], we also
remove curve loops which have an area smaller than 0.4 percent of
the image resolution. We delete every loop edge except for edges
which form nearly straight lines with their non-loop neighboring
edges (Figure 4d). Finally, we discard short edges of length less
than two pixels and reconnect the remaining edges into new curves
breaking at intersections (Figure 4e). The steps are run through
one time in the order presented due to each step never introducing
any edge connections that a previous step would remove. While
small loops and edges are not noticeable when directly rendered,
these artifacts can create sharp peaks and temporal inconsistencies
when offsetting the curves.

While these methods were used as input to the next steps for
creating consist normals and ribbons, any previous methods [15],
[27] that generate stable clean 3D curves could also be used for
pleasing results.

3.2 Normal Orientation Enforcement

In order to create effects inside and outside visible contours, we
now describe how to generate 2D normals which are consistent

Fig. 4. Curve Clean Up: Starting from curves projected to the camera
canvas (a), our method merges curves close together (b), removes
colinear edges (c), and deletes small loops (d) and short edges (e).

along the curves and across frames. We begin by setting the
(unoriented) normal direction of each curve point to the 2D angle
bisector between adjacent curve edges. At curve endpoints, we use
the direction perpendicular to the line segment.

The next step is to determine on which side of the curve the
normal should be pointing while accounting for temporal consis-
tency. A simplistic option is to ray trace 2D curve points back
to the 3D surface along the camera direction, and align the angle
bisectors to the normals copied from the first ray hit on the mesh
projected to the camera plane. While copying mesh normals works
well in some cases, the correspondence from camera to surface
can be ill-defined, especially near intersection curves (Figure 5b),
and even introduce skewed projected normals (Figure 5a). Instead,
we propose to quantify the uncertainty of the normal estimation
by assigning a normal probability to each curve point. Similar to
§3.1, we sample n points in two cylinders around each half of the
edges incident per curve point (our examples used n= 20 and a
cylinder radius of 0.25 pixels). Then 2D normals are calculated for
every sample point by tracing the closest mesh normal projected
to the camera canvas. We orient the angle bisector at a curve point
to the direction of the majority of the sample normals. We set
the normal probability to 1 if the percentage of the predominant
normals is greater than 90%, otherwise we set the probability to
0.5 indicating that the normal is between conflicting areas.

For silhouette curves on the edge of a character, this proba-
bility will always result in a value of 1. For intersection curves
or silhouette curves close to opposing pieces of the mesh (eg. a
closed mouth), the resulting probability depends on the orientation
of the intersecting geometry relative to the camera. For example,
if two intersecting patches are oblique to the camera, our frustum-
based sampling will bias towards the region that is closer to the
camera. Only if the intersections are facing the camera, the normal
probability will be closer to 0.5, but this is a special case.

At the first frame of an animation sequence, we use these
normal estimates and probabilities to initialize an optimization
that infers spatially smooth orientations along the curves. We use
a Markov Random Field [50] and define the potential function
(a.k.a., correlation function) as the dot product of the initial
normals between neighboring curve points. Hence, neighboring
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Fig. 5. Orienting Normals and Trimming Ribbons: We render the original curve in black and ribbons with colors varying from pink to yellow
indicating the distance to the curve. If we extrude curves using the normals directly copied from the surface mesh, the resulting ribbons have
artifacts due to skewed (a) and inconsistent (b) normals. Our method resolves these artifacts by producing smooth oriented normals both along
curves and across frames (d,e). By trimming ribbons, we also prevent intersections (c,f) and overlaps (g). To see video comparisons between the
steps in the normal orientation enforcement method, please see the supplemental materials. ©Pixar

normals which face opposite directions are penalized. With this
setup, we perform the optimization using a linear programing
relaxation [51], resulting in consistent 2D orientations for sections
of the curves in the first animation frame (Figure 5d,e).

For subsequent frames, we adapt the Markov Random Field
to also generate temporally consistent normals. First, we use the
method described above to calculate the normal probability for
each point in the current frame. For every point with a probability
of 0.5, we try to improve the normal estimate by searching for a
matching location in the previous frame. To determine correspon-
dences between curves from different frames, we advect the curves
from the previous frame based on the mesh movement between
frames [28]. When the corresponding curves are close together,
we copy the previous normal and set the normal probability to
one, otherwise we keep the estimated normal and probability of
0.5. Using these new probabilities and the same potential function
as before, we optimize the Markov Random Field once again for
every animation frame sequentially.

3.3 Ribbon Trimming

We define a ribbon as a geometry strip created by extruding curve
points along either side of their respective 2D normals based on a
user specified width. We generate an outside ribbon when points
are offset along the curve normal, and an inside ribbon using the

offset in the opposite direction. However, these thickened curves
may exhibit areas where the strip faces overlap (Figure 5c) or
cross each other (Figure 5d). In order to produce clean ribbons for
stylization, we present a routine for trimming ribbons.

Our approach operates by trimming width edges, which are
2D line segments connecting curve points to their corresponding
offset points (Figure 7a). To remove local overlaps, we calculate
the medial axis for each group of connected curves and trim
the width edges at the points intersecting their respective medial
axes (Figure 5f). Since curves from our clean up pass were split
at intersections, a connected group of curves are those curves
which share end points. In our implementation, we sample every
visible contour densely in 2D (0.1 pixels between points) and
approximate the medial axis using the method of Amenta et al.
[52], which constructs a Voronoi diagram and filters out Voronoi
edges intersecting the curve segments (Figure 7b). However,
medial axes are sensitive to small perturbations of the curves.
Hence, we add a filtering step to prune unwanted branches based
on a scale axis representation [53] by removing those edges that lie
within a Voronoi cell of the original curve points (1 pixel between
points) (Figure 7b). In addition, we disregard intersections if
the width edge and medial axis edge are approximately parallel
(Figure 7c,d). While we chose this particular implementation of
medial axis creation and filtering for these experiments, other
techniques could be used instead.

Fig. 6. Ribbon Trimming Steps: The ribbons are trimmed to the medial axis and other curves. Then, offsets at any T intersections or peaks are
smoothed. ©Pixar
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Fig. 7. Trimming to Medial Axis: In (a), the original curves are dis-
played in black with width edges in red. The following images (b,c,d) are
from the close up highlighted by the blue box in (a). Image (b) visualizes
the Voronoi diagram (in light blue) generated from the densely sampled
curves. Removing the Voronoi edges intersecting the curve segments
still results in some edges (in green) that need to be filtered to achieve
the medial axis (in dark blue). In (c), we indicate the intersection trim
points (black dots) calculated from the width edges and filtered medial
axis. The final trimmed ribbons are shown in (d).

To remove overlaps between different groups of connected
curves, we copy the camera depth from the original curve points to
their respective width edges. We then locate intersections between
width edges and all other original curves, and set the intersection
depth to the original curve’s camera depth at that point. We trim
a width edge when its camera depth is within a small threshold
(0.2) or greater than its corresponding intersection point camera
depth. Thus, we prevent a ribbon behind a piece of geometry from
overlapping that area when projected to the camera canvas (Figure
2c and 5g).

Lastly, we address the special case when a curve slightly
extends past a T-junction intersection without trimming. While
on a single frame, this artifact may not be noticeable, switching
from a clean to an extended curve over time causes flickering. To
resolve this problem, we detect T-junction intersections and, if the
last few points of the curve (we used 3 points) are untrimmed, we
trim them to the same amount as the closest curve point (Figure
6).

For more examples of each step in the ribbon trimming
process, please see the supplemental materials.

4 RESULTS

We now showcase various stylization effects produced from our
oriented ribbons. We point the reader to the accompanying video
and supplemental materials for the complete animation sequences.
Note that these results are test sequences, this technique has not
yet been used in any productions. Our method was implemented
in Python and C++ as a digital asset in Houdini [55], with the
Markov Random Field solver available in Müller and Behnke [51].
Each part of our process has a few parameters, as described above,
whose same settings were used in all of the shots. For profiling
purposes, we computed the average timing per frame spent by

Fig. 8. Velocity-based Offsets: We apply two edge stylizations to a
watercolor-shaded animation. In the left, smooth visible contours gen-
erated by our method are rendered using an ink texture with varying
thickness based on the distance to the curve endpoints. In the right,
we use our temporally consistent normals to offset curves by a width
proportional to the velocity magnitude. ©Pixar

each step of our algorithm for the example in Figure 1 (334
frames, 488,712 polygons, clocked on a 2.3 GHz Intel XeonE5-
2699 with 12 cores). In the curve creation, the visibility culling
took 70 seconds and the clean up pass lasted 2 seconds. The
curve registration between frames lasted 9 seconds, while normal
enforcement finished in 12 seconds and the ribbon trimming in 63
seconds.

In Figure 1, we present a breakdown of our method applied
to a single animation frame. First, we show our smooth contour
curves rendered with strokes of constant thickness. While curves
are automatically generated over the whole body, artists prefer
to have manual control over the acting around the eyes and
mouth. Therefore, our system allows for a mask to be painted
on the characters to disable curves in such regions - which we
used in this example. From the visible contours, we add outside
ribbons rendered with a red sponge texture of constant thickness,
followed by inside ribbons with a blue sponge texture at half
of that thickness. At last, we combine the inside and outside
ribbons together and trim them to resolve overlaps and occlusions.
Additionally, we include several frames from this animation in
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Fig. 9. Ribbons with Camera-based Widths: For this style, the character is rendered with a toon shader and an outside ribbon is applied with the
width varying based on the distance to the camera. As the character moves farther away from the camera, the ribbon width decreases. ©Pixar

Figure 16 to illustrate that our results are spatially and temporally
consistent.

We also used this same animation sequence to compute the
stylization shown in Figure 10. In this case, we applied a projec-
tion of a stylized caustic texture inside the character and attached
ribbons inside the surface contours with varying width in order
to produce a wave-like look. This wave effect was controlled by
a sine function parametrized based on locations along the curves
tracked across the frames. We also animated the wave magnitudes
by scaling the ribbon width based on the distance to the curve
endpoints.

Figure 8 (57 frames) shows an animation of two boys dancing
with a watercolor look as the base. In this example, we first
highlight the contours of the characters by rendering our smooth
visible curves with ink textures tapered close to the ends. To
emphasize the characters’ movement, we also used our temporally
coherent 2D normals to offset the contour curves by a distance
proportional to the magnitude of the animation velocity at the
curves. Moreover, the thickness of the strokes were adjusted so
that faster moving curves are thicker.

In Figure 9 (257 frames), we applied a stylization effect that
emulates a glow over a character. To this end, we rendered only
the outside ribbons with width growing thicker as the character
moves closer to the camera. We also modulated the density of
the rendered textures within the ribbons using the distance to the
curves, with denser textures close to the curve and less dense father
away.

Fig. 10. Ribbons with Animated Width: In this example, the character
is rendered with a caustic effect and has an inside ribbon with the width
controlled by a sine function that varies based on the frame and on the
location along the curves. ©Pixar

Fig. 11. Comparison: Comparing our method to previous work on the
example from Figure 1 and an animated horse model from [54]. ©Pixar

Additionally, we considered the stylization of shadow edges in
Figure 14 (30 frames). To generate the silhouettes along shadows,
we replace the camera direction by the light source and then
compute visibility relative to the light. We also included curves
inside the shadow towards and away from the light and applied
different styles for the inside and outside ribbons. In contrast to
previous shading approaches [43], our method provides shadow
effects that maintain constant width along the contours.

In Figure 12, the shadow is projected down the steps in front of
the character. With a simple projection, the ribbon would stretch
in a diagonal down each step. To wrap the ribbon around the step,
stretched edges, where the projected edge is 1.5 times the original
edge length, are subsampled, with the new points moved to the
closest position on the ground. This process is repeated until all
stretched edges are less than the minimum original edge length.
For the color effect, the variation is determined by the height from
the ground of the pre-projected curves.

Figure 15 showcases both shadow ribbons and character rib-
bons. The inside shadow ribbons have their width controlled by
tapering along the curves and the pre-projected distance to the
ground. The character ribbons are tapered as well with color bands
ranging from red, yellow, and blue for skinnier to thicker areas.

To determine the reliability of our method, we compare our
generated silhouette curves with a naive visibility ray test, the
method from Bénard et al. [15], and RenderMan’s NPR lines
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Fig. 12. Deformed Shadow Edges: Stylized outside ribbons away from the light are projected down the steps with their color varying due to the
distance from the ground. ©Pixar

[56] (Figure 11). The comparison videos of multiple shots can be
found in the supplemental materials. The results generated from
our method, the ray test, and Bénard et al. [15] all generate 3D
curves on the geometry while RenderMan’s curves are generated
in raster space. Our curves and Bénard et al.’s [15] are comparable
in quality with slight differences depending on which frames are
chosen. Generally, Bénard et al. tend to produce silhouettes with
less flickering than ours. However, our method is significantly
faster averaging 33 seconds per frame vs 854 seconds per frame
for Figure 1.

5 LIMITATIONS

During the curve generation and cleanup process, stability in the
lines can be affected by some parameters. For instance, slight
variations in the scene’s camera position or geometry could result
in some flickering in lines of areas where the viewer perceives no
motion. This flickering is a result of the visibility voting scheme.
While stability is not guaranteed, due the scene changing slightly
(numerically but not visibly), stability is very likely as seen with
the lines on the floorboards in Figure 8. One way to guarantee
the curve visibility, which we leave to future implementation, is
to track the visibility probabilities over time. Another possible
limitation is the number of parameters used to determine the curve
visibility and filtering. In our various results, we have only used
the one set of parameters as mentioned in the method section.
While these parameters are available for users to tweak to achieve
different results, we have found that it is rarely needed.

Although our method favors consistency across frames, flick-
ering may still be found in some cases. For example, when
computing visible contours, small gaps in lines, which the viewer
assumes are continuous, can occur where different curves switch
visibility. These split 2D curves can cause issues during normal
enforcement in areas such as the mouth, shown in Figure 13.
For some frames, the mouth is a continuous line. However for
other frames, it presents small gaps that prevent the upward
pointing normals from the body’s silhouette from propagating to
the intersection curve, which faces down (Figure 13b,c). As the
character continues to turn, these curves merge and the tracked
normals align with the silhouette (Figure 13d). In our results, we
solve this problem by overwriting the normals of the bottom lip
to always point downwards (Figure 13e,f,g,h). While this option
of overwriting normals, gives artists more control of the ribbon
direction in separate parts of the character, it is rarely necessary in

Fig. 13. Limitation: The mouth corner has splits in visible curves which
cause our method to produce unaligned normals (top-row). One possi-
ble solution is to paint fallback values for the normals in some parts of
the model, thus biasing our normal calculation (bottom-row). ©Pixar

practice. This issue also motivates the need for continuous curves
before applying ribbons. In another case, when trimming ribbons,
flickering can be introduced if the depth distance between two
curves oscillates around the trimming threshold.

6 CONCLUSION

We have presented a three part method to allow the stylization
of either the inside or outside of an object or shadow contour.
Our algorithm determines visible contours, enforces temporally
consistent normal orientation along curves, and generates trimmed
ribbons. With our ribbon geometry, artists are able to achieve a
variety of effects and styles that have previously not been easily
accessible.

As future work, an area to explore is to integrate our stylized
ribbons with other stylization methods for interior regions [7], [8]
in order to give artists even more flexibility. In addition, better
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Fig. 14. Stylized Shadow Edges: We use our oriented ribbons to apply a variety of edge stylizations to shadows. For reference, we first show
the original render without stylization (left). Along the shadow silhouette, a blue thin ribbon is applied to the inside of the curves with a thick yellow
ribbon on the outside (left-center). For silhouette and intersection curves facing towards the light, a thin blue ribbon is applied only to the inside
(center-right). We also stylize curves away from the light using ribbons on the outside (right). ©Pixar

controls over the placement of contour lines, especially in the
facial area, is challenging but a common desire by artists, as
previously demonstrated by Whited et al. [13]. Therefore, we are
also interested in investigating tools that combine automatic and
manual creation and editing of curve strokes. We hope this work
inspires more exploration of different styles and workflows for
animated productions.
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How value change effects the result
Name Value Decreasing Increasing

Computing Visible Contours
Cylindrical samples 20 Not enough accuracy Increased time
Cylindrical radius 0.3 pixels Higher chance of gaps in long

silhouette edges
Samples in areas of mesh that are
not topologically adjacent

Angle splitting 100 degrees Not splitting often enough if a
turn in the curve is not very clean
due to polyline sampling

Splitting too much on polylines of
sharp curvature

Visible contour probability cutoff 0.8 Too many points visible Some segments missing or holes
in the silhouette

Clean up: screen space merging distance 0.15 pixels Too many lines close together
causing clutter

Can merge important features like
a hat and brow line

Clean up: depth merging distance 0.15 world space camera depth Too many lines close together Can merge important features like
a hat and brow line

Clean up: colinear merging 30 degrees Misses merging some switch-
backs along curves

Cuts off ends as a curve turns
around

Clean up: loop deletion area 0.4 percent of image resolution Leaves messing lines in compli-
cated areas such as eye corners
that cause flickering when ex-
panded to ribbons

Can remove important features
like fingernails and buttons

Clean up: short edge deletion 2 pixels Jagged edges on the ends of lines Since points are already sampled
1 pixel apart, increasing this value
will not change the result

Normal Orientation Enforcement
Cylindrical samples 20 Not enough accuracy Increased time
Cylindrical radius 0.25 pixels Not enough variety in normal di-

rection to determine if inside a
crevice

Samples from areas of mesh that
are not topologically adjacent

Threshold for normal probability 0.9 percent Push orientation too much in one
direction instead of prioritizing
temporal coherence

Mislabel some silhouette points
as having unstable normals

Ribbon Trimming
Curve sampling resolution 1 pixel Increases time complexity Not enough resolution along

curves
Voronoi curve sampling resolution 0.1 pixel Increases time complexity with-

out improving medial axis
Too many medial axis lines caus-
ing unnecessary trimming

Width edge trimming depth 0.2 world space Not trim ribbon enough at sharp
turns in the curve causing ribbon
faces to overlap

Trim too much at T intersections
creating a V in the ribbon when
depth ordering would have fixed
the overlap

T junction trimming range 3 points Sharp peaks at T intersections can
appear causing noticeable flicker-
ing

Trims unnecessary points along
the curve

TABLE 1
Parameters for each step of our method


