
Eurographics Symposium on Rendering (DL-only Track) (2021)
A. Bousseau and M. McGuire (Editors)

Stochastic Generation of (t, s) Sample Sequences

Andrew Helmer Per Christensen1 Andrew Kensler2

1Pixar Animation Studios 2Amazon

(a) ssobol02bn (b) shalton23bn (c) sfaure03bn

Figure 1: Top: stochastic generation of an Owen-scrambled Sobol’ (0,2)-sequence. Unoccupied strata are determined in O(1) time by
referencing earlier points in the sequence. Bottom: novel 2D sequences and some of their progressive stratifications, generated using our
technique with best-candidate samples. These sequences are each extensible to higher dimensions.

Abstract
We introduce a novel method to generate sample sequences that are progressively stratified both in high dimensions and in
lower-dimensional projections. Our method comes from a new observation that Owen-scrambled quasi-Monte Carlo (QMC)
sequences can be generated as stratified samples, merging the QMC construction and random scrambling into a stochastic
algorithm. This yields simpler implementations of Owen-scrambled Sobol’, Halton, and Faure sequences that exceed the pre-
vious state-of-the-art sample-generation speed; we provide an implementation of Owen-scrambled Sobol’ (0,2)-sequences in
fewer than 30 lines of C++ code that generates 200 million samples per second on a single CPU thread. Inspired by pmj02bn
sequences, this stochastic formulation allows multidimensional sequences to be augmented with best-candidate sampling to
improve point spacing in arbitrary projections. We discuss the applications of these high-dimensional sequences to rendering,
describe a new method to decorrelate sequences while maintaining their progressive properties, and show that an arbitrary sam-
ple coordinate can be queried efficiently. Finally we show how the simplicity and local differentiability of our method allows for
further optimization of these sequences. As an example, we improve progressive distances of scrambled Sobol’ (0,2)-sequences
using a (sub)gradient descent optimizer, which generates sequences with near-optimal distances.

CCS Concepts
• Mathematics of computing → Stochastic processes; Computations in finite fields; Mathematical software performance; •
Computing methodologies → Rendering; Ray tracing;

1. Introduction

The rendering of computer generated scenes is often achieved by
computing a set of integrals, representing the light reaching each
pixel. Monte-Carlo and quasi-Monte Carlo (MCQMC) integration
have become popular methods to approximate these integrals nu-
merically, especially with path tracing [PJH17; Pha18; CFS*18].

Monte Carlo integration is performed by randomly sampling the
integrand and adding weighted values to approximate the integral.
Random error in the numerical approximation is visible in a ren-
dered image as noise, and a large number of samples can be neces-
sary to resolve this noise. Many techniques are employed to reduce
the error, requiring fewer samples to reach an equivalent quality.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Helmer, Christensen, and Kensler / Stochastic Generation of (t,s) Sample Sequences

Fundamental to Monte Carlo integration is the generation of
multidimensional sample points. These samples are often gener-
ated with each coordinate in the unit interval [0,1) and warped
to another domain. Sample points that are well-distributed in the
unit hypercube give much lower error than uniform random sam-
ples [Mit96; Owe13; PJH17; CKK18; SÖA*19]. The generation of
points in the unit hypercube is an ongoing area of research, with
many different methods of sample generation [KAC*19]. These
sample generation methods can be divided into those that gener-
ate well-distributed sample sets – a fixed number of samples – and
methods that generate progressive sample sequences, with good
distributions for prefixes of the sequence. Sample sequences have
lower error in adaptive sampling and interactive (progressive) ren-
dering, which has contributed to their popularity [Pha18].

Stratification splits the domain into non-overlapping regions
(strata), typically hyperrectangles in rendering, and limits the num-
ber of sample points in each stratum, ensuring more even distribu-
tions. For simple integrals, stratification gives provably lower error
and faster asymptotic convergence [Mit96], and distributions are
better maintained when warping to other domains [PJH17]. Empir-
ically, even complex rendering integrals have dramatically reduced
error with stratified samples [CFS*18; JEK*19].

For those reasons, we focus on progressively stratified sample
sequences. Two approaches are commonly taken to generate these
sequences for rendering. The first is to use explicit stratification;
data structures track the occupancy of strata, and points are placed
stochastically into unoccupied strata. Alternatively, deterministic
quasi-Monte Carlo (QMC) sequences are generated with construc-
tions that guarantee stratification, and then are randomized in a way
that maintains the stratification [LEc18; Owe95].

In this paper, we present a new approach that combines stratified
sampling and randomized quasi-Monte Carlo: random samples are
directly generated within unoccupied strata, without needing data
structures to represent those strata. Our approach is capable of gen-
erating many different sample sequences and provides multiple im-
provements over previous sample generation methods:

• The pmj02(bn) sequences from Christensen et al. [CKK18] are
naturally extended to higher dimensions, retaining the option of
using best-candidate sampling. One way to extend to higher di-
mensions is as base-s (0,s)-sequences, which have even stronger
stratifications in all lower dimensional projections than the or-
thogonal array sample sets of Jarosz et al. [JEK*19].
• The pmj02 sequences are generated roughly two orders of mag-

nitude faster than with Pharr’s efficient traversal [Pha19].
• Owen-scrambled sequences are simpler to implement and can

be generated at a new state-of-the-art performance, faster than
both hashing [LK11; Bur20] in base 2 and lazy permutation
trees [FK02] in higher bases.
• The points of Owen-scrambled sequences are locally differen-

tiable with respect to pseudorandom parameters.

The simplicity, high performance, and differentiability of this
stochastic generation allows for new optimizations of multidimen-
sional sample sequences. Section 6 will show an example using
gradient descent to improve point spacing of sequences.

2. Related work

We begin with a review of previous work in stratified sampling for
rendering.

Stratified sample sets. Cook [Coo86] introduced jittered sam-
pling for solving rendering problems, randomly offsetting points
on a uniform grid. Chiu et al. [CSW94] combined jittered sampling
with Latin hypercube sampling to generate multi-jittered samples.
Kensler [Ken13] improved the distribution of multi-jittered sam-
pling with correlated shuffling. Jarosz et al. [JEK*19] presented a
construction of sample sets based on orthogonal arrays, stratifying
points in both high dimensions and lower-dimensional projections.
The generation of these sample sets share an elegant property: none
of them require data structures to implement, instead they are di-
rectly constructed to yield those stratifications.

Stochastically generated sample sequences. Unlike the al-
gorithms to generate sample sets, stochastic generation of sam-
ple sequences generally requires either a spatial data structure,
or O(N2) time to compute a sequence, as each sample must be
checked against the location of previous samples. Kajiya [Kaj86]
first presented algorithms for hierarchical stratified sampling for
rendering, using a kd-tree to keep track of occupied strata.
Keros et al. [KDS20] also used a kd-tree for high-dimensional strat-
ification of arbitrary sample counts. Mitchell [Mit91] introduced
best-candidate samples, where a set of random candidate points are
generated, and the next point in a sequence is chosen to be the fur-
thest of those candidates from all previous points.

Recently, Christensen et al. [CKK18] presented methods to gen-
erate stratified 2D sample sequences, notably the pmj02 sequences.
They combined stratification with Mitchell’s best-candidate sam-
pling to generate “pmj02bn” sequences with improved point spac-
ing. Pharr [Pha19] described a clever traversal of the strata to effi-
ciently generate the pmj02 and pmj02bn sequences. The techniques
we will present in this paper extend their work into higher dimen-
sions, while also providing faster generation of pmj02 sequences.

Quasi-Monte Carlo sample sequences. Quasi-Monte Carlo se-
quences are an appealing alternative to sample sets and stochas-
tically generated sequences. Mathematical constructions give de-
terministic sequences that have progressive stratification guaran-
tees, while being easy to compute. We will use the constructions
of the van der Corput [Cor35], Sobol’ [Sob67], Halton [Hal60],
and Faure [Fau82] sequences, and the definition of (t,s)-sequences
from Niederreiter [Nie87]. For a more extensive overview of quasi-
Monte Carlo sequences, see chapters 15 through 17 of Owen’s
book [Owe13] and Dick and Pillichshammer’s book [DP10].

Scrambling and optimization. The deterministic construction
of QMC sequences displays rendering errors as structured pixel ar-
tifacts [PJH17], rather than noise. These artifacts are less appeal-
ing visually and harder for modern denoisers to handle. The con-
struction also prevents the quantification of uncertainty [Owe13].
To overcome those issues, QMC sequences must be random-
ized. L’Ecuyer [LEc18] provides a tutorial of randomized QMC
techniques. Notably, Owen [Owe95] introduced a randomization
that preserves stratifications, called nested uniform scrambling,
Owen’s scrambling, or Owen-scrambling, which will be described
in Section 3.2. Owen-scrambling also reduces the error on smooth

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Helmer, Christensen, and Kensler / Stochastic Generation of (t,s) Sample Sequences

integrals by decorrelating the less significant digits. Consider-
able work has been done to improve the performance of Owen-
scrambling [FK02; AKI10]. Laine and Karras [LK11] observed
that, in base 2, Owen-scrambling can be performed efficiently with
hashing, which Burley [Bur20] expanded upon. Alternatively, sim-
pler methods of scrambling are used [Mat98; KK02], which have
slower convergence on smooth integrals [Owe03].

A related direction is the optimization of QMC sequences.
Ahmed et al. [APC*16] and Perrier et al. [PCX*18] optimized
van der Corput and Sobol’ sequences, respectively, to achieve blue
noise. Ahmed and Wonka [AW21] described an elegant method to
optimize point sets with strict stratifications, but left the optimiza-
tion of sequences as future work. Common to both randomization
and optimization techniques is a set of discrete permutations on
pre-generated points. In contrast, our new method generates Owen-
scrambled sequences using a continuous, stochastic algorithm.

3. Generation of one-dimensional sequences

This section discusses techniques to generate 1-dimensional strati-
fied sequences in the unit interval [0,1), which will be expanded to
higher dimensions in Section 4. The goal is to generate sequences
with progressive stratification in a chosen base, b, where any pre-
fix of N = bm sample points will have exactly one point in each
sub-interval of length 1/N: [0

N , 1
N), [1

N , 2
N), . . . , [N−1

N , N
N). We begin

with background on the van der Corput sequence in Section 3.1 and
Owen-scrambling in Section 3.2 before moving on to our contribu-
tions to 1D sequences in Section 3.3.

3.1. The van der Corput sequence

Van der Corput [Cor35] described a simple algorithm to gener-
ate one-dimensional stratified sample sequences. Intuitively, the
van der Corput sequence progressively subdivides the unit inter-
val into sub-intervals (“strata”) and each new sample is placed at
the lowest boundary of an unoccupied sub-interval, in the same or-
der as the initial points. Table 1 shows the computation and values
of the first 5 samples in base 2, for which Kollig and Keller [KK02]
give an efficient implementation using bit arithmetic.

Table 1: Computation of the base-2 van der Corput sequence.

index base-2 expansion radical inverse

0 0 0
2 = 0.0

1 1 1
2 = 0.5

2 0,1 0
2 + 1

4 = 0.25

3 1,1 1
2 + 1

4 = 0.75

4 0,0,1 0
2 + 0

4 + 1
8 = 0.125

To generate xi, the i’th sample of the sequence, i is first expanded
into its base-b digits d0,b(i),d1,b(i),d2,b(i) . . . such that

i =
blogb(i)c

∑
m=0

dm,b(i)b
m

with dm,b(i) ∈ {0,1, . . . ,b−1} for an integer base b≥ 2.

xi in the base-b van der Corput sequence is then computed as the
radical inverse of that b-ary expansion:

xi =
blogb(i)c

∑
m=0

dm,b(i)b
−m−1,

where the digits are flipped around the radix point.

A notable property of the unscrambled van der Corput sequence
is that, for N = bm samples, all sample positions are equidistant
from their neighbors. This correlation is not optimal when calcu-
lating smooth integrals [Owe13]. For example, when integrating
a 1D Gaussian distribution, root mean square error diminishes at
O(N−1).

3.2. Owen-scrambling

Owen [Owe95] introduced a method to scramble the digits of a
sample sequence such as the base-b van der Corput sequence. The
interval [0,1) is first divided into b intervals of equal length. These
intervals are randomly shuffled. Then each interval is recursively
divided into b sub-intervals, those are randomly shuffled as well,
and so on. The random shuffles in each sub-interval are independent
of shuffles in other sub-intervals; see Figure 2. Because the sample
scramblings in each interval are independent, the original fixed dis-
tance between adjacent samples is broken up, and this added ran-
domness improves convergence when the samples are used to inte-
grate certain classes of functions. For example, Owen-scrambling
the van der Corput sequence improves the error convergence of a
Gaussian integral from O(N−1) to O(−3/2) [Owe13]. Laine and
Karras [LK11] and Burley [Bur20] have introduced efficient hash-
based implementations of Owen scrambling.

Figure 2: Owen-scrambling the first three sample points of the
base-3 van der Corput sequence. The three sub-intervals within
each interval are shuffled randomly and independently.

3.3. Stochastic generation of one-dimensional sequences

Before introducing the new multidimensional sampling technique,
we discuss a stochastic algorithm that is a straightforward adapta-
tion of progressive jittered sequences [Kaj86; CKK18] to one di-
mension.

The algorithm starts by placing the first sample randomly in the
unit interval. The unit interval is then subdivided into two sub-
intervals of length 1/2 and the second sample is placed at a random
position in the opposite sub-interval of the first sample.

The two half-intervals are subdivided into four quarter-intervals.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Helmer, Christensen, and Kensler / Stochastic Generation of (t,s) Sample Sequences

The third sample is placed in the same half-interval as the first sam-
ple, but the opposite quarter-interval. The fourth sample is placed
in the same way, adjacent to the second sample. This process is
illustrated in Figure 3.

Figure 3: Stochastic generation of the first four 1D sample points.
The valid sub-interval (blue) for each new point is determined by
swapping from a previous sample to the adjacent sub-interval.

For a sub-interval [t
N , t+1

N) with t ∈ {0, . . . ,N − 1}, N ∈
{21,22,23, . . .}, the adjacent unoccupied sub-interval can be
obtained using the bitwise exclusive-or (xor) operator ⊕2 as
[t⊕21

N ,
(t⊕21)+1

N). We refer to this as swapping the sub-intervals or
swapping from a previous sample point. In Section 4.6 we will gen-
eralize swapping to other prime bases.

To further extend the sequence, the unit interval is progressively
subdivided after each set of sub-intervals is filled. At each stage the
previous samples are iterated over in their original order, and for
each previous sample, a new sample point is generated randomly in
the adjacent sub-interval. The C++ code for this algorithm is given
in Listing 1 using the drand48() pseudorandom number generator
(PRNG).

We make a new observation about this intuitive algorithm: it gen-
erates the Owen-scrambled base-2 van der Corput sequence. If the
calls to the PRNG were replaced with the value 0.0, it would gen-
erate the unscrambled van der Corput sequence. Rather than gener-
ating the quasi-Monte Carlo points and then scrambling them, here
the generation and scrambling have been merged into a stratified
sample generation algorithm that is considerably faster and shorter
than separate implementations.

Listing 1: C++ code to generate a stratified 1D sequence, identical
to the Owen-scrambled base-2 van der Corput sequence.

1 void get1DSamples(int nSamples, double samples[]) {
2 samples[0] = drand48();
3 for (int prevLen = 1; prevLen < nSamples; prevLen *= 2) {
4 int nStrata = prevLen * 2;
5 for (int i = 0; i < prevLen && (prevLen+i) < nSamples; i++) {
6 int prevXStratum = samples[i] * nStrata;
7 samples[prevLen+i] = ((prevXStratum^1) + drand48()) / nStrata;
8 }
9 }

10 }

4. Generation of multidimensional sequences

We now move from one dimension to higher dimensions. We start
with background on (t, s)-sequences in general and the Sobol’ se-
quence in particular in Sections 4.1 and 4.2, respectively. We will
then expand our stochastic generation algorithm to multidimen-
sional base-2 sequences in Sections 4.3 and 4.4, allowing the gen-
eration of Owen-scrambled Sobol’ sequences. Similarly, we review

Halton and Faure sequences in Section 4.5, before showing how our
algorithm can generate randomized Halton and Faure sequences in
Sections 4.6 and 4.7.

4.1. (t, s)-sequences

The one-dimensional intervals of Section 3 can be generalized to
higher dimensions as elementary intervals. For any m ≥ 0, the s-
dimensional unit hypercube [0,1)s can be divided multiple ways
into N = bm non-overlapping boxes of volume 1/N. For example,
in base b = 2 with m = 3 and s = 3, the unit cube can be partitioned
(stratified) into ten grids: 8×1×1, 1×8×1, 1×1×8, 4×2×1, 4×1×2, 2×
4×1, 1×4×2, 1×2×4, 2×1×4, and 2×2×2. In the 2×4×1 stratification,
each stratum would be a sub-interval[

k0
21 ,

k0 +1
21

)
×
[

k1
22 ,

k1 +1
22

)
×
[

0
20 ,

1
20

)
,

where k0 ∈ {0,1}, k1 ∈ {0,1,2,3}.

These strata of the unit hypercube are the base-b elementary in-
tervals, with an elementary interval defined as

E =
s

∏
d=1

[
kd

bmd
,

kd +1
bmd

)
for integers 0≤ kd < md and where ∑

s
d=1 md = m.

Using elementary intervals, Niederreiter [Nie87] introduced the
concept of (t,s)-sequences. A base-b (t,s)-sequence is an s-
dimensional sample sequence that has at most bt points in each el-
ementary interval of volume 1/bm−t , for all disjoint subsequences
{xibm , . . . ,x(i+1)bm−1} with integers i,m ≥ 0. Figure 4 shows 2D
elementary interval stratifications for 16 points with different t val-
ues.

t = 0

t = 1

t = 2

Figure 4: Elementary interval stratifications of 16 points for base-2
(t,2)-sequences. Each elementary interval has an area of 2t−4 and
contains 2t points.

A t value of zero, i.e., a (0,s)-sequence, achieves the ideal strat-
ification, where all elementary intervals have exactly one point in
them. Unfortunately it is only possible to have a (0,s)-sequence for
s ≤ b, where b is a prime power. For a constant base, the t value
must be greater for sequences with more dimensions.

Owen-scrambling can be applied to (t,s)-sequences by scram-
bling each dimension independently, and this does not affect the t
value. Regardless of their t value, Owen-scrambled (t,s)-sequences

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Helmer, Christensen, and Kensler / Stochastic Generation of (t,s) Sample Sequences

achieve asymptotically faster convergence on integrals than uni-
form random sampling. For sufficiently smooth integrals, the ex-
pected root mean square error for N sample points, when N is a
power of the base b, diminishes as O(N−3/2(logN)(s−1)/2) com-
pared to O(N−1/2) for uniform random sampling [Owe13]. The
asymptotic convergence is faster even for discontinuous integrals,
e.g. O(N−3/4) for 2D integrals [Mit96; CKK18].

(t,s)-sequences are often generated with the digital method. The
digital method allows for the base b to be a prime power using
finite field (Galois field) arithmetic. In this paper, we will focus on
finite prime fields with modular arithmetic, although theoretically
our contributions can be generalized to any finite field.

An s-dimensional digital sequence is defined by its generator
matrices {C(k) | k ∈ S}, S = {0,1, . . . ,s− 1}, with all elements
C(k)

ij ∈ {0,1, . . . b−1}. To generate x(k)j , the k’th coordinate of the
j’th sample, the index j is again expanded into its base-b represen-
tation d0,b(j),d1,b(j), . . . up to n digits, typically determined by the
machine precision. The digits are treated as a column-vector

d j,b =

d0,b(j)
d1,b(j)

...
dn−1,b(j)

 .

For a given dimension k, the generator matrix C(k) is multiplied by
the digit vector d j,b to obtain a scrambled column-vector of digits:

y(k)j = C(k)d j,b mod b.

The radical inverse is then applied to these scrambled digits to gen-
erate the coordinate x(k)j :

x(k)j =
n−1

∑
i=0

y(k)j,i b−i−1.

The t value of a sequence is determined by the selection of gener-
ator matrices, where linear independence between leading rows and
columns of the matrices ensure certain multidimensional stratifica-
tions [DP10]. In sections 4.2 and 4.5 we will describe the Sobol’,
Halton, and Faure sequences, which all have non-singular upper tri-
angular (NUT) generator matrices. Every dimension of a sequence
with NUT matrices is a (0,1)-sequence, as the leading k rows and
columns form a matrix of rank k for any k. The van der Corput se-
quence is the simplest (0,1)-sequence, where the generator matrix
C is the identity matrix I.

4.2. The Sobol’ sequence

The Sobol’ sequence [Sob67] is a base-2 (t,s)-sequence popular
for multidimensional integration problems. The sequence is con-
structed using “direction numbers”, and it is often generated with
the digital method where the binary representation of the direc-
tion numbers correspond to columns of the generator matrices.
The exact choice and meaning of the direction numbers is beyond
the scope of this paper; we refer interested readers to Bratley and
Fox [BF88] for the details. We use the direction numbers found by

Joe and Kuo [JK08], with the generator matrices provided as part
of the source code for the PBRT v3 renderer [PJH17].

The first dimension of the Sobol’ sequence is typically chosen
to be the base-2 van der Corput sequence, and the generator of the
second dimension is the upper-triangular Pascal matrix P modulo 2
with

P =

1 1 1 1 . . .
0 1 2 3 . . .
0 0 1 3 . . .
0 0 0 1 . . .
...

...
...

...
. . .

 and P mod 2 =

1 1 1 1 . . .
0 1 0 1 . . .
0 0 1 1 . . .
0 0 0 1 . . .
...

...
...

...
. . .

 .

This choice of generator matrices makes the first two dimensions
a base-2 (0,2)-sequence. These matrices hint at two significant
properties of the Sobol’ sequence. First, all generator matrices are
NUT, so all one-dimensional projections of the sequence are (0,1)-
sequences. Second, the t values of the Sobol’ sequence are smaller
for earlier sets of dimensions in the sequence. This is a useful prop-
erty in path tracing, where the earlier dimensions generally have a
greater weight in the rendering integral. Despite not having min-
imal t values, these characteristics are part of why the Sobol’ se-
quence has found success in many applications [Owe13]. Base-2
sequences are also appealing because they can be generated effi-
ciently using bit arithmetic for matrix multiplications, and Owen-
scrambling can be performed with hashing [LK11; Bur20].

4.3. Stochastic generation of base-2 (t, s)-sequences

The use of generator matrices to scramble a digit vector can be seen
as shuffling the coordinates for each dimension. For example, the
3×3 leading matrix of the second Sobol’ dimension

C(1) =

1 1 1
0 1 0
0 0 1

will swap the third and fourth point of the van der Corput sequence,
and the fifth and the sixth point, as illustrated in Figure 5.

Figure 5: To generate the Sobol’ (0,2)-sequence, the coordinates
of the first dimension (top) can be permuted to form the second
dimension (bottom).

This observation inspires our new multidimensional stochastic
algorithm. To extend the algorithm from Listing 1 to multiple di-
mensions, each dimension will permute the index of previous sam-
ples used to choose sub-intervals for new samples.

The following example shows how we stochastically generate
the first four samples of an Owen-scrambled Sobol’ (0,2)-sequence:
The first sample is placed randomly in the unit square. Each 1D
unit interval is divided into two strata, and in both dimensions the
next sample is placed in the opposite 1D stratum of the first point.
The unit intervals are again subdivided. The x stratum of the third

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Helmer, Christensen, and Kensler / Stochastic Generation of (t,s) Sample Sequences

sample is swapped from the first sample, while the y stratum is
swapped from the second sample. This is illustrated in Figure 6.

Figure 6: Generation of the third sample (green) in 2D, swapping
the sub-intervals of the first sample in the x-dimension and the sec-
ond sample in the y-dimension.

The fourth sample is generated conversely, swapping the x stra-
tum of the second sample and the y stratum of the first, which will
place it in the remaining empty cell of Figure 6. By permuting the
order of the samples used to select sub-intervals on the y-axis, the
four points are guaranteed to be placed in different 2D quadrants as
well as different 1D sub-intervals.

Our base-2 algorithm starts by calculating n “xor-values” for
each of the s dimensions, {χ(k)m | 0 ≤ m < n, k ∈ S}, in order to
generate up to 2n samples. In Section 4.4, we will show how these
xor-values can be derived from the n× n NUT generator matrices
of a QMC sequence.

Given the xor-values, the first sample in the base-2 sequence is
generated randomly in the s-dimensional unit hypercube [0,1)s.
To extend the sequence from 2m samples to 2m+1 samples, the s
one-dimensional unit intervals are each stratified into 2m+1 sub-
intervals. The indices i ∈ {0,1, . . . ,2m− 1} are iterated over, and
for each new sample an unoccupied sub-interval in dimension k is
selected, with the new coordinate x(k)2m+i generated randomly within
that sub-interval. The unoccupied sub-interval is selected by swap-
ping from a previous coordinate x(k)j , with the m’th xor-value used

to calculate the index: j = i⊕2 χ
(k)
m .

The Owen-scrambled van der Corput sequence is a special case
of this algorithm, where the xor-values χ∗ are all zero. The second
dimension of the scrambled Sobol’ (0,2)-sequence can be gener-
ated with the xor-values χ(1)∗ = {0,1,1,7,1,19, . . .}. This yields a
new implementation of the Owen-scrambled Sobol’ (0,2)-sequence
shown in Listing 2, which is both short and remarkably fast. The
supplemental code contains a stochastic implementation of the 64-
dimensional Sobol’ sequence.

In Table 2 we compare the performance against four other meth-
ods of generating equivalent or similar (0,2)-sequences:

Hash-based Owen scrambling. Code is provided with the sup-
plemental material of Burley [Bur20] to generate Owen-scrambled
Sobol’ (0,2)-sequences using Laine-Karras hashing [LK11].

Hash-based Owen scrambling with precomputed Sobol’ points.

Listing 2: Stochastic generation of an Owen-scrambled Sobol’
(0,2)-sequence in C++.

1 void getStochasticSobol02Samples(int nSamples,
2 double samples[][2]) {
3 static constexpr uint32_t yXors[30] =
4 {0x00000000, 0x00000001, 0x00000001, 0x00000007,
5 0x00000001, 0x00000013, 0x00000015, 0x0000007f,
6 0x00000001, 0x00000103, 0x00000105, 0x0000070f,
7 0x00000111, 0x00001333, 0x00001555, 0x00007fff,
8 0x00000001, 0x00010003, 0x00010005, 0x0007000f,
9 0x00010011, 0x00130033, 0x00150055, 0x007f00ff,

10 0x00010101, 0x01030303, 0x01050505, 0x070f0f0f,
11 0x01111111, 0x13333333};
12 samples[0][0] = drand48();
13 samples[0][1] = drand48();
14 for (int logN = 0, prevLen = 1;
15 prevLen < nSamples;
16 logN++, prevLen *= 2) {
17 int nStrata = prevLen * 2;
18 for (int i = 0; i < prevLen && (prevLen+i) < nSamples; i++) {
19 // Get strata of previous samples.
20 int prevXStratum = samples[i][0] * nStrata;
21 int prevYStratum = samples[i^yXors[logN]][1] * nStrata;
22 // Generate new sample in adjacent strata.
23 samples[prevLen+i][0] =
24 ((prevXStratum^1) + drand48()) / nStrata;
25 samples[prevLen+i][1] =
26 ((prevYStratum^1) + drand48()) / nStrata;
27 }
28 }
29 }

The majority of computation time with hash-based scrambling is
used recalculating the unscrambled values of the Sobol’ (0,2)-
sequence. For a fixed memory overhead, we precompute these sam-
ples and store them as 16-bit integers.

Lazy permutation trees. We use the libseq library [FK01] with
the specialized RandomizedTSSequence_base_2 class and the same
generators as the Sobol’ (0,2)-sequence.

Efficient generation of (0,2)-sequences. Samples are generated in
the same diagonally opposing order as Christensen et al. [CKK18],
using the traversal described by Pharr [Pha19]. Optimal dis-
joint subsequences are maintained implicitly using the strategy of
Brown [Bro19], generating true (0,2)-sequences.

Table 2: Single-threaded performance of generating 65536 sam-
ples of a scrambled (0,2)-sequence, measured on a 2.9 GHz Intel
Core i7 (average time over 1024 runs). Memory and time for lazy
permutation trees were measured using the libseq library [FK01].

memory usage

algorithm time (samples/sec) per sequence constant

Hashing [LK11; Bur20] 1.6 ms (40M) < 1 KB < 1 KB

Hashing precomputed Sobol’ points 0.6 ms (103M) < 1 KB 262 KB

Lazy permutation trees [FK02] 2.5 ms (26M) ~2,200 KB < 1 KB

Efficient generation [CKK18; Pha19] 40 ms (1.66M) 1,065 KB < 1 KB

Stochastic generation (ours) 0.30 ms (215M) 1,048 KB < 1 KB

Table 2 shows that stochastic generation is faster than any other
technique, and two orders of magnitude faster than Pharr [Pha19],
the only other stochastic generation algorithm. Hashing may still
be preferable for many scenarios due to its low memory footprint.
We applied a few obvious optimizations to each technique; these
are detailed in the supplemental material.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Helmer, Christensen, and Kensler / Stochastic Generation of (t,s) Sample Sequences

4.4. Calculation of xor-values

The xor-values used in our stochastic algorithm are, in a sense, a
reversal of the generator matrices. We start by defining a function

mb(i) = blogb(i)c

that gives the index of the most significant digit of i in a prime
base b, shortened to m(i) when discussing a base b sequence. For a
sample i in base b with digital expansion vector di, we would like
to find an earlier sample j to swap from, such that

Cd j + em(i) = Cdi mod b,

with

em(i),k =

{
1 if m(i) = k
0 otherwise,

for integers k ≥ 0. The sample index j can then be calculated with

d j = di− c−1
∗,m(i) mod b, (1)

where c−1
∗,m(i) is the m(i)’th column of the inverse of the generator

matrix. However the stochastic generation algorithm iterates over
the previous indices of the sequence, rather than using the new in-
dex of each sample, so the most significant digit needs to be trun-
cated. We define a truncation operator that, in base 2, sets the last
non-zero digit to zero:

τ(di) = di− em(i) mod b.

We can apply τ to each of the right-hand terms in Equation 1:

d j = τ(di)− τ(c−1
∗,m(i)) mod b.

In base 2, vector addition mod 2 is equivalent to an element-wise
xor, hence the last term is the negated b-ary expansion of the xor-
value:

χm =
m

∑
i=0

(−τ(c−1
∗,m)i mod b)bi (2)

In summary, to compute n xor-values, the n×n generator matrix
C is inverted, one is subtracted from the diagonal entries, and the
negated m’th column of the resulting matrix (modulo the base) is
multiplied by powers of b and summed to calculate χm. Python
code to generate these values is given in Listing 3.

Listing 3: Computation of the xor-values from a generator matrix
in Python.

1 import numpy as np
2 def get_xor_values(gen_matrix, base=2):
3 # Invert the matrix.
4 m_inv = np.linalg.inv(gen_matrix).astype(int) % base
5 # Truncate the diagonal.
6 m_inv -= np.identity(m_inv.shape[0], dtype=int)
7
8 # Compute the xor-values from the negated columns.
9 # For base 2, base_pow = (1,2,4,8,16...)

10 base_pow = np.power(base, np.arange(0, gen_matrix.shape[0]))
11 return [np.sum((-col % base)*base_pow) for col in m_inv.T]

4.5. The Halton and Faure sequences

The Halton sequence [Hal60] is a multidimensional sequence
where each dimension is a van der Corput sequence in a differ-
ent base, with all bases coprime. Typically the bases are chosen

to be successive primes, i.e., the first dimension is in base 2, the
second dimension base 3, base 5, etc. The sequence is sometimes
referenced using the bases, for example "the Halton 2,3" sequence
is the 2D sequence with bases 2 and 3 for the x and y dimensions,
respectively.

The Halton sequence is not strictly a (t,s)-sequence, although
each dimension is a (0,1)-sequence, and the Owen-scrambled Hal-
ton sequence does not have the same asymptotic convergence on
smooth integrals. However, it has a number of appealing properties.
All subsequences of the Halton sequence are well-stratified, not
only disjoint ones. This is useful for temporal antialiasing [YLS20],
where occlusions may cause earlier samples to be discarded. The
Halton sequence also gives high-dimensional stratification for all
lower dimensional projections. For a given set of s co-prime bases
{b0,b1, . . . ,bs−1}, any subsequence of N = ∏

s−1
i=0 bmi

i samples will
be stratified in the bm0

0 × bm1
1 × ·· ·× bms−1

s−1 grid. Figure 1b shows
some of these stratifications for a Halton 2,3 sequence. Finally, the
Owen-scrambled Halton sequence has the property that projections
of higher dimensions have distributions similar to uniform random
samples at low sample counts. This is unlike the Sobol’ sequence,
which can have harmful correlations between dimensions.

Faure [Fau82] described a general technique to construct a (0,s)-
sequence in a prime base b ≥ s, equivalent to the Sobol’ (0,2)-
sequence for s = b = 2. The generator matrices {C(k) | k ∈ S}
are constructed using upper-triangular Pascal matrices taken to the
power of their dimension:

C(k) = Pk mod b,

where P0 = I, Pk = Π
k
i=1P for k ≥ 1, and

P =

ρ0,0 ρ0,1 ρ0,2 . . .
ρ1,0 ρ1,1 ρ1,2 . . .
ρ2,0 ρ2,1 ρ2,2 . . .

...
...

...
. . .

 ,

with

ρi, j =

1 if i = 0 or i = j
0 if i > j
ρi,(j−1)+ρ(i−1), j otherwise.

The base b is often assumed to be the smallest prime greater
than or equal to s, and we say the Faure (0,5)-sequence in
short for the base-5 Faure (0,5)-sequence. Dick and Pillichsham-
mer [DP10] provide a proof that using the Pascal matrices gives
(0,s)-sequences.

The progressive stratifications of a (0,s)-sequence ensure that all
lower-dimensional projections of the sequence are well-stratified,
themselves (0,s)-sequences, which is a valuable characteristic for
rendering integrals [JEK*19]. Figure 7 shows the stratifications
for just 27 points of a scrambled Faure (0,3)-sequence. A draw-
back of Faure sequences is that many samples are needed to fill
out the stratifications, especially for high dimensional sequences.
They also only achieve optimal error convergence at powers of the
base [Owe13], which can be prohibitively far apart for high bases.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Helmer, Christensen, and Kensler / Stochastic Generation of (t,s) Sample Sequences

0 ≤ z < 1/3

x

y

1/3 ≤ z < 2/3

x

2/3 ≤ z < 1

x

x

y

y

z

z

x

Figure 7: The first 27 samples of a scrambled Faure (0,3)-
sequence, stratified for all base-3 elementary intervals. Top row:
stratification in the 3×3×3 grid. Bottom 3 rows: all 2D projections
stratified in 27×1, 9×3, 3×9, and 1×27.

4.6. Stochastic generation in prime bases

The new stochastic generation algorithm from Section 4.3 can be
extended to prime bases with three generalizations, which will
enable the generation of Owen-scrambled Halton and Faure se-
quences.

First, when the sequence is extended from bm to bm+1 samples,
rather than iterating over the previous indices once, they need to be
iterated over b−1 times. Each of these iterations is a pass with an
index 1≤ p < b.

The second change involves adapting the meaning and use of
“xor-values”. Equation 2 and Listing 3 can be used for prime-base
NUT matrices with ones on the diagonal, such as the Halton and
Faure sequences, and a more general form can be derived for matri-
ces with larger values on the diagonal. We note that our derivation
of xor-values actually references samples from the previous pass,
not from the previous power, so the inner loop must permute sam-
ple indices from the previous pass. Alternatively, one could multi-
ply the digits of the xor-values by p to reference samples from the
previous power.

The bitwise xor operator i⊕2 j is generalized to i⊕b j as a vector
addition on the base-b digits of i and j, modulo the base (i.e., as car-
ryless addition). Using template metaprogramming, compilers can
efficiently optimize the integer divisions by the base [PJH17], with-

out storing an array of digits. Listing 4 shows an implementation of
this function in C++.

Listing 4: Add the digits of x and y in a prime base.
1 template<unsigned BASE>
2 unsigned carrylessAdd(unsigned x, unsigned y) {
3 unsigned sum = 0, bPow = 1;
4 while (y > 0 && x > 0) {
5 sum += ((x + y) % BASE) * bPow;
6 x /= BASE; y /= BASE;
7 bPow *= BASE;
8 }
9 return sum + bPow*(x+y);

10 }

Adding the digits in higher bases will have O(logb N) time com-
plexity to generate each new coordinate, rather than the O(1) com-
plexity of the base-2 algorithm. However, the results of adding the
digits of each sample index with the corresponding χm are fixed for
a given generator matrix, so they can be precomputed and stored in
an “index map”.

Finally, strata swapping must be generalized to higher bases.
When the sequence is extended from bm to bm+1 points, the interval
containing x j with 0 ≤ j < bm is subdivided into b sub-intervals.
We now have multiple choices of strata for the new samples, as
shown in Figure 8.

Figure 8: Stochastic generation of the 1D coordinates in base 3.
The second sample can be placed in either of the two unoccupied
sub-intervals, and the third sample is placed in the remaining one.

We address this by randomly assigning strata offsets {δp} =
{1, . . . ,b− 1} to each of the b− 1 new samples within an inter-

val. We define t(j) =
⌊

x jbm+1
⌋

, the index of the occupied sub-
interval of coordinate x j. Each new coordinate xi in pass p, where
i = j⊕b p(bm+1	b χm+1), is placed randomly in the sub-interval
[

t(i)
bm+1 ,

t(i)+1
bm+1), with t(i) = t(j)⊕b δp.

With this generalization, we can stochastically generate Owen-
scrambled Sobol’, Halton, and Faure sequences. Choosing the best
multidimensional sequence for rendering integrals remains an open
area of experimentation and research. Figure 9 shows a common
5D integral in path tracing, with BRDF sampling, area light sam-
pling, and light selection. We compare de-correlated scrambled
Sobol’ (0,2)-sequences (ssobol02), scrambled 5D Sobol’ sequences
(ssobol5D), and scrambled Faure (0,5)-sequences (sfaure05), using
correlated swapping (Section 4.7). The Faure (0,5)-sequence yields
the lowest overall error, but not in the blue inset. In the supple-
mental material we compare different sequences, including some
shipped with PBRT [PJH17], in complex high-dimensional renders.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Helmer, Christensen, and Kensler / Stochastic Generation of (t,s) Sample Sequences

2.133x10-52.133x10-52.133x10-5 1.335x10-51.335x10-51.335x10-5 1.471x10-51.471x10-51.471x10-5

2.227x10-32.227x10-32.227x10-3 1.461x10-31.461x10-31.461x10-3 1.222x10-31.222x10-31.222x10-3

ssobol02 (128spp) ssobol5D (128spp) sfaure05 (125spp)

Full: 2.265x10-4 Full: 1.470x10-4 Full: 1.265x10-4

Figure 9: A 5D scene from [Bit16; VG95] demonstrating multiple
importance sampling with light selection, area light sampling, and
BRDF sampling, rendered with path tracing in PBRT v3 [PJH17].
Both 5D sequences have lower RMS error than shuffled and scram-
bled (0,2)-sequences, with the stochastic Faure (0,5)-sequence per-
forming the best overall. Differences from the reference image are
amplified in the insets by 5× (top row) and 20× (bottom row).

4.7. Correlated swapping

Keeping track of the shuffled strata offsets for each interval adds the
most complexity to the base-2 algorithm. Inspired by Kensler’s cor-
related shuffling [Ken13], correlated swapping simplifies the pro-
cess. While full Owen-scrambling independently assigns a strata
offset to every new sample, correlated swapping uses the same
strata offset for all the samples in a given pass and dimension. This
is illustrated in Figure 10b, where δ1 = 1 for samples 3-5, and δ2
must be 2 for samples 5-8.

Different strata offsets are still used for each dimension, and
the offsets are shuffled for each new power of the base. This sim-
plification slightly reduces the randomness, but it is considerably
more random than other scrambling techniques such as random
digit scrambling [Mat98], since the previous points may have been
placed in differently offset sub-intervals. Unlike correlated shuf-
fling, it does not improve the point distributions, but error on test

(a) Owen-scrambling (b) Correlated swapping

Figure 10: Generating the 4th, 5th, and 6th coordinates in a base-3
sequence. In complete Owen-scrambling the strata offsets from ear-
lier samples are chosen independently, while correlated swapping
uses the same offsets.

integrals is unaffected, and the error differences we observed in
renders were minor (typically a 2% difference in RMS error), with
neither swapping method consistently better than the other.

Table 3 compares the performance of our stochastic genera-
tion with two other methods for generating a scrambled Faure
(0,5)-sequence. We use the libseq [FK01] library for lazy permu-
tation trees, and we use Burley’s implementation of base-5 Owen-
scrambling [Bur20] that hashes each base-b digit, with the hash
randomized by more significant digits.

Table 3: Single-threaded performance of generating 3125 samples
of a scrambled Faure (0,5)-sequence, measured on a 2.9 GHz Intel
Core i7 (average time over 1024 runs). Memory and time for lazy
permutation trees were measured using the libseq library [FK01].

memory usage

algorithm time (samples/sec) per sequence constant

Stateless permutations [Bur20] 3.3 ms (0.95M) < 1 KB < 1 KB

Lazy permutation trees [FK02] 1.06 ms (2.9M) ~266 KB < 1 KB

Stochastic generation (ours)

no map, uncorrelated swapping 0.53 ms (5.9M) 138 KB < 1 KB

index map, uncorrelated swapping 0.39 ms (8M) 138 KB 62 KB

no map, correlated swapping 0.23 ms (13.4M) 125 KB < 1 KB

index map, correlated swapping 0.08 ms (39.5M) 125 KB 62 KB

Even without index mapping or correlated swapping, stochastic
generation is the fastest technique. With both it is over an order of
magnitude faster than either hashing or lazy permutation trees. A
general implementation of prime base sequences with correlated
swapping is provided in our supplemental code, as well as xor-
values for some Faure sequences.

5. Application and variants

We now discuss the application of these sequences to rendering.

5.1. Best-candidate sampling

In addition to the improved performance and simplicity of stochas-
tic generation, the approach of stratified sampling allows for op-
timization of the point sequences. Inspired by the pmj02bn se-
quences [CKK18], we can generate multiple candidates in the
valid strata and choose the candidate with the highest minimum
distance from previous points [Mit91]. This allows us to gener-
ate ssobol02bn sequences, shalton23bn sequences, or Faure-bn se-
quences such as the sfaure03bn sequence in Figure 1c. The un-
scrambled Halton 2,3 sequence has good point spacing, however

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Helmer, Christensen, and Kensler / Stochastic Generation of (t,s) Sample Sequences

higher dimensions have poor correlations, and scrambling is neces-
sary. Best-candidate sampling allows for a new trade-off between
those properties, as shown in Figure 11 and in the supplemental
materials.

25
sa

m
pl

es
50

0
sa

m
pl

es

(a) Unscrambled (b) Stochastic (c) Best-candidate

Figure 11: Comparison of Halton 2,3 sequences generated with
different scrambling methods. Scrambling breaks apart correla-
tions between higher dimensions (see the supplemental materials),
but samples can end up closer together; best-candidate samples
improve the spacing.

Figure 12 compares stochastic Sobol’ (0,2)-sequences with and
without best-candidates for disk light sampling. In this scene, best-
candidate samples reduce error across all tested sample counts. Fig-
ure 13 compares the sequences on simple test integrals and finds
that best-candidate samples are helpful on symmetric integrals, but
slightly harmful on the asymmetric Gaussian integral. We find, sim-
ilar to Christensen et al. [CKK18], that the spectral properties of
these sequences are not improved, and more investigation is needed
to determine when best-candidate samples are useful.

3.853x10-43.853x10-43.853x10-4

5.946x10-55.946x10-55.946x10-5

3.412x10-43.412x10-43.412x10-4

5.495x10-55.495x10-55.495x10-5

Full: 1.924x10-4 Full: 1.768x10-4
ssobol02 ssobol02bn

Figure 12: A scene with a disk area light path-traced at 16spp in
PBRT v3. The ssobol02bn sequence has a lower RMS error in the
full image, in the unoccluded area, and in the penumbra. Differ-
ences from the reference image are amplified in the insets by 20×
(top row) and 5× (bottom row).

21 23 25 27 29 211

samples

10−3

10−2

10−1

rm
s

er
ro

r

quarter-disk: sampling error

ssobol02bn
ssobol02
N−0.75

21 23 25 27 29 211

samples

10−2

10−1

rm
s

er
ro

r

center-disk: sampling error

ssobol02bn
ssobol02
N−0.75

21 23 25 27 29 211

samples

10−5

10−4

10−3

10−2

10−1

rm
s

er
ro

r

quarter-gaussian: sampling error

ssobol02bn
ssobol02
N−1

N−1.5

21 23 25 27 29 211

samples

10−5

10−4

10−3

10−2

10−1

rm
s

er
ro

r

center-gaussian: sampling error

ssobol02bn
ssobol02
N−1

N−1.5

Figure 13: Comparison of average integration error for the
stochastic Sobol’ (0,2)-sequence, with and without best-candidate
sampling, for 256 independently generated sequences. Best-
candidate sampling has lower error on symmetric integrals (bottom
row) for most N ≤ 32 and higher error integrating the asymmetric
Gaussian function. Asymptotic convergence (slope) is unaffected.

5.2. Decorrelation of sequences

Although (t,s)-sequences have better asymptotic convergence
on integrals than uniform random sampling, high t values can
have worse error for practical sample counts. Christensen et al.
[CFS*18] observed this for pairs of higher dimensions of the Sobol’
sequence. The Owen-scrambled Halton sequence does not have
detrimental correlations in higher dimensions, but still degenerates
quickly to purely random sampling even for adjacent dimensions.
Scrambled Faure sequences have finite dimensionality, and a high-
base Faure sequence takes too many samples to fill up the high
dimensional space.

These reasons favor using juxtapositions of lower-dimensional
sequences, rather than one high-dimensional sequence per pixel.
However, juxtaposing lower dimensional (t,s)-sequences results in
such harmful correlations between dimensions, as shown in Fig-
ure 14a, that the integral may never converge to the correct value.
Instead, sequences need to be decorrelated and then juxtaposed, a
technique known as padding. At the same time, we want to main-
tain desirable progressive qualities of the sequence, such as opti-
mized minimum distances. In this section, we describe two pro-
gressive decorrelation techniques.

Faure-Tezuka scrambling [FT02] progressively shuffles sample
indices by scrambling the generator matrices. Given a set of gener-
ator matrices {C(k) | k ∈ S}, we can multiply all generator matrices
by one NUT scrambling matrix X, such that the generator matrices
become {C(0)X,C(1)X, . . . ,C(s−1)X}. Sequences can be partially

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Helmer, Christensen, and Kensler / Stochastic Generation of (t,s) Sample Sequences

(a) No shuffling (b) Faure-Tezuka (c) Full progressive

Figure 14: Juxtapositions of two 1D sequences generated with List-
ing 1 and different types of shuffling.

decorrelated with random NUT scrambling matrices. NUT scram-
bling matrices preserve any power-of-b prefix of the samples, main-
taining progressive qualities. The full progressive shuffling we will
describe is better for padding multiple dimensions in path tracing,
but Faure-Tezuka scrambling may be sufficient in other situations.

Some scrambling matrices also have interesting properties.
The generation of pmj02 sequences as described by Christensen
et al. [CKK18] corresponds to a particular type of scrambling ma-
trix. In the supplemental material we give a construction of pmj02
sequences using generator matrices [HP11].

Faure and Tezuka also proposed more extensive decorrelation by
randomly permuting disjoint subsequences. This is equivalent to
Owen-scrambling the sample indices within the array, maintaining
progressive stratification properties, and it can also be done effi-
ciently with hashing in base 2 [Bur20].

However, this breaks progressively optimized point qualities. We
address this with a new progressive shuffling that has equivalent
decorrelation. For a base-2 sequence of only two samples, swap-
ping the first two samples is unnecessary. Similarly, for sequences
of length N = 4, there is no added decorrelation from swapping
the initial two points with the latter two. Full decorrelation can be
achieved by randomly swapping only the third and the fourth point.
These observations were also made by Ahmed and Wonka [AW21],
who noted that scrambling the indices is partially redundant with
scrambling the coordinates.

In general, when extending a sequence from bm to bm+1 points,
we only need to shuffle within each pass of bm points, but the passes
do not need to be shuffled with each other. We refer to this new
technique as full progressive shuffling, shown in Figure 15. This
technique also preserves any power-of-b prefix of samples from the
original sequence. Figure 14 compares the decorrelation of full pro-
gressive shuffling with no shuffling and Faure-Tezuka scrambling.

Figure 15: Base-2 progressive shuffling of sample indices, with
arrows representing potential permutations of samples. Full pro-
gressive shuffling will randomly decide every permutation indepen-
dently.

Progressive shuffling can be performed during stochastic gener-
ation using a lookup table. The order of new points is shuffled for
each extension of the sequence. When a new point is generated, the
lookup table will store its actual index at the location of the original
unpermuted index, and when we reference a previous point to swap
from, we find its permuted index using the lookup table. Progres-
sive shuffling can also be done during rendering by storing shuffled
index arrays separately from the original sequences, allowing a ren-
derer to effectively multiply the number of available sequences with
an additional array lookup per sample.

5.3. Stateless stochastic generation

Our algorithm can also be recast in a stateless implementation, trad-
ing computation time to eliminate the need to store previous sam-
ples. In the sequential algorithm, each coordinate for a sample de-
pends on only two dynamic values: a uniformly distributed random
number, and the coordinate (in the same dimension) for a previ-
ous sample. The computation of the coordinates for the different
dimensions is separable.

Instead of a sequential random number generator, we can use
one that hashes the current sample index and dimension together
with a seed value, as in Kensler’s randfloat() function [Ken13] or
an alternative [JO20]. This lets us repeatably and deterministically
reproduce the random number for a given sample and dimension at
any time without the need to traverse the whole random number se-
quence. The coordinate of the previous sample, and the sample that
one depends on, can then be regenerated recursively, all the way
back to the first sample; see Figure 16. We provide an implemen-
tation of this stateless recursive algorithm for the Owen-scrambled
Sobol’ (0,2)-sequence in Listing 5.

Figure 16: Stateless generation of the 8th y-coordinate of the
Sobol’ (0,2)-sequence. The coordinates of the 3rd, 2nd, and 1st
points are recursively generated.

This recursive algorithm can also be implemented as a back-
wards iteration, generating the random value for each coordinate
and then dividing (or right shifting) to "carry" it to the earlier co-
ordinate, which reduces the memory complexity from O(logn) to
O(1). An iterative C++ implementation is provided in the supple-
mental code. The iterative implementation generates 65536 sam-
ples of a scrambled Sobol’ (0,2)-sequence in 6.75ms, at 9.7M sam-
ples/second.

While this is slower than hashing, it allows a renderer to make
new tradeoffs between memory, speed, and quality. A renderer can
store a smaller precomputed table of samples, perhaps with best-
candidates, and stateless generation could extend to higher sam-
ple counts if necessary. This is similar to the suggestion of Ma-
toušek [Mat98] for memory-constrained Owen-scrambling. How-
ever our backwards algorithm uses O(log n

k) time to query an ar-
bitrary coordinate, where k is the size of the precomputed table,
avoiding the O(logn) for digital matrix multiplication. This state-
less algorithm is also trivially parallelizable, as every sample can
be generated independently.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Helmer, Christensen, and Kensler / Stochastic Generation of (t,s) Sample Sequences

Listing 5: Stateless generation of one dimension of a single Owen-
scrambled Sobol’ (0,2) sample in C++.

1 double hashToRnd(uint32_t idx, uint32_t seed); // See [Ken13] Lst 4
2 double getSobol02Stateless(int idx, int dim, uint32_t seed) {
3 static uint32_t xors[2][30] =
4 {{0}, // First dimension special case, xor-values all zero.
5 {0x00000000, 0x00000001, 0x00000001, 0x00000007, 0x00000001,
6 0x00000013, 0x00000015, 0x0000007f, 0x00000001, 0x00000103,
7 0x00000105, 0x0000070f, 0x00000111, 0x00001333, 0x00001555,
8 0x00007fff, 0x00000001, 0x00010003, 0x00010005, 0x0007000f,
9 0x00010011, 0x00130033, 0x00150055, 0x007f00ff, 0x00010101,

10 0x01030303, 0x01050505, 0x070f0f0f, 0x01111111, 0x13333333}};
11 // Base case, return first randomly placed point.
12 if (!idx)
13 return hashToRnd(dim, seed);
14 // Determine stratum size and place in previous strata.
15 int logN = getMSB(idx); // (Right-most bit is numbered zero)
16 int prevLen = 1 << logN;
17 int nStrata = prevLen * 2;
18 int i = idx - prevLen;
19 // Recursively get stratum of previous sample.
20 int prevStratum =
21 getSobol02Stateless(i^xors[dim][logN], dim, seed) * nStrata;
22 // Generate new sample in adjacent stratum.
23 return ((prevStratum^1) + hashToRnd(idx*2+dim, seed)) / nStrata;
24 }

6. Optimization of sample positions

The simplicity and continuous formulation of our technique opens
the door to new optimizations of stratified sample sequences. Al-
though the strata swapping is discontinuous, the location of sam-
ples is locally differentiable with respect to each random number,
which means that sequences can be optimized using subgradient
descent algorithms. As an experiment, we implemented a stochastic
Sobol’ (0,2)-sequence in Python with the JAX auto-differentiation
library and optimized it using Adam [KB17]. Our loss function L
optimizes progressive minimum distances across all sample counts:

L =−
n

∑
i=2

log(min_dist(i))∗ (log(i)− log(i−1)),

where min_dist(i) is the minimum toroidal distance between any
of the first i points. Conceptually, this is minimizing the area above
the curve on a log-log plot of distances vs. number of points.

This optimization will frequently settle on regular structures sim-
ilar to rank-1 lattices at N = 8 and N = 32, even when the optimized
sequence is much longer. Figure 17 shows the first 128 points of
one of these sequences. At 8 and 32 points, the minimum distances
are 0.354 and 0.167, nearly identical to the optimal matrix con-
structions of point sets found by Grünschloß et al. [GHSK08].

Figure 17: A Sobol’ (0,2)-sequence optimized for minimum point
distances using the Adam optimizer.

The optimization does not generate regular structures or fully
optimal distances at higher N, but the distances still improve con-
siderably over best-candidate samples. The regular structure (at low
sample counts) may be undesirable for rendering. Either way, this
example demonstrates the viability of this optimization approach.

Penalizing regularity with arbitrary-edge discrepancy [DEM96]
may improve distributions for rendering.

For higher sample counts, global gradient descent can be un-
stable due to the discontinuities and acceptance of every move.
Our current work in progress using simulated annealing with
Ahmed and Wonka’s formulation of blue-noise [AW21] produces
sequences with improved spectra across multiple sample counts.

Beyond optimization, it may be worthwhile to design new
QMC constructions tailored specifically to rendering. Chris-
tensen et al. [CKK18] shuffle (0,2)-sequences together to get se-
quences that are jittered in 3D, 4D, or 5D. Generator matrix con-
structions for these sequences should be possible, and they may
perform better than a Sobol’ sequence for common rendering inte-
grals. Since our technique allows for sequences that have not been
thoroughly explored in rendering, such as Owen-scrambled Halton
and Faure sequences, there is also new opportunity for investigation
into choosing the best sequences for a given render.

7. Conclusion

The main contribution of this paper is a new stochastic approach
to generating Owen-scrambled sequences. This technique connects
randomized QMC sequences with stratified sampling. Stochastic
generation is faster and easier to implement, provides a differen-
tiable parameterization of Owen-scrambled sequences, and extends
state-of-the-art stratified sample sequences to higher dimensions.
We have also discussed methods to apply these sequences to render-
ing and to further improve the quality of these sequences through
best-candidate sampling or optimization. Our hope is that these
techniques are immediately useful to rendering practitioners and
provide a stepping stone to further research of multidimensional
sample sequences.

Acknowledgements

We want to thank our anonymous peer reviewers for their helpful
feedback. We would also like to thank the RenderMan team at Pixar
and the Scout simulation team at Amazon. Andrew Helmer would
like to thank his brother Edmund for reviewing an early draft of the
paper. And finally, we would like to give a special thanks to our
partners/wives for supporting the work on this research, especially
while being stuck at home for the past year.

References
[AKI10] ATANASSOV, E., KARAIVANOVA, A., and IVANOVSKA, S.

“Tuning the generation of Sobol sequence with Owen scrambling”.
Large-Scale Scientific Computing. Springer, 2010, 459–466 3.

[APC*16] AHMED, A., PERRIER, H., COEURJOLLY, D., et al. “Low-
discrepancy blue noise sampling”. ACM Transactions on Graphics
(Proc. SIGGRAPH Asia) 35.6 (2016) 3.

[AW21] AHMED, A. and WONKA, P. “Optimizing dyadic nets”. ACM
Transactions on Graphics (Proc. SIGGRAPH) 40.4 (2021). (To ap-
pear.) 3, 11, 12.

[BF88] BRATLEY, P. and FOX, B. “Algorithm 659: implementing Sobol’s
quasirandom sequence generator”. ACM Transactions on Mathematical
Software 14.1 (1988), 88–100 5.

[Bit16] BITTERLI, B. Rendering Resources. https://benedikt-bitterli.me/-
resources/. 2016 9.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Helmer, Christensen, and Kensler / Stochastic Generation of (t,s) Sample Sequences

[Bro19] BROWN, S. Progressive Multi-Jittered Sample Sequences.
https://github.com/sjb3d/pmj. 2019 6.

[Bur20] BURLEY, B. “Practical hash-based Owen scrambling”. Journal of
Computer Graphics Techniques 10.4 (2020), 1–20 2, 3, 5, 6, 9, 11.

[CFS*18] CHRISTENSEN, P., FONG, J., SHADE, J., et al. “RenderMan: an
advanced path tracing architecture for movie rendering”. ACM Transac-
tions on Graphics 37.3 (2018) 1, 2, 10.

[CKK18] CHRISTENSEN, P., KENSLER, A., and KILPATRICK, C. “Pro-
gressive multi-jittered sample sequences”. Computer Graphics Forum
(Proc. Eurographics Symposium on Rendering) 37.4 (2018), 21–33 2,
3, 5, 6, 9–12.

[Coo86] COOK, R. “Stochastic sampling in computer graphics”. ACM
Transactions on Graphics 5.1 (1986), 51–72 2.

[Cor35] VAN DER CORPUT, J. “Verteilungsfunktionen. I.” Proc. Akademie
van Wetenshappen te Amsterdam 38 (1935), 813–821 2, 3.

[CSW94] CHIU, K., SHIRLEY, P., and WANG, C. “Multi-jittered sam-
pling”. Graphics Gems IV. Academic Press, 1994, 370–374 2.

[DEM96] DOBKIN, D., EPPSTEIN, D., and MITCHELL, D. “Comput-
ing the discrepancy with applications to supersampling patterns”. ACM
Transactions on Graphics 15.4 (1996), 354–376 12.

[DP10] DICK, J. and PILLICHSHAMMER, F. Digital Nets and Sequences:
Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge
University Press, 2010 2, 5, 7.

[Fau82] FAURE, H. “Discrépance de suites associées à un système de nu-
meration”. Acta Arithmetica 41 (1982), 337–351 2, 7.

[FK01] FRIEDEL, I. and KELLER, A. libseq. http://www.multires.caltech.-
edu/software/libseq/. 2001 6, 9.

[FK02] FRIEDEL, I. and KELLER, A. “Fast generation of randomized low-
discrepancy point sets”. Monte Carlo and Quasi-Monte Carlo Methods
2000. Ed. by FANG, K.-T., NIEDERREITER, H., and HICKERNELL, F.
Springer, 2002, 257–273 2, 3, 6, 9.

[FT02] FAURE, H. and TEZUKA, S. “Another random scrambling of dig-
ital (t,s)-sequences”. Monte Carlo and Quasi-Monte Carlo Methods
2000. Ed. by FANG, K.-T., NIEDERREITER, H., and HICKERNELL, F.
Springer, 2002, 242–256 10.

[GHSK08] GRÜNSCHLOSS, L., HANIKA, J., SCHWEDE, R., and
KELLER, A. “(t,m,s)-nets and maximized minimum distance”. Monte
Carlo and Quasi-Monte Carlo Methods 2006. Ed. by KELLER, A.,
HEINRICH, S., and NIEDERREITER, H. Springer, 2008, 397–412 12.

[Hal60] HALTON, J. “On the efficiency of certain quasi-random sequences
of points in evaluating multi-dimensional integrals”. Numerische Math-
ematik 2.1 (1960), 84–90 2, 7.

[HP11] HOFER, R. and PIRSIC, G. “An explicit construction of finite-row
digital (0,s)-sequences”. Uniform Distribution Theory 6.2 (2011), 13–
30 11.

[JEK*19] JAROSZ, W., ENAYET, A., KENSLER, A., et al. “Orthogonal
array sampling for Monte Carlo rendering”. Computer Graphics Forum
(Proceedings of EGSR) 38.4 (2019), 135–147 2, 7.

[JK08] JOE, S. and KUO, F. “Constructing Sobol’ sequences with better
two-dimensional projections”. SIAM Journal on Scientific Computation
30 (2008), 2635–2654 5.

[JO20] JARZYNSKI, M. and OLANO, M. “Hash functions for GPU render-
ing”. Journal of Computer Graphics Techniques 9.3 (2020), 20–38 11.

[KAC*19] KELLER, A., AHMED, A., CHRISTENSEN, P., et al. “My fa-
vorite samples”. SIGGRAPH Course Notes. ACM, 2019 2.

[Kaj86] KAJIYA, J. “The rendering equation”. Computer Graphics (Proc.
SIGGRAPH) 20.4 (1986), 143–150 2, 3.

[KB17] KINGMA, D. and BA, J. Adam: A Method for Stochastic Optimiza-
tion. arXiv 1412.6980. 2017 12.

[KDS20] KEROS, A. D., DIVAKARAN, D., and SUBR, K. Jittering
samples using a kd-tree stratification. https://arxiv.org/abs/2002.07002.
2020 2.

[Ken13] KENSLER, A. Correlated multi-jittered sampling. Tech. rep. 13-
01. Pixar Animation Studios, 2013 2, 9, 11.

[KK02] KOLLIG, T. and KELLER, A. “Efficient multidimensional
sampling”. Computer Graphics Forum (Proc. Eurographics) 21.3
(2002), 557–563 3.

[LEc18] L’ECUYER, P. “Randomized quasi-Monte Carlo: an introduction
for practitioners”. Monte Carlo and Quasi-Monte Carlo Methods. Ed. by
OWEN, A. and GLYNN, P. Springer, 2018, 29–52 2.

[LK11] LAINE, S. and KARRAS, T. “Stratified sampling for stochastic
transparency”. Computer Graphics Forum (Proc. Eurographics Sympo-
sium on Rendering) 30.4 (2011) 2, 3, 5, 6.

[Mat98] MATOUŠEK, J. “On the L2-discrepancy for anchored boxes”.
Journal of Complexity 14.4 (1998), 527–556 3, 9, 11.

[Mit91] MITCHELL, D. “Spectrally optimal sampling for distribution ray
tracing”. Computer Graphics (Proc. SIGGRAPH) 25.4 (1991), 157–
164 2, 9.

[Mit96] MITCHELL, D. “Consequences of stratified sampling in graphics”.
Computer Graphics (Proc. SIGGRAPH) 30.4 (1996), 277–280 2, 5.

[Nie87] NIEDERREITER, H. “Point sets and sequences with small discrep-
ancy”. Monatshefte für Mathematik 104.4 (1987), 273–337 2, 4.

[Owe03] OWEN, A. “Variance and discrepancy with alternative scram-
blings”. ACM Transactions on Modeling and Computer Simulation 13
(2003), 363–378 3.

[Owe13] OWEN, A. Monte Carlo Theory, Methods and Examples. 2013 2,
3, 5, 7.

[Owe95] OWEN, A. “Randomly permuted (t,m,s)-nets and (t,s)-
sequences”. Monte Carlo and Quasi-Monte Carlo Methods in Scientific
Computing. Ed. by NIEDERREITER, H. and SHIUE, P. Springer,
1995, 299–317 2, 3.

[PCX*18] PERRIER, H., COEURJOLLY, D., XIE, F., et al. “Sequences
with low-discrepancy blue-noise 2-D projections”. Computer Graphics
Forum (Proc. Eurographics) 37.2 (2018), 339–353 3.

[Pha18] PHARR, M., ed. ACM Transactions on Graphics (Special Issue on
Production Rendering). Vol. 37. 3. 2018 1, 2.

[Pha19] PHARR, M. “Efficient generation of points that satisfy two-
dimensional elementary intervals”. Journal of Computer Graphics Tech-
niques 8.1 (2019), 56–68 2, 6.

[PJH17] PHARR, M., JACOB, W., and HUMPHREYS, G. Physically Based
Rendering: From Theory To Implementation. 3rd. Morgan Kaufmann,
2017 1, 2, 5, 8, 9.

[SÖA*19] SINGH, G., ÖZTIRELI, C., AHMED, A., et al. “Analysis of
sample correlations for Monte Carlo rendering”. Computer Graphics
Forum (Proceedings of Eurographics – State of the Art Reports) 38.2
(2019), 473–491 2.

[Sob67] SOBOL’, I. “On the distribution of points in a cube and the ap-
proximate evaluation of integrals”. USSR Computational Mathematics
and Mathematical Physics 7.4 (1967), 86–112 2, 5.

[VG95] VEACH, E. and GUIBAS, L. “Optimally combining sampling
techniques for Monte Carlo rendering”. Computer Graphics (Proc. SIG-
GRAPH) (1995), 419–428 9.

[YLS20] YANG, L., LIU, S., and SALVI, M. “A survey of temporal an-
tialiasing techniques”. Computer Graphics Forum 39.2 (2020), 607–
621 7.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

