Sculpt Processing for Character Rigging

Fernando de Goes
fernando@pixar.com
Pixar Animation Studios

Patrick Coleman
pcoleman@pixar.com
Pixar Animation Studios

Michael Comet
mcomet@pixar.com
Pixar Animation Studios

Alonso Martinez
alonsorobots@gmail.com
Google

ABSTRACT
Pose-space sculpting is a key component in character rigging workflows used by digital artists to create shape corrections that fire on top of deformation rigs. However, hand-crafting sculpts one pose at a time is notoriously laborious, involving multiple cleanup passes as well as repetitive manual edits. In this work, we present a suite of geometric tools that have significantly sped up the generation and re-use of production-quality sculpts in character rigs at Pixar. These tools include a transfer technique that refits sculpts from one model to another, a surface reconstruction method that resolves entangled regions, and a relaxation scheme that restores surface details. Importantly, our approach allows riggers to focus their time on making creative sculpt edits to meet stylistic goals, thus enabling quicker turnarounds and larger design changes with a reduced impact on production. We showcase the results generated by our tools with examples from Pixar’s feature films Onward and Soul.

Figure 1: We present a set of geometric tools that assists the creation and reuse of sculpts between 3D characters. In the left, poses from one character (top) are transferred to another character (bottom), with rest shapes displayed in the left-most column. In the right, poses produced by a joint-based rig (top) are sculpted via our Bandage and relax tools (bottom). ©Disney/Pixar.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

ACM Reference Format:

1 INTRODUCTION
As feature animation productions scale in complexity, it is key to build power tools that leverage and share existing artistic work in order to automate repetitive processes and better support creative tasks. Towards this goal, we implemented a suite of sculpting techniques that, used in conjunction, enables riggers to reuse and refine character poses produced by procedural rigs. Our toolset includes techniques to refit sculpts between different shapes (§2), cleanup rig artifacts (§3), and restore rest shape details (§4). These tools assume that character models are discretized by quad-dominant meshes with 3D vertex locations stacked column-wise in a matrix X. We represent a slice of X with the vertex points incident to an individual face f by the matrix X_f and use $\text{d}X_f$ to indicate the matrix of edge vectors forming the boundary of f. We also denote by \tilde{X} the rest points associated with a mesh pose X and then define a sculpt as the point differences required by a character rig to deform \tilde{X} to X. Lastly, we use Y instead of X to describe a source model with sculpts versus a target mesh to be sculpted.

2 SCULPT TRANSFER
Character rigs at Pixar are commonly structured with a set of sculpts covering various calligraphic poses. In previous shows, these pose-space sculpts were created repetitively for every single character, thus taking significant amount of time. In order to facilitate rigging setup, we developed a transfer tool that populates poses of a target character by refitting existing sculpts from a reference source model of different shape but sharing the same mesh connectivity. Similar to [Sumner and Popovic 2004], our approach first assigns a 3×3 matrix F_f to every mesh face f encoding the sculpts to be transferred between source and target models, and then generates a deformed pose X for the target mesh by minimizing a least-squares fitting term of the form $\sum_f ||\text{d}X_f - F_f \text{d}X_f||^2$. While Sumner and Popovic [2004] extracts linear transformations using solely the rest Y_f and sculpted Y_f poses of the source polygons, we propose instead to assemble face-based matrices F_f that account for the misalignment between source Y_f and target \tilde{Y}_f rest shapes, in addition to the source deformation. To achieve this goal, we first compute the matrix \tilde{F}_f mapping the source polygon from its rest to its sculpted
We also considered variants using different powers of the Laplacian matrix, thus leading to a linear solve with a bi-Laplacian matrix. The objective function for this optimization can be concisely written as $\|\mathbf{L}X\|^2$, where \mathbf{L} indicates a mesh-based Laplacian matrix, thus leading to a linear solve with a bi-Laplacian matrix. We also considered variants using different powers of the Laplacian matrix, but the bi-Laplacian is the most used option. With our cleanup routine, we obtain smooth shapes ready to be sculpted.

3 Bandage Tool

When no reference sculpt is available to be transfer, sculptures need to be crafted manually for every relevant character pose. Since traditional character rigs using, e.g., joint transforms and skinning weights tend to produce visual artifacts, rigging artists often spend much less time on pose correctness and instead spend more time on style and art direction adjustments. In practice, we noticed that riggers tend to use the sculpt transfer tool to quickly get a plausible sculpt, and then combine the Bandage and relax tools with manual edits to achieve the final sculpt, as illustrated in Figure 3.

4 Rest-Aware Relaxation

So far we described how to reuse sculptures between different character assets (§2) and how to pre-process poses before sculpting (§3). We now present a post-processing tool that restores surface details from a reference shape onto a sculpted pose of the same 3D model. Our implementation follows the relaxation method of de Goes et al. [2018] using span-aware weights and rotated Laplacian coordinates. This approach is particularly well-suited for character sculpting since it recovers both the arrangement of edge spans designed by modeling and the rest space local features. It is worth noticing that this relaxation technique is complementary to the sculpt transfer detailed in §2, since the former involves only rest and deformed shapes of the same model, while the latter requires a pair of poses of a source model in addition to the target shape to be sculpted.

5 Results

Our sculpt processing toolset was deployed as part of the rig-authoring system in Presto. In the supplemental video, we include interactive sessions showcasing these tools. For the Bandage and the rest-aware relaxation tool, users select points associated with a sculpt, adjust parameters such as the number of relax iterations, and then compute deformations which are saved into the selected sculpt. Figure 1 (right) shows pose fixes automatically produced by these tools. For the sculpt transfer workflow, users load a reference character with the initial sculpt data, as well as the target model to which the sculpt should be transferred, and run the command that solves transferred sculptures as needed. Figure 1 (left) displays examples of poses transferred from a hero to a secondary character. As riggers gained experience with our sculpt processing tools, they have become an integrated part of rigging workflows. Riggers have reported a large amount of personal time savings, as they focus much less time on pose correctness and instead spend more time on style and art direction adjustments. In practice, we noticed that riggers tend to use the sculpt transfer tool to quickly get a plausible sculpt, and then combine the Bandage and relax tools with manual edits to achieve the final sculpt, as illustrated in Figure 3.

References

